
Intelligibility Required: How to Make Us Look Smart Again

Jo Vermeulen, Kris Luyten and Karin Coninx
Hasselt University – tUL – iMinds

Wetenschapspark 2,
B-3590 Diepenbeek, Belgium

[jo.vermeulen, kris.luyten, karin.coninx]@uhasselt.be

ABSTRACT
Users often become frustrated when they are unable to
understand and control a ubicomp environment. Previous
work has suggested that ubicomp systems should be
intelligible to allow users to understand how the system
works and controllable to let users intervene when the
system makes a mistake. In this paper, we identify several
design considerations for supporting intelligibility and
control in ubicomp environments. We show these
considerations are also applicable and necessary beyond
ubicomp. We position examples of existing solutions in the
design space that is obtained from combining these
dimensions and show how it can be used to explore design
alternatives for supporting intelligibility and control.

Author Keywords
intelligibility; control; end-user configuration; ubicomp;
context; feedforward.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Ubiquitous computing (ubicomp) systems are generally
context-aware, which means they act based on context [9]:
implicit input collected from the environment [21]. These
systems thus often act without explicitly involving the user,
which may leave users surprised as to why the system
behaves in a certain way. Moreover, system actions are
usually a result of complex reasoning about context data,
which might be hard for users to grasp [12].
However, being difficult to understand is only part of the
problem. Context-aware systems have been shown not be
infallible. They are bound to sometimes make mistakes
because of the inevitable incompleteness of context
information [4,6]. It is therefore important that users are
able to correct the system if it makes a mistake. Failing to
do so will eventually result in users who feel out of control,
and might cause them to lose trust in the system [2].
Bellotti and Edwards argue that the more we try to get
systems to act on our behalf, especially in relation to other

people, the more we have to watch every move they make
[4]. They have proposed a number of design principles to
tackle these problems, including intelligibility (what others
have called scrutability [5]) and control. They argue that
context-aware systems should be intelligible by informing
users about the system's understanding of the world and
should offer users control in order to recover from possible
mistakes.
In his book The Psychology of Everyday Things [18],
Donald Norman introduced the Stages of Action model.
The design principles that come into play to effectively
bridge the Gulfs of Execution and Evaluation are widely
recognized and adopted for traditional software, but are not
always sufficient for ubicomp systems. First, visibility falls
short since a lot of computing is hidden in the environment
of the user and sensors that are hardly noticeable are used to
perform part of the interaction. Moreover, ensuring the user
can form a good conceptual model of the system is
cumbersome for ubicomp systems given the complexity
these systems tend to exhibit. These complexities are often
hidden for the users, but unmistakeably present in the
software architecture, which is often distributed, embedded
in the environment and designed for simultaneous usage.
Finally, besides informative feedback that tells users what
has happened, ubicomp systems might also need to convey
to users what is going to happen in the future. Intelligibility
helps to overcome the difficulties of interacting with these
systems, by revealing how the software acts and reacts.
In this paper, we explore how we can help users to
understand how ubicomp systems work, and how we can
support them in configuring and correcting the system’s
behaviour.

BACKGROUND
Bellotti and Edwards [4] state that intelligible context-
aware systems are able to represent to their users what they
know, how they know it, and what they are doing about it.
Dourish proposed the idea of reflective self-
representationsthat are generated by a system and reliably
describe its state, while also allowing users to affect that
state and control the system’s behavior [11].

T. Ștefănuț, C. Rusu (eds.), RoCHI 2013

1

There are many approaches to providing intelligibility and

control, some quite subtle. For example, Google Maps uses

a growing or shrinking “blue circle” to convey how

confident it is of the user’s current location. Other basic

examples of intelligibility can be found in recommender

systems. Services like Amazon, the App Store, or Youtube

provide recommendations of related content to their users.

Users can also ask the system why a certain item (e.g., a

book, app or video) was recommended to them.

Additionally, the system offers control to users: they can

affect the recommender engine’s behaviour by indicating

that they are not interested in those recommendations.

Several systems have been developed to support end-users

in controlling, configuring or programming their ubicomp

environments (e.g., [8,20]). Further investigation is

necessary, however, to explore which interaction techniques

and user interfaces are best suited for this purpose. There

are a number of ubicomp systems and architectures that

extend intelligibility and control to end-users. Cheverst's

IOS system [5] shows confidence levels and visualizations

of decision tree rules and allows end-users to manipulate

system parameters. Situations [10] automatically supports

simple intelligibility and control user interfaces and also

allows designers to create application-specific user

interfaces.

