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ABSTRACT 
Users often become frustrated when they are unable to 
understand and control a ubicomp environment. Previous 
work has suggested that ubicomp systems should be 
intelligible to allow users to understand how the system 
works and controllable to let users intervene when the 
system makes a mistake. In this paper, we identify several 
design considerations for supporting intelligibility and 
control in ubicomp environments. We show these 
considerations are also applicable and necessary beyond 
ubicomp. We position examples of existing solutions in the 
design space that is obtained from combining these 
dimensions and show how it can be used to explore design 
alternatives for supporting intelligibility and control.  

Author Keywords 
intelligibility; control; end-user configuration; ubicomp; 
context; feedforward. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
Ubiquitous computing (ubicomp) systems are generally 
context-aware, which means they act based on context [9]: 
implicit input collected from the environment [21]. These 
systems thus often act without explicitly involving the user, 
which may leave users surprised as to why the system 
behaves in a certain way. Moreover, system actions are 
usually a result of complex reasoning about context data, 
which might be hard for users to grasp [12]. 
However, being difficult to understand is only part of the 
problem. Context-aware systems have been shown not be 
infallible. They are bound to sometimes make mistakes 
because of the inevitable incompleteness of context 
information [4,6]. It is therefore important that users are 
able to correct the system if it makes a mistake. Failing to 
do so will eventually result in users who feel out of control, 
and might cause them to lose trust in the system [2].  
Bellotti and Edwards argue that the more we try to get 
systems to act on our behalf, especially in relation to other 

people, the more we have to watch every move they make 
[4]. They have proposed a number of design principles to 
tackle these problems, including intelligibility (what others 
have called scrutability [5]) and control. They argue that 
context-aware systems should be intelligible by informing 
users about the system's understanding of the world and 
should offer users control in order to recover from possible 
mistakes. 
In his book The Psychology of Everyday Things [18], 
Donald Norman introduced the Stages of Action model. 
The design principles that come into play to effectively 
bridge the Gulfs of Execution and Evaluation are widely 
recognized and adopted for traditional software, but are not 
always sufficient for ubicomp systems. First, visibility falls 
short since a lot of computing is hidden in the environment 
of the user and sensors that are hardly noticeable are used to 
perform part of the interaction. Moreover, ensuring the user 
can form a good conceptual model of the system is 
cumbersome for ubicomp systems given the complexity 
these systems tend to exhibit. These complexities are often 
hidden for the users, but unmistakeably present in the 
software architecture, which is often distributed, embedded 
in the environment and designed for simultaneous usage. 
Finally, besides informative feedback that tells users what 
has happened, ubicomp systems might also need to convey 
to users what is going to happen in the future. Intelligibility 
helps to overcome the difficulties of interacting with these 
systems, by revealing how the software acts and reacts.  
In this paper, we explore how we can help users to 
understand how ubicomp systems work, and how we can 
support them in configuring and correcting the system’s 
behaviour.  

BACKGROUND 
Bellotti and Edwards [4] state that intelligible context-
aware systems are able to represent to their users what they 
know, how they know it, and what they are doing about it. 
Dourish proposed the idea of reflective self-
representationsthat are generated by a system and reliably 
describe its state, while also allowing users to affect that 
state and control the system’s behavior [11].  
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There are many approaches to providing intelligibility and 

control, some quite subtle. For example, Google Maps uses 

a growing or shrinking “blue circle” to convey how 

confident it is of the user’s current location. Other basic 

examples of intelligibility can be found in recommender 

systems. Services like Amazon, the App Store, or Youtube 

provide recommendations of related content to their users. 

Users can also ask the system why a certain item (e.g., a 

book, app or video) was recommended to them. 

Additionally, the system offers control to users: they can 

affect the recommender engine’s behaviour by indicating 

that they are not interested in those recommendations. 

Several systems have been developed to support end-users 

in controlling, configuring or programming their ubicomp 

environments (e.g., [8,20]). Further investigation is 

necessary, however, to explore which interaction techniques 

and user interfaces are best suited for this purpose. There 

are a number of ubicomp systems and architectures that 

extend intelligibility and control to end-users. Cheverst's 

IOS system [5] shows confidence levels and visualizations 

of decision tree rules and allows end-users to manipulate 

system parameters. Situations [10] automatically supports 

simple intelligibility and control user interfaces and also 

allows designers to create application-specific user 

interfaces.  

