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The players have to gather resources, to build a base and to 

recruit an army in order to destroy the opponent player’s 

base. The game offers a lot of challenges that the player 

needs to overcome in order to improve his skill, such as: 

resource management and collection, correct base 

placement, correct army composition or scouting the enemy 

territory. There are multiple research papers which have 

tried to build an intelligent agent for this game, such as: 

Modular Architecture for StarCraft2 with Deep 

Reinforcement Learning [3], The StarCraft Multi-Agent 

Challenge [6] or On Reinforcement Learning for Full-

Length Game of StarCraft [5]. 

Developing an intelligent agent for this game has a great 

impact in multiple areas. First, StarCraft 2 is a game which 

is played at professional level for which there are held 

multiple international tournaments. Therefore, having an 

intelligent bot would help the professional players to train 

for these kinds of competitions. Second, due to its 

complexity the process of building such bots will lead to the 

discovery of new innovations in the Reinforcement 

Learning domain.  

Problem 

The main problem that is tackled by our paper is building 

multiple intelligent agents that try to learn and solve the 

mini games offered by the StarCraft2 API. The game API 

offers 7 different mini games on which researchers can 

experiment with their agents. These mini games are 

designed to isolate different tasks that an agent must learn 

in order to fully master the StarCraft2 game. We succeeded 

in training different agents for 4 different mini games out of 

the 7 ones. In the following section we will present the 

logic behind each mini game, the algorithms that are used 

in order to build the solution and the general idea behind 

the solution. Next, we will present the results obtained by 

the agents on each of the mini games and a comparison 

between different variations of the architecture behind the 

experiments. 

RELATED WORK 

In this chapter we will present two similar state-of-the-art 

algorithms that are widely used in Reinforcement Learning. 

These algorithms are Advantage Actor Critic [7] and 

Asynchronous Advantage Actor Critic [4]. These two 

algorithms represent an important key point in 

understanding the current proposed solution for training the 

agents. Both algorithms are designed to be used in Deep 
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INTRODUCTION

Context

In  recent  years,  the  advancement  of technology  made 

possible the development and training of complex Machine 

Learning architectures, with  hundreds  of  millions  of 

trainable parameters. Nowadays, graphics cards, which are 

really  useful  in  training Deep Learning models due to  the 

computational power offered by them, begin to be more and 

more  accessible  to  everyone. This  evolution  of  technology 

also made a great impact on Reinforcement Learning (RL),

a subdomain of Machine Learning.

In Reinforcement Learning, an agent is trained to perform a 

task,  by offering  to it  a  reward depending  on  the  actions 

made by the agent. Usually, in this domain different agents 

are trained for solving different tasks in games, or to learn 

how to play the entire game. The main subject of this paper 

revolves around the StarCraft 2 game. StarCraft 2 is a more 

complex game than  the  other  ones  as  it  offers very  large 

action and state  spaces, making  the  training  process  more 

complicated and the convergence of models more difficult.

StarCraft  2 is  a  classic real-time  strategy game,  in  which 

two  or  more  players  compete  against each  other  in  a  war 

type of situation.

Proceedings of RoCHI 2022

137



  

Reinforcement Learning and their goal is to help the agents 

to learn the parameters of deep neural networks policies. 

Both algorithms are from the class of Actor-Critic methods. 

These kinds of methods are characterized by two 

components: an actor and a critic. The actor component 

tries to learn what actions should be taken in different 

states, and the critic component “criticizes” the actor 

component by telling how good the chosen action was. 

Both components can be represented by two different 

Neural Networks. Usually, the actor network receives as 

input a state and outputs a probability distribution over the 

possible actions that could be applied in the respective input 

state. The critic network receives as an input a state and 

returns the Q-value of the given state. In order to 

understand how the weights of the network are updated, 

first we have to introduce the concept of an Advantage 

Value, from which also comes the name of the method. The 

Advantage Value, or also called the Temporal Difference 

Error is described by the Equation (1). 