Lim, Dey and Avrahami [15] investigated if why (not)

questions could be used to improve the intelligibility of

context-aware systems. Their results suggest that allowing

users to pose why (not) questions about the behaviour of a

context-aware system would result in better understanding

and stronger feelings of trust. In a later study, Lim and Dey

[14] investigated the different information needs users have

for context-aware applications under various situations,

recommending amongst others that why questions should

be made available for all context-aware applications.

Ju et al. [13] describe a design framework for reasoning

about transitions between implicit and explicit interaction.

They discuss three interaction techniques that allow users to

overcome errors in system's proactive behaviour: user

reflection, system demonstration, and override. The first

two can be seen as interaction techniques for improving

intelligibility, while the latter is a technique for providing

control.

Coutaz [7] proposed the meta-User Interface (meta-UI)

concept, which is essentially a user interface to support

intelligibility and control in smart spaces. Coutaz analysed

several existing systems and argues that there should be

more attention towards control by end-users and to

embedding meta-UIs within domain-specific applications.

DESIGN SPACE

The systems that were discussed in the previous section

only represent a single point in the larger design space of

possible techniques to provide intelligibility and control. In

order to get a better idea of the different possibilities and

the design choices that play a role when developing

interfaces for intelligibility and control, we introduce a

design space consisting of six dimensions, as shown in

Figure 1:

Figure 1: Design space for intelligibility and control.

We begin with a brief overview of each of these six

dimensions, after which we discuss them in more detail and

provide examples.

Timing: Intelligibility and control can be supported at

different times during the interaction: before, during and

after events take place.

Generality: User interfaces and interaction techniques for

intelligibility and control can be general or domain-specific

(e.g., techniques for visualising location errors in navigation

systems).

Degree of co-location: Support for intelligibility or control

might be embedded or integrated with the rest of the user

interface versus external, when users are required to switch

to a separate interface.

Initiative: Users may need to explicitly request

intelligibility information or invoke control techniques

manually (user), or might automatically be presented with

these features when necessary (system).

Modality: Several modalities can be used to help users to

understand or control the system (e.g. visual, auditory,

haptic).

Level of control: The level of control end-users can exert

over the system varies from intelligibility, where no

additional control is added beyond intelligibility, over

counteract, where users can perform the opposite action

(e.g., undo), to configuration, where users can tweak

predefined system parameters, and programmability where

users can themselves (re-)define how the system works.

Timing

Intelligibility information can be provided at different

phases during the interaction with a ubicomp system. For

T. Ștefănuț, C. Rusu (eds.), RoCHI 2013

2

example, consider the case where the system would

perform a certain action automatically given a certain

trigger (e.g., showing a personalized calendar on a

proximity-aware display when a user approaches it). There

are different points in time at which intelligibility

information can be provided:

 Before the action: Users could be offered information

before the action would take place, allowing them to

anticipate the system’s behaviour.

 During the action: The system could visualize events

and actions when they happen, to allow users to better

understand the flow between different components in

the system (e.g., how different sensors work together).

 After the action: The user could be offered

intelligibility information after the action has been

performed, for example to explain why the system

took that action.

For example, Ju et al.’s proximity-aware Range whiteboard

[13] provides intelligibility and control before and during

system actions. Range uses a system demonstration

technique where the system shows the user what it is doing,

or what it is going to do. When switching between ambient

mode and the drawing mode, Range uses a transition of the

whiteboard’s contents to call the user’s attention to the

mode change, instead of suddenly switching. Moreover,

while the whiteboard is transitioning between modes, users

can grab the moving contents to cancel the mode switch

(override). Additionally, Lim and Dey’s concept of what-if

questions [16] is intelligibility information that is provided

before the action.

An example of intelligibility information that is provided

after the action, are why questions. Ko and Myers

developed the Crystal application framework [17] that

allows programmers to support why questions in their

applications. A word processor could, for example, allow

users to pose questions about its more complex formatting

behaviour (e.g., “Why is this text bold?”). Why questions

have also been used for context-aware systems [16] and

ubicomp environments [26].