Lim, Dey and Avrahami [15] investigated if why (not) 

questions could be used to improve the intelligibility of 

context-aware systems. Their results suggest that allowing 

users to pose why (not) questions about the behaviour of a 

context-aware system would result in better understanding 

and stronger feelings of trust. In a later study, Lim and Dey 

[14] investigated the different information needs users have 

for context-aware applications under various situations, 

recommending amongst others that why questions should 

be made available for all context-aware applications.  

Ju et al. [13] describe a design framework for reasoning 

about transitions between implicit and explicit interaction. 

They discuss three interaction techniques that allow users to 

overcome errors in system's proactive behaviour: user 

reflection, system demonstration, and override. The first 

two can be seen as interaction techniques for improving 

intelligibility, while the latter is a technique for providing 

control. 

Coutaz [7] proposed the meta-User Interface (meta-UI) 

concept, which is essentially a user interface to support 

intelligibility and control in smart spaces. Coutaz analysed 

several existing systems and argues that there should be 

more attention towards control by end-users and to 

embedding meta-UIs within domain-specific applications.  

DESIGN SPACE 

The systems that were discussed in the previous section 

only represent a single point in the larger design space of 

possible techniques to provide intelligibility and control. In 

order to get a better idea of the different possibilities and 

the design choices that play a role when developing 

interfaces for intelligibility and control, we introduce a 

design space consisting of six dimensions, as shown in 

Figure 1: 

 

Figure 1: Design space for intelligibility and control. 

We begin with a brief overview of each of these six 

dimensions, after which we discuss them in more detail and 

provide examples. 

Timing: Intelligibility and control can be supported at 

different times during the interaction: before, during and 

after events take place. 

Generality: User interfaces and interaction techniques for 

intelligibility and control can be general or domain-specific 

(e.g., techniques for visualising location errors in navigation 

systems). 

Degree of co-location: Support for intelligibility or control 

might be embedded or integrated with the rest of the user 

interface versus external, when users are required to switch 

to a separate interface.  

Initiative: Users may need to explicitly request 

intelligibility information or invoke control techniques 

manually (user), or might automatically be presented with 

these features when necessary (system). 

Modality: Several modalities can be used to help users to 

understand or control the system (e.g. visual, auditory, 

haptic).  

Level of control: The level of control end-users can exert 

over the system varies from intelligibility, where no 

additional control is added beyond intelligibility, over 

counteract, where users can perform the opposite action 

(e.g., undo), to configuration, where users can tweak 

predefined system parameters, and programmability where 

users can themselves (re-)define how the system works. 

Timing 

Intelligibility information can be provided at different 

phases during the interaction with a ubicomp system. For 
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example, consider the case where the system would 

perform a certain action automatically given a certain 

trigger (e.g., showing a personalized calendar on a 

proximity-aware display when a user approaches it). There 

are different points in time at which intelligibility 

information can be provided:  

 Before the action: Users could be offered information 

before the action would take place, allowing them to 

anticipate the system’s behaviour. 

 During the action: The system could visualize events 

and actions when they happen, to allow users to better 

understand the flow between different components in 

the system (e.g., how different sensors work together). 

 After the action: The user could be offered 

intelligibility information after the action has been 

performed, for example to explain why the system 

took that action. 

For example, Ju et al.’s proximity-aware Range whiteboard 

[13] provides intelligibility and control before and during 

system actions. Range uses a system demonstration 

technique where the system shows the user what it is doing, 

or what it is going to do. When switching between ambient 

mode and the drawing mode, Range uses a transition of the 

whiteboard’s contents to call the user’s attention to the 

mode change, instead of suddenly switching. Moreover, 

while the whiteboard is transitioning between modes, users 

can grab the moving contents to cancel the mode switch 

(override). Additionally, Lim and Dey’s concept of what-if 

questions [16] is intelligibility information that is provided 

before the action.  

An example of intelligibility information that is provided 

after the action, are why questions. Ko and Myers 

developed the Crystal application framework [17] that 

allows programmers to support why questions in their 

applications. A word processor could, for example, allow 

users to pose questions about its more complex formatting 

behaviour (e.g., “Why is this text bold?”). Why questions 

have also been used for context-aware systems [16] and 

ubicomp environments [26]. 