  (1) 

In Equation 1, s represents the current state, a represents the 

selected action, s’ is the state that results after applying the 

respective action, the R function represents the reward, and 

lastly, Vπ represents the value function corresponding to a 

concrete policy, which is approximated by the critic 

network. A positive value for the Advantage function tells 

the actor network that the selected action that is a good one 

and should exploit it more. In a similar way, a negative 

value for the function tells the actor network that the action 

is not so rewarding. 

Asynchronous Advantage Actor Critic 

Asynchronous Advantage Actor Critic [4], or A3C for short, 

is a training method different from the classical Q-Learning 

based ones. This model introduces the concept of 

asynchronous actor-learners. The main idea behind this 

algorithm is that it will start multiple agents in parallel 

which will try to optimize the training parameters of the 

used networks. The parallel agents are spawned on the same 

machine using multiple CPU threads at a time. Using 

multiple agents assures us that most probably they will try 

different strategies from one another and also that they will 

explore differently the environment in which the training 

process takes place. Moreover, most of the training methods 

from Deep Reinforcement Learning domain rely on a replay 

memory buffer.  

The idea behind this buffer is that consecutive game steps 

encode very similar information, so when training an agent, 

it will be inclined to fall in a local minimum that tries to 

maximize that concrete subset of samples. In order to avoid 

this problem, a memory replay buffer is held where 

multiple game steps are stored by the agent which continues 

to play. When we want to perform an update step to the 

network, we shuffle the replay memory buffer and extract 

mini batches from it with which we train the agent. This 

way, the samples won’t be from the same time frame. Using 

the Asynchronous Advantage Actor Critic, we don’t need to 

use a replay buffer anymore. Using multiple agents in 

parallel which update the same network assures us that they 

will explore differently the environment and that the 

network will receive updates from multiple perspectives. 

The “asynchronous” part from the method’s name comes 

from the fact that the agents don’t wait for each other to 

finish to update the network. This can create multiple 

problems as different agents may use different versions of 

the network, depending on when they have updated it lastly. 

Advantage Actor Critic 

Advantage Actor Critic [7] is a new method, similar to A3C. 

Advantage Actor Critic, or A2C for short, is also a method 

from the Actor Critic family. The main difference between 

this method and the previous one is that it is not 

asynchronous. This means that the main process waits for 

all the agents to finish their episodes before updating the 

principal network. After updating it, the network is 

broadcasted back to the parallel agents which engage in 

other episodes. As an advantage, the synchronous behavior 

assures a better GPU utilization, as it can perform updates 

in batches. 

StarCraft2 Learning Environment 

The first step in starting our project was to research what 

existing APIs are available online that allow us to build a 

RL agent for the StarCraft 2 game. We discovered that the 

best API to use is the StarCraft 2 Learning Environment 

(SC2LE) [8], specially build by researchers from Google 

DeepMind and Blizzard, the company that produces and 

distributes the game. SC2LE is an environment designed for 

building Machine Learning bots for the game, which 

exposes three main components: a Linux StarCraft 2 binary, 

StarCraft 2 API1 (a tool that allows the user to control the 

game and perform actions such as starting games or 

analyzing replays), and PySC22, which is an open-source 

Python library that enables the user to build Reinforcement 

Learning bots and connect them to the StarCraft 2 API. 

The environment also provides us with different mini 

games that would help an agent to learn different basic 

things such as: moving units to specified locations, 

collecting resources, and combating enemy units. 

Moreover, the original paper that presents the environment 

also describes some RL approaches on how to solve the 

tasks presented by the mini games. The presented 

approaches use a deep neural network, either Atari-Net or a 

 

1 GitHub - Blizzard/s2client-proto: StarCraft II Client - 

protocol definitions used to communicate with StarCraft II. 

Last accessed at: July 07, 2022 

2 GitHub - deepmind/pysc2: StarCraft II Learning 

Environment Last accessed at: July 07, 2022 
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Fully Convolutional Network and the Asynchronous 

Advantage Actor-Critic to learn a policy for the agent. 