Generality

Intelligibility or control techniques can be general or

domain-specific. A simple example of a domain-specific

intelligibility interface is the way location-based services

present the user’s current location together with the level of

uncertainty [1]. For example, the blue circle in Google

Maps gives users an indication of how certain the system is

of the user’s current location, depending on the size of the

circle. This interface tells users that it knows they are

located somewhere in the circle, but it does not know

precisely where they are located.

While domain-specific interfaces might limit flexibility and

reuse, they might be easier for users to understand as they

provide a better expressive match. It is, for example, easier

to estimate the location error using a circle on a map than to

try to interpret an error percentage. Domain-specific

interfaces can be more easily integrated into a specific

application (see also: co-location), which might help users

remain in the flow of their current task.

Other examples of domain-specific intelligibility interfaces

are gesture guides, such as OctoPocus [3]. OctoPocus helps

users perform gestures by continuously showing the

possible remaining gesture paths. Similarly, Ju Lee and

Klemmer’s implementation of user reflection, system

demonstration and override for the Range whiteboard is

specifically designed for proximity-aware whiteboards.

An example of a generic interface for intelligibility and

control is PervasiveCrystal [26] (see: next section), which

provides users with the possibility to pose why and why not

questions about any event occurring in a ubicomp

environment and offers simple control primitives.

Co-location

The co-location dimension refers to the level of integration

between an interface for intelligibility and control, and the

application in which it is used. Intelligibility or control

could be offered in a separate interface (external), or could

be an integrated part of the application (embedded). In her

discusson about meta-user interfaces, Coutaz [7] calls this

dimension the “level of integration”.

OctoPocus [3], Ju et al.’s techniques [13], and the Google

Maps location error visualisation are all examples of

embedded intelligibility interfaces. External interfaces tend

to offer more possibilities and flexibility, but, unlike

embedded interfaces, require the user to interrupt their task

and switch to a separate interface. External interfaces tend

to be useful for controlling or understanding high-level,

generic components of a system. An example of an external

interface is Dey et al.’s a CAPpella tool [8] that allows

users to program a context-aware system by demonstrating

its desired behaviour.

Initiative

The initiative for showing information to improve the users’

understanding can be taken by the system itself or this

information can be available upon request by the user.

When the system takes the initiative, it could reveal

information to draw the user’s attention to a certain event,

as with Ju et al.’s system demonstration technique [13].

Alternatively, the system could provide users with an

option to receive detailed information if they need it,

similar to the way services like Amazon can explain why a

certain products were recommended to the user.

There might be several arguments for choosing between

these two strategies. Automatically providing information

all the time might be distracting or even annoying for the

user, depending on the amount of detail that is provided.

Still, it can be useful in select cases to have access to very

detailed information to debug the system’s behaviour and

understand deeper details of how the system works. In this

case, we would probably like to leave the initiative of

showing this information to the user, so that the information

T. Ștefănuț, C. Rusu (eds.), RoCHI 2013

3

is only there when necessary. On the other hand, simple and

informative feedback that explains to users what the system

is doing might be useful to show at all times, even for

expert users.

An elegant way of supporting both novices and experts, and

thereby combining system and user initiative, can be found

in systems like OctoPocus [3]. This kind of system waits

for a certain time before it presents the intelligibility

interface, so that experts who already understand how the

system works can perform actions very efficiently, but can

always slow down when they are unsure.

Modality

Depending on the domain and the context of use, different

modalities might be preferred (visual, haptic, auditory). For

example, when the users need their visual attention

elsewhere (e.g., while driving), intelligibility or control

might be better provided using another modality. Most

systems typically only support intelligibility or control

using the visual modality.

Level of control

There are increasing levels of control that end-users can

exert over the system. The most basic level of control is

only intelligibility, where no additional control functionality

is provided beyond intelligibility. Note that this still allows

users to intervene by changing their own behaviour based

on their understanding of how the system works. For

example, because we understand how a motion-controlled

light works, we know that we can wave our hands to turn

the light on again when it goes out. An example of this

level of control would be the availability of only a why

questions interface. Based on the understanding gained by

posing why questions, users could then alter their behaviour

to exert control.

The next level of control is counteracting. Systems that

provide this level of control only allow users to revert the

system’s actions (e.g., undo). An example of such as system

is PervasiveCrystal [26] (see: next section). Next, systems

that allow users to tweak predefined system parameters

feature the configuration level of control. An example of

this kind of system is Dey and Newberger’s Situations

framework [10].

