

Reinforcement Learning for Building StarCraft 2 Agents

Andrei Dumitrescu

University Politehnica of

Bucharest
313 Splaiul Independetei,

Bucharest, Romania

andreidumitrescu99@yahoo.com

Traian Rebedea

University Politehnica of

Bucharest
313 Splaiul Independetei,

Bucharest, Romania

traian.rebedea@cs.pub.ro

The players have to gather resources, to build a base and to

recruit an army in order to destroy the opponent player’s

base. The game offers a lot of challenges that the player

needs to overcome in order to improve his skill, such as:

resource management and collection, correct base

placement, correct army composition or scouting the enemy

territory. There are multiple research papers which have

tried to build an intelligent agent for this game, such as:

Modular Architecture for StarCraft2 with Deep

Reinforcement Learning [3], The StarCraft Multi-Agent

Challenge [6] or On Reinforcement Learning for Full-

Length Game of StarCraft [5].

Developing an intelligent agent for this game has a great

impact in multiple areas. First, StarCraft 2 is a game which

is played at professional level for which there are held

multiple international tournaments. Therefore, having an

intelligent bot would help the professional players to train

for these kinds of competitions. Second, due to its

complexity the process of building such bots will lead to the

discovery of new innovations in the Reinforcement

Learning domain.

Problem

The main problem that is tackled by our paper is building

multiple intelligent agents that try to learn and solve the

mini games offered by the StarCraft2 API. The game API

offers 7 different mini games on which researchers can

experiment with their agents. These mini games are

designed to isolate different tasks that an agent must learn

in order to fully master the StarCraft2 game. We succeeded

in training different agents for 4 different mini games out of

the 7 ones. In the following section we will present the

logic behind each mini game, the algorithms that are used

in order to build the solution and the general idea behind

the solution. Next, we will present the results obtained by

the agents on each of the mini games and a comparison

between different variations of the architecture behind the

experiments.

RELATED WORK

In this chapter we will present two similar state-of-the-art

algorithms that are widely used in Reinforcement Learning.

These algorithms are Advantage Actor Critic [7] and

Asynchronous Advantage Actor Critic [4]. These two

algorithms represent an important key point in

understanding the current proposed solution for training the

agents. Both algorithms are designed to be used in Deep

ABSTRACT

StarCraft 2 is a real-time strategy game, where two or more

players compete against each other by gathering resources,

building a base and an army. This game represents a huge

challenge for the Reinforcement Learning domain, as it is a

really complex game presenting a large number of possible

states and actions. In this paper we will present a possible

solution to solve the entire game of StarCraft 2, by

experimenting on different mini games offered by the

game’s API. These mini games are specially designed for

Reinforcement Learning experiments as they are

representative of a concrete set of skills that an agent has to

learn in order to master the entire game of StarCraft 2.

Author Keywords

Reinforcement Learning; Intelligent Agents; StarCraft 2;

Advance Actor Critic; Convolutional Neural Networks

ACM Classification Keywords

I.2.6: Artificial Intelligence: Learning

DOI: 10.37789/rochi.2022.1.1.23

INTRODUCTION

Context

In recent years, the advancement of technology made

possible the development and training of complex Machine

Learning architectures, with hundreds of millions of

trainable parameters. Nowadays, graphics cards, which are

really useful in training Deep Learning models due to the

computational power offered by them, begin to be more and

more accessible to everyone. This evolution of technology

also made a great impact on Reinforcement Learning (RL),

a subdomain of Machine Learning.

In Reinforcement Learning, an agent is trained to perform a

task, by offering to it a reward depending on the actions

made by the agent. Usually, in this domain different agents

are trained for solving different tasks in games, or to learn

how to play the entire game. The main subject of this paper

revolves around the StarCraft 2 game. StarCraft 2 is a more

complex game than the other ones as it offers very large

action and state spaces, making the training process more

complicated and the convergence of models more difficult.

StarCraft 2 is a classic real-time strategy game, in which

two or more players compete against each other in a war

type of situation.

Proceedings of RoCHI 2022

137

Reinforcement Learning and their goal is to help the agents

to learn the parameters of deep neural networks policies.

Both algorithms are from the class of Actor-Critic methods.