PROPOSED METHOD 

In the following chapter, we will describe in full details the 

experiments. The main idea behind them was to replicate 

the experiments regarding the mini games proposed in the 

StarCraft2 Learning Environment paper [8]. The 

experiments consist in training multiple agents using the 

Advantage Actor Critic method and using the same neural 

network architecture on different mini games. Firstly, we 

will describe the mini games used for the experiments, then 

we will present in detail the official proposed solution and 

finally different variations with which we experimented and 

the logic behind them.  

Mini Games Description 

Each mini game was designed with a unique task in mind 

that an agent has to solve. The tasks gradually get more 

complex in difficulty and represent different skills that a 

final generic agent should master in order to play efficiently 

the game. Each of them has a specific reward system and all 

of them have a fixed time limit in which the agent has to 

achieve the goal. The time limit imposed to each mini game 

defines how much an episode lasts for each of them. In total 

there are 7 mini games, but we only ran experiments on 4 of 

them. 

Move To Beacon 

MoveToBeacon is the easiest mini game of them all. The 

environment consists out of a single marine unit which can 

be selected by the player and moved on the map. On the 

map there also spawns a beacon. This beacon signals the 

position on the map where the marine unit should reach. 

This mini game is designed for the agent to learn how to 

select a unit and move it on the map to a specific location. 

This time the map is perfectly fitted in the view screen, so 

the agent does not have to learn how to move the camera. 

Also, there is no fog-of-war activated. This means that the 

agent can see everything on the map, not just the 

environment in the view range of its units. The reward 

system consists of giving a +1 reward to the agent when it 

moves the marine to the correct location. When a beacon is 

reached it disappears and another one is spawned at a new 

random location on the map. The time limit for this mini 

game is 2 minutes. This mini game can also be seen as a 

unit test for learning agents. Usually, if an agent cannot 

learn this task there is no reason in moving to another mini 

game, as they all are more difficult than this one. 

Collect Mineral Shards 

CollectMineralShards is a more difficult mini game than 

MoveToBeacon but it expands on the same idea. This time 

the agent starts with 2 marine units. On the map there are 

spread out multiple mineral shards. The agent needs to learn 

how to select units and how to move them, but also it has to 

master a coordination in movement. For each mineral shard 

collected from the map the agent receives a +1 reward. 

When all the mineral shards are collected new ones spawn 

on the map. Similarly, the map is perfectly fitted in the 

view screen and no fog-of-war is activated. The time limit 

for this mini game is also 2 minutes. 

Find and Defeat Zerglings 

FindAndDefeatZerglings is a more complex game than the 

previous ones and probably is the most difficult mini game 

out of all the ones on which we experimented. The agent 

starts with 3 marine units placed at the center of the map. 

On the rest of the map, there are placed multiple enemy 

units called zerglings. The zerglings are placed in such a 

way that they don’t form a group. The goal for the agent is 

to learn to find, identify, and defeat enemy units. For an 

agent to fully master this mini game, it has to learn the 

following skills: to select and move a friendly unit, to 

identify an enemy unit, to use its units to defeat the enemy 

unit, and to explore the surrounding environment. This time 

the fog-of-war is activated.  

The reward system is more complex, as the agent can 

receive a -1 negative reward if it loses an unit to the enemy. 

For each enemy unit defeated the agent receives a +1 

reward. The time limit is set to 3 minutes. Also, the map is 

bigger than the actual camera view, so the agent is 

encouraged to also learn on how to properly move it. 