Generality 

Intelligibility or control techniques can be general or 

domain-specific. A simple example of a domain-specific 

intelligibility interface is the way location-based services 

present the user’s current location together with the level of 

uncertainty [1]. For example, the blue circle in Google 

Maps gives users an indication of how certain the system is 

of the user’s current location, depending on the size of the 

circle. This interface tells users that it knows they are 

located somewhere in the circle, but it does not know 

precisely where they are located.  

While domain-specific interfaces might limit flexibility and 

reuse, they might be easier for users to understand as they 

provide a better expressive match. It is, for example, easier 

to estimate the location error using a circle on a map than to 

try to interpret an error percentage. Domain-specific 

interfaces can be more easily integrated into a specific 

application (see also: co-location), which might help users 

remain in the flow of their current task. 

Other examples of domain-specific intelligibility interfaces 

are gesture guides, such as OctoPocus [3]. OctoPocus helps 

users perform gestures by continuously showing the 

possible remaining gesture paths. Similarly, Ju Lee and 

Klemmer’s implementation of user reflection, system 

demonstration and override for the Range whiteboard is 

specifically designed for proximity-aware whiteboards.  

An example of a generic interface for intelligibility and 

control is PervasiveCrystal [26] (see: next section), which 

provides users with the possibility to pose why and why not 

questions about any event occurring in a ubicomp 

environment and offers simple control primitives.  

Co-location 

The co-location dimension refers to the level of integration 

between an interface for intelligibility and control, and the 

application in which it is used. Intelligibility or control 

could be offered in a separate interface (external), or could 

be an integrated part of the application (embedded). In her 

discusson about meta-user interfaces, Coutaz [7] calls this 

dimension the “level of integration”.  

OctoPocus [3], Ju et al.’s techniques [13], and the Google 

Maps location error visualisation are all examples of 

embedded intelligibility interfaces. External interfaces tend 

to offer more possibilities and flexibility, but, unlike 

embedded interfaces, require the user to interrupt their task 

and switch to a separate interface. External interfaces tend 

to be useful for controlling or understanding high-level, 

generic components of a system. An example of an external 

interface is Dey et al.’s a CAPpella tool [8] that allows 

users to program a context-aware system by demonstrating 

its desired behaviour.  

Initiative 

The initiative for showing information to improve the users’ 

understanding can be taken by the system itself or this 

information can be available upon request by the user. 

When the system takes the initiative, it could reveal 

information to draw the user’s attention to a certain event, 

as with Ju et al.’s system demonstration technique [13]. 

Alternatively, the system could provide users with an 

option to receive detailed information if they need it, 

similar to the way services like Amazon can explain why a 

certain products were recommended to the user. 

There might be several arguments for choosing between 

these two strategies. Automatically providing information 

all the time might be distracting or even annoying for the 

user, depending on the amount of detail that is provided. 

Still, it can be useful in select cases to have access to very 

detailed information to debug the system’s behaviour and 

understand deeper details of how the system works. In this 

case, we would probably like to leave the initiative of 

showing this information to the user, so that the information 
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is only there when necessary. On the other hand, simple and 

informative feedback that explains to users what the system 

is doing might be useful to show at all times, even for 

expert users. 

An elegant way of supporting both novices and experts, and 

thereby combining system and user initiative, can be found 

in systems like OctoPocus [3]. This kind of system waits 

for a certain time before it presents the intelligibility 

interface, so that experts who already understand how the 

system works can perform actions very efficiently, but can 

always slow down when they are unsure. 

Modality 

Depending on the domain and the context of use, different 

modalities might be preferred (visual, haptic, auditory). For 

example, when the users need their visual attention 

elsewhere (e.g., while driving), intelligibility or control 

might be better provided using another modality. Most 

systems typically only support intelligibility or control 

using the visual modality.  

Level of control 

There are increasing levels of control that end-users can 

exert over the system. The most basic level of control is 

only intelligibility, where no additional control functionality 

is provided beyond intelligibility. Note that this still allows 

users to intervene by changing their own behaviour based 

on their understanding of how the system works. For 

example, because we understand how a motion-controlled 

light works, we know that we can wave our hands to turn 

the light on again when it goes out. An example of this 

level of control would be the availability of only a why 

questions interface. Based on the understanding gained by 

posing why questions, users could then alter their behaviour 

to exert control. 