These kinds of methods are characterized by two

components: an actor and a critic. The actor component

tries to learn what actions should be taken in different

states, and the critic component “criticizes” the actor

component by telling how good the chosen action was.

Both components can be represented by two different

Neural Networks. Usually, the actor network receives as

input a state and outputs a probability distribution over the

possible actions that could be applied in the respective input

state. The critic network receives as an input a state and

returns the Q-value of the given state. In order to

understand how the weights of the network are updated,

first we have to introduce the concept of an Advantage

Value, from which also comes the name of the method. The

Advantage Value, or also called the Temporal Difference

Error is described by the Equation (1).

 (1)

In Equation 1, s represents the current state, a represents the

selected action, s’ is the state that results after applying the

respective action, the R function represents the reward, and

lastly, Vπ represents the value function corresponding to a

concrete policy, which is approximated by the critic

network. A positive value for the Advantage function tells

the actor network that the selected action that is a good one

and should exploit it more. In a similar way, a negative

value for the function tells the actor network that the action

is not so rewarding.

Asynchronous Advantage Actor Critic

Asynchronous Advantage Actor Critic [4], or A3C for short,

is a training method different from the classical Q-Learning

based ones. This model introduces the concept of

asynchronous actor-learners. The main idea behind this

algorithm is that it will start multiple agents in parallel

which will try to optimize the training parameters of the

used networks. The parallel agents are spawned on the same

machine using multiple CPU threads at a time. Using

multiple agents assures us that most probably they will try

different strategies from one another and also that they will

explore differently the environment in which the training

process takes place. Moreover, most of the training methods

from Deep Reinforcement Learning domain rely on a replay

memory buffer.

The idea behind this buffer is that consecutive game steps

encode very similar information, so when training an agent,

it will be inclined to fall in a local minimum that tries to

maximize that concrete subset of samples. In order to avoid

this problem, a memory replay buffer is held where

multiple game steps are stored by the agent which continues

to play. When we want to perform an update step to the

network, we shuffle the replay memory buffer and extract

mini batches from it with which we train the agent. This

way, the samples won’t be from the same time frame. Using

the Asynchronous Advantage Actor Critic, we don’t need to

use a replay buffer anymore. Using multiple agents in

parallel which update the same network assures us that they

will explore differently the environment and that the

network will receive updates from multiple perspectives.

The “asynchronous” part from the method’s name comes

from the fact that the agents don’t wait for each other to

finish to update the network. This can create multiple

problems as different agents may use different versions of

the network, depending on when they have updated it lastly.

Advantage Actor Critic

Advantage Actor Critic [7] is a new method, similar to A3C.

Advantage Actor Critic, or A2C for short, is also a method

from the Actor Critic family. The main difference between

this method and the previous one is that it is not

asynchronous. This means that the main process waits for

all the agents to finish their episodes before updating the

principal network. After updating it, the network is

broadcasted back to the parallel agents which engage in

other episodes. As an advantage, the synchronous behavior

assures a better GPU utilization, as it can perform updates

in batches.

StarCraft2 Learning Environment

The first step in starting our project was to research what

existing APIs are available online that allow us to build a

RL agent for the StarCraft 2 game. We discovered that the

best API to use is the StarCraft 2 Learning Environment

(SC2LE) [8], specially build by researchers from Google

DeepMind and Blizzard, the company that produces and

distributes the game. SC2LE is an environment designed for

building Machine Learning bots for the game, which

exposes three main components: a Linux StarCraft 2 binary,

StarCraft 2 API1 (a tool that allows the user to control the

game and perform actions such as starting games or

analyzing replays), and PySC22, which is an open-source

Python library that enables the user to build Reinforcement

Learning bots and connect them to the StarCraft 2 API.

The environment also provides us with different mini

games that would help an agent to learn different basic

things such as: moving units to specified locations,

collecting resources, and combating enemy units.

Moreover, the original paper that presents the environment

also describes some RL approaches on how to solve the

tasks presented by the mini games. The presented

approaches use a deep neural network, either Atari-Net or a

1 GitHub - Blizzard/s2client-proto: StarCraft II Client -

protocol definitions used to communicate with StarCraft II.