Defeat Roaches 

DefeatRoaches is also a combat centered mini game. The 

agent starts with 9 marine units and must defeat an 

opposing group of 4 roaches, which are a more powerful 

type of enemy units than the zerglings. Every time the agent 

defeats all the 4 roaches, it receives an additional 5 marines 

as reinforcement units and 4 other roaches spawn on the 

map. This mini game does not involve exploration, as the 

roaches are placed right in front of the marines. The fog-of-

war setting is not enabled, and the map is perfectly fitted in 

the camera view. The reward system offers a +10 reward 

for each enemy unit destroyed and a -1 reward for each 

friendly unit lost. This mini game could be considered a bit 

easier than the previous one, as the agent only has to learn 

how to combat the roaches and not fully move on the map 

or explore the environment. The time limit for this mini 

game is 2 minutes. 

Proposed Solution 

As mentioned previously, the experiments try to replicate 

the ones described in the original paper that introduced 

PySC2, so next we will present how the original solution 

works [8]. 

The first important step in building the solution is to 

understand how the actions are represented in the PySC2 

API. An action is formally defined by an unique function 

identifier and a sequence of parameters which are needed 

for the function to run properly. As a simplified example, if 
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we would want to select a rectangle with the mouse we 

would have to use select_rect function identifier and pass 

two pairs of coordinates (x1, y1) and (x2, y2). In this case, the 

coordinates represent the top-left corner and the bottom-

right corner of the rectangle. Using this representation, the 

action space contains around 300 unique function 

identifiers which can receive up to 13 different types of 

arguments. Each individual action-function has a fixed 

defined number of parameters and there are also actions 

which don’t require any type of argument. 

The proposed solution uses a simple neural network 

architecture based on convolutional neural networks. The 

algorithm used to optimize the parameters of the policy is 

the Asynchronous Advantage Actor Critic with a custom 

defined gradient. It would require a large number of 

parameters to represent the policy in the naive way, so the 

Vinyals et al. [8] proposed a simplified version, described 

in Equation (2). 

 

 
(2) 

In this equation, L is the number of total parameters and a0 

represents the function identifier. More intuitively, the 

equation states that the function identifier and its 

parameters are chosen independently from one another 

depending on the state in which the agent is. The policy will 

be used to firstly predict what function identifier to use and 

then independently will also predict its parameters, if any 

are required. As another simplification, the actions that are 

unavailable in a given state are masked out. This is 

achieved by masking out the respective function identifiers 

and by normalizing the probability distribution over the 

identifiers. 

The proposed network architecture employs a 

Convolutional Neural Network (CNN) as shown next in 

Figure 1. 

 

Figure 1 – Fully Conv Architecture [8] 

The architecture was named Fully Conv. This agent is 

proposed as a baseline and the main idea behind using a 

CNN was that they help in building a more abstract 

representation of spatial features. This property helps a lot 

in the context of StarCraft 2 where most of the actions are 

related to spatial features. The network receives 3 different 

types of inputs: the screen of the game, different types of 

mini maps offered by the PySC2 API, and all non-spatial 

numerical features such as: number of units, number of 

resources, etc.  

All the discrete and numerical features are pre-processed, 

being rescaled with a logarithmic function, and mapped to a 

continuous space using a 1x1 convolution. The screen and 

mini map features are both passed each to a different pair of 

2 Convolutional Layers. The structure of the layers is the 

same for both the screen features and the mini map features. 

The first layer uses 16 filters and a kernel size of 5x5. The 

second layer uses 32 filters and a kernel size of 3x3. All the 

layers don’t have a stride and use padding.  

In this way the original resolution of the features is 

maintained throughout the network. After encoding the 3 

types of inputs they are concatenated in a single 

representation. To achieve this, the numerical features are 

broadcasted to the correct shape. Finally, this representation 

is used to define 2 policies, one over spatial actions and one 

over non-spatial actions. The former uses a 1x1 convolution 

with 1 filter over the state representation. The later initially 

flattens the state representation and passes it through 2 

Linear Layers. The first Linear Layer has 256 output units 

and a ReLU activation function. 

The input in the case of the screens / mini maps will be the 

following: (Number of frames, Height, Width, Channels), 

where the “Number of frames” dimension acts like a batch 

size. In the original experiments, the researchers propose to 

use a 64x64 resolution and act at an 8 game frames rate. 