The next level of control is counteracting. Systems that 

provide this level of control only allow users to revert the 

system’s actions (e.g., undo). An example of such as system 

is PervasiveCrystal [26] (see: next section). Next, systems 

that allow users to tweak predefined system parameters 

feature the configuration level of control. An example of 

this kind of system is Dey and Newberger’s Situations 

framework [10]. 

The most advanced level of control, programmability, is 

available when users can themselves (re-)define how the 

system works, such as in Dey et al.’s a CAPpella [8]. 

INTELLIGIBILITY APPS: SOME SAMPLES FROM THE 
DESIGN SPACE  

PervasiveCrystal 

PervasiveCrystal [26] is a system that allows users to 

understand the behaviour of a ubicomp environment by 

posing why and why not questions. PervasiveCrystal can 

reason about the causes and consequences of system and 

user actions, based on a rule-based behaviour model, and 

uses this information to automatically generate a list of why 

and why not questions. PervasiveCrystal is built on top of 

ReWiRe [22], an existing framework to dynamically 

compose, deploy and query software components in 

ubicomp environments. It uses an annotated version of 

ReWiRe’s behaviour model that links different rules 

together. The annotations are then processed at runtime to 

build up a model of the system’s behaviour that can be 

easily queried and is used to generate the list of why and 

why not questions. It features displays that are equipped 

with a motion sensor to detect the presence of the user.  

We illustrate how our approach works by means of an 

example scenario, shown in Figure 2. We will follow Bob, 

one of the visitors of the smart museum equipped with 

PervasiveCrystal. When he enters the museum, Bob 

receives a mobile museum guide that can be used to 

interrogate and control the environment. Bob is told that the 

museum features displays that can detect his presence and 

react to motion. 

 

Figure 2: PervasiveCrystal shows a list of available questions, 

based on recent events (A). Answers are generated by linking 

events to what caused them to happen (B.1). Additionally users 

have access to two control mechanisms: they can undo operations 

(B.2) or invoke fine-grained control user interfaces, in this case: a 

light control UI (B.4). 

When Bob approaches one of these displays during his 

museum visit, he waves in front of the screen to play a 

movie, as shown in Figure 2 (scene 1). However, at that 

time, the lights also go out. Bob does not understand why 

this happens, and is confused (scene 2). Behind the scenes, 

there are several rules that react to context changes (scene 

3). One of the rules plays a movie when the camera detects 

motion. There is also another rule that turns off the lights 

whenever a movie is playing to provide users with a better 

viewing experience. When the first rule executes, its effect 

(playing a movie) causes the second rule to execute and 

turn off the lights. Bob remembers he can use the why 

menu to ask questions about the smart museum’s behaviour 

(scene 4). As seen in Figure 2 (4.A), the why menu shows 

a list of available questions about events together with a 

representative icon. PervasiveCrystal automatically 
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generates the list of questions by tracking events that 

occurred (e.g., lights that are switched off). 

The Visible Computer 

Because of the heterogeneous nature of ubicomp 

environments — which often employ several displays, 

speakers, sensors, embedded devices — users might require 

co-located information that tells them what the system is 

doing, when and where it is doing this, and allows them to 

intervene without leaving their current task. 

To explore this idea, we developed a prototype [24] that 

uses steerable projectors to overlay the environment with 

real-time visualizations of actions occurring in the 

environment  (e.g. turning off the lights). Figure 3 shows 

how we used a simple graphical language to visualize the 

relationships between sensors or devices and system 

actions. When an action is executed, an animation is shown 

to visualize the cause(s) and consequence(s) of this action. 

In addition, users can issue a voice command to cancel (or 

undo) the most recent action.  

 

Figure 3: A user looks at an animation that links sensors and 

devices with system actions to explain the system's behavior. 

Each sensor or input/output device (e.g., a camera, speaker, 

display) is visualised at its physical location in the 

environment with an icon and a label. These icons allow 

users to get an overview of the devices that are present in 

their environment. Below the icon of each input device or 

sensor, a separate label is drawn that displays the 

possibilities of the device and its current state using smaller 

icons. Output devices feature only an icon and no separate 

label. The icon of an output device embeds its current state 

(e.g., a light’s intensity displayed as a horizontal bar. 

Figure 4 shows how a chain of events is visualised using 

this graphical language. 

 

Figure 4: Visualising a chain of events: touching the screen 

results in a movie being played. This, in turn, results in the lights 

being dimmed. 