The most advanced level of control, programmability, is

available when users can themselves (re-)define how the

system works, such as in Dey et al.’s a CAPpella [8].

INTELLIGIBILITY APPS: SOME SAMPLES FROM THE
DESIGN SPACE

PervasiveCrystal

PervasiveCrystal [26] is a system that allows users to

understand the behaviour of a ubicomp environment by

posing why and why not questions. PervasiveCrystal can

reason about the causes and consequences of system and

user actions, based on a rule-based behaviour model, and

uses this information to automatically generate a list of why

and why not questions. PervasiveCrystal is built on top of

ReWiRe [22], an existing framework to dynamically

compose, deploy and query software components in

ubicomp environments. It uses an annotated version of

ReWiRe’s behaviour model that links different rules

together. The annotations are then processed at runtime to

build up a model of the system’s behaviour that can be

easily queried and is used to generate the list of why and

why not questions. It features displays that are equipped

with a motion sensor to detect the presence of the user.

We illustrate how our approach works by means of an

example scenario, shown in Figure 2. We will follow Bob,

one of the visitors of the smart museum equipped with

PervasiveCrystal. When he enters the museum, Bob

receives a mobile museum guide that can be used to

interrogate and control the environment. Bob is told that the

museum features displays that can detect his presence and

react to motion.

Figure 2: PervasiveCrystal shows a list of available questions,

based on recent events (A). Answers are generated by linking

events to what caused them to happen (B.1). Additionally users

have access to two control mechanisms: they can undo operations

(B.2) or invoke fine-grained control user interfaces, in this case: a

light control UI (B.4).

When Bob approaches one of these displays during his

museum visit, he waves in front of the screen to play a

movie, as shown in Figure 2 (scene 1). However, at that

time, the lights also go out. Bob does not understand why

this happens, and is confused (scene 2). Behind the scenes,

there are several rules that react to context changes (scene

3). One of the rules plays a movie when the camera detects

motion. There is also another rule that turns off the lights

whenever a movie is playing to provide users with a better

viewing experience. When the first rule executes, its effect

(playing a movie) causes the second rule to execute and

turn off the lights. Bob remembers he can use the why

menu to ask questions about the smart museum’s behaviour

(scene 4). As seen in Figure 2 (4.A), the why menu shows

a list of available questions about events together with a

representative icon. PervasiveCrystal automatically

T. Ștefănuț, C. Rusu (eds.), RoCHI 2013

4

generates the list of questions by tracking events that

occurred (e.g., lights that are switched off).

The Visible Computer

Because of the heterogeneous nature of ubicomp

environments — which often employ several displays,

speakers, sensors, embedded devices — users might require

co-located information that tells them what the system is

doing, when and where it is doing this, and allows them to

intervene without leaving their current task.

To explore this idea, we developed a prototype [24] that

uses steerable projectors to overlay the environment with

real-time visualizations of actions occurring in the

environment (e.g. turning off the lights). Figure 3 shows

how we used a simple graphical language to visualize the

relationships between sensors or devices and system

actions. When an action is executed, an animation is shown

to visualize the cause(s) and consequence(s) of this action.

In addition, users can issue a voice command to cancel (or

undo) the most recent action.

Figure 3: A user looks at an animation that links sensors and

devices with system actions to explain the system's behavior.

Each sensor or input/output device (e.g., a camera, speaker,

display) is visualised at its physical location in the

environment with an icon and a label. These icons allow

users to get an overview of the devices that are present in

their environment. Below the icon of each input device or

sensor, a separate label is drawn that displays the

possibilities of the device and its current state using smaller

icons. Output devices feature only an icon and no separate

label. The icon of an output device embeds its current state

(e.g., a light’s intensity displayed as a horizontal bar.

Figure 4 shows how a chain of events is visualised using

this graphical language.

Figure 4: Visualising a chain of events: touching the screen

results in a movie being played. This, in turn, results in the lights

being dimmed.

The Feedforward Torch

We have built the Feedforward Torch [25], a prototype to

explore feedforward. Feedforward is a specific type of

intelligibility information that informs the user about what

the result of an action will be [23]. If we consider the

timing dimension, feedforward is thus intelligibility

information that is provided before an event takes place.