This baseline is reimplemented as an open-source API3 

which we also used in our experiments. The only difference 

is that they use the Advantage Actor Critic method and not 

the asynchronous variant. 

Architecture Variations 

Beside replicating the experiments described above, we also 

tried small variations of the architecture presented above 

that in theory could improve the behavior and the 

convergence of the agent. 

The first obvious idea is to increase the Receptive Field of 

the CNNs that are used to embed the features of the screen 

and mini map inputs. In Deep Learning, the Receptive Field 

defines the size of the region in the input that is used to 

compute a single feature. In theory, the bigger the 

 

3 GitHub - simonmeister/pysc2-rl-agents: StarCraft II / 

PySC2 Deep Reinforcement Learning Agents (A2C) Last 

accessed at: July 07, 2022 
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Receptive Field the more information embeds an output 

feature from the networks’ input. Using more information 

should produce more qualitative representations. More 

concretely, in the context of a Convolutional Layer the 

Receptive Field defines the size of the pixels patch that 

influences an outputted encoded pixel. To measure the 

Receptive Field, we can use Equation (3). 

 

 

(3) 

In the previous equation, L represents the total number of 

layers, the k parameters the kernel size of each layer, and s 

parameters the strides of each layer. Calculating the 

Receptive Field for the given network we obtain a value of 

7, which means that a total of 49 pixels contribute to each 

output pixel. There are multiple methods to increase the 

Receptive Field, such as adding a new convolutional layer, 

adding a pooling layer, or using depth-wise convolution 

layers. Our idea was to add another convolution layer 

before the other ones which has a kernel size of 7x7, 8 

filters and no stride. By doing this, we increase the 

Receptive Field to 15, which means that 125 pixels are now 

used to encode information. 

The second proposed variation was to exploit the temporal 

information that the fixed number of game frames offers to 

us. More specifically, the architecture proposed in the paper 

uses 2D convolutions, which means that the frames are 

treated independently one from the other, as a batch. In 

practice, the frames encode temporal information that is not 

exploited by the agent. To capture it, we decided to use a 

3D convolution layer which is specifically designed to 

apply filters to such kind of inputs [2]. In theory, the input 

of such a convolution is of shape (Batch Size, Frames, 

Width, Height, Channels). This new layer is added after the 

two convolution layers in the original architecture, and we 

need to transform the input to fit the size of the new 

convolution. To achieve this, we reshape the output of the 

last 2D convolution from (Frames, Width, Height, 

Channels) to (1, Frames, Width, Height, Channels). The 

reshaped representation is passed to the 3D convolution and 

after that is reshaped back to its original form. The 

hyperparameters set for this new layer are: 32 filters, 3x3 

kernel size, and no stride. Moreover, this approach also 

exploits the idea described above of increasing the 

Receptive Field. 

Lastly, we experiment with adding “memory” to the 

network. In the original paper [8], they try a similar 

approach by introducing a Convolutional LSTM Layer after 

obtaining the concatenated representation. Similarly, we 

add a GRU Cell [1] after the concatenated representation. 

As time steps, we decided to use the channels dimension of 

the representation. The representation was initially flattened 

and passed to the GRU Cell. After obtaining the output we 

reshaped it to the initial dimension. 

Heuristic Based Agent 

Additionally, we propose a hand-crafted agent for the 

Collect Mineral Shards mini game which does not use any 

type of Machine Learning methods. It is designed to select 

one marine at random and use it to collect the minerals. The 

marine selects at random a mineral shard placed on the map 

and goes straight to collect it. It may happen that on the 

way to the selected shard for the marine to collect 

accidentally more shards. The other unselected marine will 

remain unused during the running of the game. After 

collecting all the shard from a batch, the agent will not stop 

and will continue to apply the same algorithm to collect 

even more points. We chose the Collect Mineral Shards 

mini game because it is more complex than the easiest one 

and also has an obvious heuristic that could be used for the 

agents. It is important to note that this hand-crafted agent 

uses not only rules, but also information about the current 

game – such as position of mineral shards. In comparison, 

the RL agents do not use any such information, they need to 

learn to infer it from the frames of the game.  