The Feedforward Torch 

We have built the Feedforward Torch [25], a prototype to 

explore feedforward. Feedforward is a specific type of 

intelligibility information that informs the user about what 

the result of an action will be [23]. If we consider the 

timing dimension, feedforward is thus intelligibility 

information that is provided before an event takes place. 

While feedback tells the user what happened, feedforward 

tells the user what will happen. Well-designed feedforward 

is an effective tool for bridging Norman’s Gulf of 

Execution [18] – the gap between a user’s goals for action 

and the means for executing those goals [23]. Ju et al. [13] 

also talk about feedforward as a specific variation of their 

user reflection technique.  

The Feedforward Torch is a combination of a smartphone 

and mobile projector that provides feedforward about the 

objects and interactions in the user’s environment. With the 

Feedforward Torch, we do not focus exclusively on 

ubicomp environments, but also target existing legacy 

systems in our daily environments. We argue that these 

environments require intelligibility as well. If users have 

difficulties interacting with the system, having to fix this 

after deployment is very cumbersome and expensive. 

Physically changing the interface design to include better 

feedforward would imply fixing every instance of the 

system separately. The Feedforward Torch augments the 

systems during usage and does not require physical changes 

in order to overcome design flaws of legacy systems. 

Users can point the Feedforward Torch at objects in their 

environment and reveal feedforward information about 

them, as if they were located under a spotlight. Users are 

shown under which conditions actions associated with the 

object will be executed by the system (e.g., a displacement 

in time or space), so that they can anticipate and adapt their 

behaviour, if necessary. Animations are used to better 

convey the effect an action will have. The Feedforward 

Torch does not extend the features of a legacy system; its 

sole focus is on guiding the user to use the actual system. 

The main difference between the Feedforward Torch and 

the Visible Computer, which used steerable projectors, is 

the fact that the Feedforward Torch places the initiative for 

showing information with the user. Figure 5 shows how the 

Feedforward Torch can be used to understand an array of 

light switches. Like in the Visible Computer prototype, 
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information is projected on and around the system, so that 

users do not need to switch their attention to another 

interface and can continue to focus on the task they are 

performing (co-location: embedded). 

 

Figure 5: A user points at a light switch using the Feedforward 

Torch to understand what will happen if he presses the switch. 

Figure 6 shows the Feedforward Torch prototype, 

consisting of a Samsung Galaxy S smart phone, a 

MicroVision SHOWWX+ laser pico projector and a laser 

pointer to be able to point the device at physical objects. A 

custom casing was made in order to support one-handed 

interaction. We used a Wizard-of-Oz control interface to 

show the right content to the user at the right time in order 

to simulate a fully working object recognition mechanism. 

 

Figure 6: The Feedforward Torch prototype (right) and Wizard-

of-Oz control interface (left). 

MAPPING THE DESIGN SPACE 

In Figure 7, we show how the different systems that were 

discussed in this paper fit into the proposed design space. 

We will discuss each of the six dimensions. 

 

Figure 7: Mapping the different system or techniques in the design 

space for intelligibility and control 

Timing: With respect to timing, there is quite some 

diversity. There are a few techniques such as those of Ju et 
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al. [13], OctoPocus [3] or Cheverst’s IOS system [5] that 

span multiple alternatives of the timing dimension, but most 

techniques only offer a specific moment in time at which 

intelligibility is provided. Of course, ideally, systems 

should be intelligible about past, present and future events.  

Generality: We covered a variety of domain-specific and 

general interfaces in our design space. Some systems or 

techniques can provide both domain-specific and general 

intelligibility, e.g., recommender systems, what if questions 

and Situations [10]. 

Degree of co-location: We notice that most domain-specific 

interfaces are also embedded (e.g., the location error 

visualisation in Google Maps). However, this is not always 

the case. For example, Rodden’s jigsaw editor [20] is a 

domain-specific interface for controlling a smart home, but 

is nevertheless external.  

Initiative:  Most systems either provide intelligibility 

automatically, or allow the user to request detailed 

information when necessary. As discussed earlier, some 

systems combine both approaches to support a flexible 

transition from novice users to experts, such as OctoPocus 

[3]. 

Modality: It is apparent that most techniques rely on the 

visual modality. There are only a few systems that provide 

intelligibility through other means, and even then, these are 

providing visual information as well (e.g., the Visible 

Computer and the Feedforward Torch). 