While feedback tells the user what happened, feedforward

tells the user what will happen. Well-designed feedforward

is an effective tool for bridging Norman’s Gulf of

Execution [18] – the gap between a user’s goals for action

and the means for executing those goals [23]. Ju et al. [13]

also talk about feedforward as a specific variation of their

user reflection technique.

The Feedforward Torch is a combination of a smartphone

and mobile projector that provides feedforward about the

objects and interactions in the user’s environment. With the

Feedforward Torch, we do not focus exclusively on

ubicomp environments, but also target existing legacy

systems in our daily environments. We argue that these

environments require intelligibility as well. If users have

difficulties interacting with the system, having to fix this

after deployment is very cumbersome and expensive.

Physically changing the interface design to include better

feedforward would imply fixing every instance of the

system separately. The Feedforward Torch augments the

systems during usage and does not require physical changes

in order to overcome design flaws of legacy systems.

Users can point the Feedforward Torch at objects in their

environment and reveal feedforward information about

them, as if they were located under a spotlight. Users are

shown under which conditions actions associated with the

object will be executed by the system (e.g., a displacement

in time or space), so that they can anticipate and adapt their

behaviour, if necessary. Animations are used to better

convey the effect an action will have. The Feedforward

Torch does not extend the features of a legacy system; its

sole focus is on guiding the user to use the actual system.

The main difference between the Feedforward Torch and

the Visible Computer, which used steerable projectors, is

the fact that the Feedforward Torch places the initiative for

showing information with the user. Figure 5 shows how the

Feedforward Torch can be used to understand an array of

light switches. Like in the Visible Computer prototype,

T. Ștefănuț, C. Rusu (eds.), RoCHI 2013

5

information is projected on and around the system, so that

users do not need to switch their attention to another

interface and can continue to focus on the task they are

performing (co-location: embedded).

Figure 5: A user points at a light switch using the Feedforward

Torch to understand what will happen if he presses the switch.

Figure 6 shows the Feedforward Torch prototype,

consisting of a Samsung Galaxy S smart phone, a

MicroVision SHOWWX+ laser pico projector and a laser

pointer to be able to point the device at physical objects. A

custom casing was made in order to support one-handed

interaction. We used a Wizard-of-Oz control interface to

show the right content to the user at the right time in order

to simulate a fully working object recognition mechanism.

Figure 6: The Feedforward Torch prototype (right) and Wizard-

of-Oz control interface (left).

MAPPING THE DESIGN SPACE

In Figure 7, we show how the different systems that were

discussed in this paper fit into the proposed design space.

We will discuss each of the six dimensions.

Figure 7: Mapping the different system or techniques in the design

space for intelligibility and control

Timing: With respect to timing, there is quite some

diversity. There are a few techniques such as those of Ju et

T. Ștefănuț, C. Rusu (eds.), RoCHI 2013

6

al. [13], OctoPocus [3] or Cheverst’s IOS system [5] that

span multiple alternatives of the timing dimension, but most

techniques only offer a specific moment in time at which

intelligibility is provided. Of course, ideally, systems

should be intelligible about past, present and future events.

Generality: We covered a variety of domain-specific and

general interfaces in our design space. Some systems or

techniques can provide both domain-specific and general

intelligibility, e.g., recommender systems, what if questions

and Situations [10].

Degree of co-location: We notice that most domain-specific

interfaces are also embedded (e.g., the location error

visualisation in Google Maps). However, this is not always

the case. For example, Rodden’s jigsaw editor [20] is a

domain-specific interface for controlling a smart home, but

is nevertheless external.

Initiative: Most systems either provide intelligibility

automatically, or allow the user to request detailed

information when necessary. As discussed earlier, some

systems combine both approaches to support a flexible

transition from novice users to experts, such as OctoPocus

[3].

Modality: It is apparent that most techniques rely on the

visual modality. There are only a few systems that provide

intelligibility through other means, and even then, these are

providing visual information as well (e.g., the Visible

Computer and the Feedforward Torch).

Level of control: There are a number of systems that only

provide intelligibility (e.g., Google Maps, the Feedforward

Torch, OctoPocus) without any control mechanism. On the

other end of the spectrum, there are very powerful systems

such as Rodden’s jigsaw editor [20], IOS [5] and a

CAPpella [8]. However, these techniques usually employ

an external interface and are very general. One could argue

whether these techniques are really usable by non-technical

users.