EXPERIMENTS 

Experiments’ Setup 

Vinyals et al. [8] present the values for all hyper-parameters 

in order to reproduce their results. However, it is not easy to 

use all the mentioned settings on a commercial computer. 

The resolution proposed for representing the mini maps and 

the screen is 64x64. In their experiments, they use 64 

parallel asynchronous actor critic agents which act at every 

8 game steps. This number of game steps was chosen to 

limit the number of actions per minute of the agent to 180, 

which is equivalent to the performance of a good StarCraft 

player. The results reported in the original paper were the 

best results obtained after running the experiments with 

different hyper-parameters for ~100 times. 

The computer used for running our experiments has the 

following setup: Nvidia 3080 GPU, 32GB RAM, and AMD 

Ryzen 9 3900XT 12-Core Processor. The processor has 

enabled hyper-threading, meaning that in theory it could 

run in parallel 24 processes at a time. Taking these 

specifications into consideration, the best set of hyper-

parameters that we found is the following: 32x32 resolution 

and a maximum of 10 parallel actor critic agents which act 

also at every 8 game steps. Even if in practice we could run 

with 10 parallel actor critic agents, it didn’t behave reliably. 

This means that the training process would result in a 

memory error due to having too much StarCraft2 clients 

started at the same time. Using just 8 parallel actor critic 

agents performed much better, as it didn’t result in such an 

error.  

For each mini game all the experiments were trained using 

approximately the same number of episodes. Except the 

easiest mini game, the experiments on all the mini games 

were run for around 3000-4000 episodes. For the easiest 
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mini game all the agents were trained until reaching the 

maximum attainable reward. 

Results 

During the experiments the first step was to make sure that 

each model variation could converge on the easiest game: 

Move To Beacon. All the models could converge on this 

game, except the variation that uses GRU Cells. Due to this 

fact, the following tables and results won’t include any 

statistics about this variation. The reason why we think that 

this experiment failed is due to the fact that the channels are 

used as time steps for the Recurrent Neural Network. The 

intuition is that they don’t encode enough important 

information about the state representation. Another possible 

problem is that we apply this recurrent cell on the 

concatenated input features which might not correlate so 

well as some of them are not spatial features. 

For the rest of the models, we experimented with each of 

them on all the four described mini games. We decided to 

plot some graphs that show that the models succeed in 

converging to a concrete reward value. The graphs are 

plotted for Find And Defeat Zerglings, as we considered it a 

more challenging game than the basic mini game. In Figure 

2 it is plotted the evolution of the received reward during 

the training process of the model that uses a 3D 

convolution. 

 

Figure 2 – Reward gained during the training process by 

the Fully Conv with a 3D Convolution 

The x-axis represents the total number of episodes on which 

the agent was trained on. The y-axis represents the reward 

collected by the agent in an episode. Additionally, in Figure 

3 we present a comparison between the convergence of all 3 

different models on the Find And Defeat Zerglings mini 

game.  

 

Figure 3 – Convergence comparison between all the 3 

different model variations 

The axes in Figure 3 have the same meaning as the ones in 

Figure 2. As it can be seen, for this specific mini game the 

network with a 3D convolution layer converges to a better 

reward value. To better compare the performance of the 

variations, we computed for each mini game a reward 

average over 100 episodes. Additionally, we computed the 

standard deviation of the rewards during these 100 episodes 

and also the maximum and minimum obtained rewards. All 

these values are presented in Tables 1 - 4. The tables also 

include for reference the best results obtained by the 

DeepMind team in their paper [8]. The bolded values 

represent the best values obtained by one of our agents for 

the respective mini game. 