Level of control: There are a number of systems that only 

provide intelligibility (e.g., Google Maps, the Feedforward 

Torch, OctoPocus) without any control mechanism. On the 

other end of the spectrum, there are very powerful systems 

such as Rodden’s jigsaw editor [20], IOS [5] and a 

CAPpella [8]. However, these techniques usually employ 

an external interface and are very general. One could argue 

whether these techniques are really usable by non-technical 

users. 

LESSONS LEARNED 

In what follows, we reflect on our experiences from 

conducting first use studies with the different systems 

discussed earlier (PervasiveCrystal, the Visible Computer, 

and the Feedforward Torch). We discuss the lessons learned 

with respect to the previously introduced design space. 

PervasiveCrystal  

We learned that textual explanations are not always ideal. 

Automatically generated explanations can sometimes be 

confusing to users, especially when they describe a long 

sequence of events that caused a system action, or when 

double negations are involved (e.g., “The lights didn’t go 

out because the movie didn’t start playing”). While there 

are a number of strategies to overcome this problem 

(simplifying or combining several explanations), we believe 

some situations might be too complex to explain solely 

using text. 

Another problem users faced is that the why questions 

menu quickly became cluttered due to many events firing in 

a short time span. This made it hard for users to find the 

question they wanted to ask. Unlike desktop applications 

that typically use explicit interaction, ubicomp 

environments use implicit interaction and sensors that 

trigger many events (e.g., a motion sensor). While these 

questions could be clustered, it might still be hard for users 

to find the question about the event that they are interested 

in. With respect to the control primitives, participants also 

found it hard to predict the effect of invoking undo and do, 

after which we used more concrete labels (e.g., “Turn on 

lights” instead of “Undo”). The fact that the effect of the 

undo and do actions was hard to predict might also be due 

to the external nature of the interface. Why questions that 

are embedded into specific applications (e.g., the word 

processor built with Crystal [17]) might be less 

disconnected from the user’s task. 

The Visible Computer 

We ran an informal study with five participants to gather 

feedback about the suitability of our approach of visualizing 

the system’s behaviour using steerable projectors. Subjects 

were asked to explain how the system worked in three 

different situations, after having seen the visualization. Four 

out of five subjects could describe the system's behaviour 

correctly for each of the three situations. This promising 

result could indicate that a visual, embedded way of 

presenting how the system works might help users to form a 

better mental model, which is consistent with findings by 

Rehman et al. [19]. Participants were generally happy with 

the visual representation, but sometimes had difficulties 

with keeping track of visualizations across multiple 

surfaces. One participant mentioned she received too much 

information, leaving her overwhelmed. This might indicate 

that we should be careful when automatically providing 

detailed explanations (system initiative). Finally, several 

subjects experienced difficulties with invoking the cancel 

feature, possibly because they were not familiar with 

speech interaction (modality: auditory). 

The Feedforward Torch 

We also conducted a small study with the Feedforward 

Torch. We used a Wizard-of-Oz control interface to change 

the contents of the feedforward display. 

All participants were able to complete the tasks and several 

participants mentioned they would have been unable to do 

so without the Feedforward Torch or additional help. Two 

participants stated that the system would have come in 

handy in a large city: “When I had to use the London 

Underground for the first time, the Feedforward Torch 

would have been useful to help me figure out how to use the 

ticketing machine. Now, I had to observe other passengers 

first before I knew how the system worked and what I had to 

do.”  

Participants liked the fact that information was overlaid on 

the physical environment (embedded), so they did not have 
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to switch between the smartphone display and the system or 

device they had to operate. One of the advantages of mobile 

projection that was mentioned during the semi-structured 

interviews was the fact that groups of people could explore 

the projection together. Nevertheless, projection only 

worked well in low-lighting conditions. The use of 

animations was appreciated, especially when the result of a 

certain action would happen over time or outside the user’s 

periphery. Finally, participants strongly preferred 

visualisations to textual explanations in the encountered 

scenarios, as they considered reading textual information to 

be more time-consuming. 

We can conclude that the choice between different 

combinations of each of these dimensions for intelligibility 

and control interfaces can have a large impact on the user 

experience. Designers can use our design space to consider 

these different alternatives and choose the one that fits their 

application best. 
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