LESSONS LEARNED

In what follows, we reflect on our experiences from

conducting first use studies with the different systems

discussed earlier (PervasiveCrystal, the Visible Computer,

and the Feedforward Torch). We discuss the lessons learned

with respect to the previously introduced design space.

PervasiveCrystal

We learned that textual explanations are not always ideal.

Automatically generated explanations can sometimes be

confusing to users, especially when they describe a long

sequence of events that caused a system action, or when

double negations are involved (e.g., “The lights didn’t go

out because the movie didn’t start playing”). While there

are a number of strategies to overcome this problem

(simplifying or combining several explanations), we believe

some situations might be too complex to explain solely

using text.

Another problem users faced is that the why questions

menu quickly became cluttered due to many events firing in

a short time span. This made it hard for users to find the

question they wanted to ask. Unlike desktop applications

that typically use explicit interaction, ubicomp

environments use implicit interaction and sensors that

trigger many events (e.g., a motion sensor). While these

questions could be clustered, it might still be hard for users

to find the question about the event that they are interested

in. With respect to the control primitives, participants also

found it hard to predict the effect of invoking undo and do,

after which we used more concrete labels (e.g., “Turn on

lights” instead of “Undo”). The fact that the effect of the

undo and do actions was hard to predict might also be due

to the external nature of the interface. Why questions that

are embedded into specific applications (e.g., the word

processor built with Crystal [17]) might be less

disconnected from the user’s task.

The Visible Computer

We ran an informal study with five participants to gather

feedback about the suitability of our approach of visualizing

the system’s behaviour using steerable projectors. Subjects

were asked to explain how the system worked in three

different situations, after having seen the visualization. Four

out of five subjects could describe the system's behaviour

correctly for each of the three situations. This promising

result could indicate that a visual, embedded way of

presenting how the system works might help users to form a

better mental model, which is consistent with findings by

Rehman et al. [19]. Participants were generally happy with

the visual representation, but sometimes had difficulties

with keeping track of visualizations across multiple

surfaces. One participant mentioned she received too much

information, leaving her overwhelmed. This might indicate

that we should be careful when automatically providing

detailed explanations (system initiative). Finally, several

subjects experienced difficulties with invoking the cancel

feature, possibly because they were not familiar with

speech interaction (modality: auditory).

The Feedforward Torch

We also conducted a small study with the Feedforward

Torch. We used a Wizard-of-Oz control interface to change

the contents of the feedforward display.

All participants were able to complete the tasks and several

participants mentioned they would have been unable to do

so without the Feedforward Torch or additional help. Two

participants stated that the system would have come in

handy in a large city: “When I had to use the London

Underground for the first time, the Feedforward Torch

would have been useful to help me figure out how to use the

ticketing machine. Now, I had to observe other passengers

first before I knew how the system worked and what I had to

do.”

Participants liked the fact that information was overlaid on

the physical environment (embedded), so they did not have

T. Ștefănuț, C. Rusu (eds.), RoCHI 2013

7

to switch between the smartphone display and the system or

device they had to operate. One of the advantages of mobile

projection that was mentioned during the semi-structured

interviews was the fact that groups of people could explore

the projection together. Nevertheless, projection only

worked well in low-lighting conditions. The use of

animations was appreciated, especially when the result of a

certain action would happen over time or outside the user’s

periphery. Finally, participants strongly preferred

visualisations to textual explanations in the encountered

scenarios, as they considered reading textual information to

be more time-consuming.

We can conclude that the choice between different

combinations of each of these dimensions for intelligibility

and control interfaces can have a large impact on the user

experience. Designers can use our design space to consider

these different alternatives and choose the one that fits their

application best.

REFERENCES

1. Aksenov, P., Luyten, K., and Coninx, K. O Brother, Where

Art Thou Located? Raising Awareness of Variability in

Location Tracking for Users of Location-based Pervasive

Applications. J. Location Based Services, 6 (4), (2012), 211-

233.

2. Barkhuus, L. and Dey, A.K. Is Context-Aware Computing

Taking Control away from the User? Three Levels of

Interactivity Examined. Proc. Ubicomp '03, Springer (2003),

149–156.

3. Bau, O., and Mackay, W. E. OctoPocus: a dynamic guide for

learning gesture-based command sets. Proc. UIST ’08, ACM

(2008), 37–46.

4. Bellotti, V. and Edwards, W.K. Intelligibility and

accountability: human considerations in context-aware

systems. Hum.-Comput. Interact. 16, 2 (2001), 193–212.