 

 Average 

Reward 

STD Max 

Reward 

Min 

Reward 

FullyConv 

(Ours) 

24.22 2.20 29.0 15.0 

FullyConv with 

bigger RF 

25.28 1.93 29.0 21.0 

FullyConv with 

3D convolution 

25.20 2.48 30.0 15.0 

FullyConv 

(DeepMind [8]) 

26.00 - 45.0 - 

Table 1 – Move To Beacon Mini Game Comparison 
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 Average 

Reward 

STD Max 

Reward 

Min 

Reward 

FullyConv 

(Ours) 

61.50 9.07 84.0 35.0 

FullyConv with 

bigger RF 

15.94 2.39 29.0 10.0 

FullyConv with 

3D convolution 

26.05 7.75 39.0 17.0 

Heuristic Based 

Agent 

54.51 5.76 71.0 43.0 

FullyConv 

(DeepMind [8]) 

103.00 - 134.0 - 

Table 2 – Collect Mineral Shards Mini Game Comparison 

 

 Average 

Reward 

STD Max 

Reward 

Min 

Reward 

FullyConv 

(Ours) 

7.55 2.43 14.0  2.0 

FullyConv with 

bigger RF 

18.32 5.08 29.0 5.0 

FullyConv with 

3D convolution 

22.06 3.81 40.0 6.0 

FullyConv 

(DeepMind [8]) 

45.00 - 56.0 - 

Table 3 – Find And Defeat Zerglings Mini Game 

Comparison 

 Average 

Reward 

STD Max 

Reward 

Min 

Reward 

FullyConv 

(Ours) 

23.20 18.55 121.0 -9.0 

FullyConv with 

bigger RF 

16.53 18.47 71.0 -9.0 

FullyConv with 

3D convolution 

20.50 17.56 81.0 -9.0 

FullyConv 

(DeepMind [8]) 

100.0 - 355.0 - 

Table 4 – Defeat Roaches Mini Game Comparison 

As it can be seen from the tables, none of the experiments 

compare to the results obtained by the Deep Mind team, but 

they are still good. The only exception is the Move To 

Beacon mini game, where all the variations converged to 

similar values. As it can be seen from the Table 2, the Fully 

Conv agent trained by us performs better than the “hand 

crafted” one. 

The tables also show that the variations perform similarly 

for the Move To Beacon and Defeat Roaches mini games. 

For the former one, both proposed variations perform 

slightly better than the classical Fully Conv one. The 2 mini 

games where there are more notable differences are the 

Collect Mineral Shards mini game and Find And Defeat 

Zerglings. For the first mentioned one, all the agents learn 

to collect a consistent number of shards, but the classical 

Fully Conv agent learns a better policy overall by a big 

margin. This can be explained by the fact that all 3 models 

where trained on approximately the same number of 

epochs, but the classic Fully Conv model has far less 

parameters than the other 2 models. Due to this property 

this model should converge faster than the other 2 ones.  

An interesting observation can be made for the Find And 

Defeat Zerglings, where the classical architecture doesn’t 

perform so well as the other 2 different variations, even if it 

has an advantage in convergence speed. Moreover, the 

variation that exploits both temporal information and a 

bigger Receptive Field generally performs better than the 

other simpler variation. 

CONCLUSIONS 

In conclusion, in this paper we showed that by replacing the 

Asynchronous Actor Critic algorithm with the Advance 

Actor Critic one in the proposed solution by DeepMind [8] 

the resulting agent still performs well on the tested mini 

games. Moreover, the experiments showcased in this paper 

are obtained using a lot less computational power than the 

ones performed in the original solution, proving that they 

can be replicated to some degree even on some more 

accessible computers. Lastly, the variations proposed to the 

architecture present a great potential on improving results 

on some more of the more complex tasks from the StarCraft 

game. This statement was empirically proven by the results 

obtained on the Find and Defeat Zerglings mini game. In 

the future, we would like to expand these solutions on the 

other 3 mini games that weren’t described in this research 

report and on the early game phase of the game. 
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