5. Cheverst, K., Byun, H.E., Fitton, D., Sas, C., Kray, C., and

Villar, N. Exploring Issues of User Model Transparency and

Proactive Behaviour in an Office Environment Control

System. User Modeling and User-Adapted Interaction 15, 3–

4 (2005), 235–273.

6. Cheverst, K., Davies, N., Mitchell, K., and Efstratiou, C.

Using Context as a Crystal Ball: Rewards and Pitfalls.

Personal Ubiquitous Comput. 5, 1 (2001), 8–11.

7. Coutaz, J. Meta-User Interfaces for Ambient Spaces. Proc.

TAMODIA '06, (2006), 1-15.

8. Dey, A.K., Hamid, R., Beckmann, C., Li, I., and Hsu, D. a

CAPpella: programming by demonstration of context-aware

applications. Proc. CHI '04, ACM (2004), 33–40.

9. Dey, A.K. Understanding and Using Context. Personal

Ubiquitous Comput. 5, 1 (2001), 4–7.

10. Dey, A.K. and Newberger, A. Support for Context

Intelligibility and Control. Proc. CHI '09, ACM (2009).

11. Dourish, P. Accounting for system behavior: representation,

reflection, and resourceful action. In Computers and design

in context, MIT Press (1997), 145–170.

12. Edwards, W.K. and Grinter, R.E. At Home with Ubiquitous

Computing: Seven Challenges. Proc. UbiComp '01, Springer-

Verlag (2001), 256–272.

13. Ju, Lee, and Klemmer. Range: exploring implicit interaction

through electronic whiteboard design. Proc. CSCW '08, ACM

(2008), 17–26.

14. Lim, B.Y. and Dey, A.K. Assessing Demand for

Intelligibility in Context-Aware Applications. Proc. Ubicomp

'09, ACM (2009), 195–204.

15. Lim, B.Y., Dey, A.K., and Avrahami, D. Why and Why Not

Explanations Improve the Intelligibility of Context-Aware

Intelligent Systems. Proc. CHI '09, ACM (2009), 2119–2128.

16. Lim, B.Y., Dey, A.K. Toolkit to Support Intelligibility in

Context-Aware Applications. Proc. Ubicomp ’10, ACM

(2010), 13–22.

17. Myers, B.A., Weitzman, D.A, Ko, A.J., and Chau, D.H.

Answering why and why not questions in user interfaces.

Proc. CHI '06, ACM (2006) 397–406.

18. Norman, D. A. The Psychology Of Everyday Things. Basic

Books, New York, USA, June 1988.

19. Rehman, K., Stajano, F., and Coulouris, G. Visually

Interactive Location-Aware Computing. Proc. Ubicomp '05.,

(2005), 177–194.

20. Rodden, T., Crabtree, A., Hemmings, T., et al. Configuring

the Ubiquitous Home. Proc. COOP '04, (2004), 227–242.

21. Schmidt, A. Implicit Human-Computer Interaction Through

Context. Personal Ubiquitous Comput. 4, 2/3 (2000), 191–

199.

22. Vanderhulst, G., Luyten, K., and Coninx, K. ReWiRe:

Creating interactive pervasive systems that cope with

changing environments by rewiring. Proc. IE '08, (2008), 1–

8.

23. Vermeulen, J., Luyten, K, van den Hoven, E., Coninx, K.

Crossing the Bridge over Norman’s Gulf of Execution:

Revealing Feedforward’s True Identity. Proc. CHI ’13, ACM

(2013), 1931–1940.

24. Vermeulen, J., Slenders, J., Luyten, K., and Coninx, K. I Bet

You Look Good on the Wall: Making the Invisible Computer

Visible. Proc. AmI '09, Springer-Verlag (2009), 196–205.

25. Vermeulen, J., Luyten, K., and Coninx, K. Understanding

Complex Environments with the Feedforward Torch. Proc.

AmI '12, Springer-Verlag (2012), 312–319.

26. Vermeulen, J., Vanderhulst, G., Luyten, K., and Coninx, K.

PervasiveCrystal: Asking and Answering Why and Why Not

Questions about Pervasive Computing Applications. Proc. IE

'10, (2010), 271–276.

T. Ștefănuț, C. Rusu (eds.), RoCHI 2013

8