Last accessed at: July 07, 2022

2 GitHub - deepmind/pysc2: StarCraft II Learning

Environment Last accessed at: July 07, 2022

Proceedings of RoCHI 2022

138

https://github.com/Blizzard/s2client-proto
https://github.com/Blizzard/s2client-proto
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2

Fully Convolutional Network and the Asynchronous

Advantage Actor-Critic to learn a policy for the agent.

PROPOSED METHOD

In the following chapter, we will describe in full details the

experiments. The main idea behind them was to replicate

the experiments regarding the mini games proposed in the

StarCraft2 Learning Environment paper [8]. The

experiments consist in training multiple agents using the

Advantage Actor Critic method and using the same neural

network architecture on different mini games. Firstly, we

will describe the mini games used for the experiments, then

we will present in detail the official proposed solution and

finally different variations with which we experimented and

the logic behind them.

Mini Games Description

Each mini game was designed with a unique task in mind

that an agent has to solve. The tasks gradually get more

complex in difficulty and represent different skills that a

final generic agent should master in order to play efficiently

the game. Each of them has a specific reward system and all

of them have a fixed time limit in which the agent has to

achieve the goal. The time limit imposed to each mini game

defines how much an episode lasts for each of them. In total

there are 7 mini games, but we only ran experiments on 4 of

them.

Move To Beacon

MoveToBeacon is the easiest mini game of them all. The

environment consists out of a single marine unit which can

be selected by the player and moved on the map. On the

map there also spawns a beacon. This beacon signals the

position on the map where the marine unit should reach.

This mini game is designed for the agent to learn how to

select a unit and move it on the map to a specific location.

This time the map is perfectly fitted in the view screen, so

the agent does not have to learn how to move the camera.

Also, there is no fog-of-war activated. This means that the

agent can see everything on the map, not just the

environment in the view range of its units. The reward

system consists of giving a +1 reward to the agent when it

moves the marine to the correct location. When a beacon is

reached it disappears and another one is spawned at a new

random location on the map. The time limit for this mini

game is 2 minutes. This mini game can also be seen as a

unit test for learning agents. Usually, if an agent cannot

learn this task there is no reason in moving to another mini

game, as they all are more difficult than this one.

Collect Mineral Shards

CollectMineralShards is a more difficult mini game than

MoveToBeacon but it expands on the same idea. This time

the agent starts with 2 marine units. On the map there are

spread out multiple mineral shards. The agent needs to learn

how to select units and how to move them, but also it has to

master a coordination in movement. For each mineral shard

collected from the map the agent receives a +1 reward.

When all the mineral shards are collected new ones spawn

on the map. Similarly, the map is perfectly fitted in the

view screen and no fog-of-war is activated. The time limit

for this mini game is also 2 minutes.

Find and Defeat Zerglings

FindAndDefeatZerglings is a more complex game than the

previous ones and probably is the most difficult mini game

out of all the ones on which we experimented. The agent

starts with 3 marine units placed at the center of the map.

On the rest of the map, there are placed multiple enemy

units called zerglings. The zerglings are placed in such a

way that they don’t form a group. The goal for the agent is

to learn to find, identify, and defeat enemy units. For an

agent to fully master this mini game, it has to learn the

following skills: to select and move a friendly unit, to

identify an enemy unit, to use its units to defeat the enemy

unit, and to explore the surrounding environment. This time

the fog-of-war is activated.

The reward system is more complex, as the agent can

receive a -1 negative reward if it loses an unit to the enemy.

For each enemy unit defeated the agent receives a +1

reward. The time limit is set to 3 minutes. Also, the map is

bigger than the actual camera view, so the agent is

encouraged to also learn on how to properly move it.

Defeat Roaches

DefeatRoaches is also a combat centered mini game. The

agent starts with 9 marine units and must defeat an

opposing group of 4 roaches, which are a more powerful

type of enemy units than the zerglings. Every time the agent

defeats all the 4 roaches, it receives an additional 5 marines

as reinforcement units and 4 other roaches spawn on the

map. This mini game does not involve exploration, as the

roaches are placed right in front of the marines. The fog-of-

war setting is not enabled, and the map is perfectly fitted in

the camera view. The reward system offers a +10 reward

for each enemy unit destroyed and a -1 reward for each

friendly unit lost. This mini game could be considered a bit

easier than the previous one, as the agent only has to learn

how to combat the roaches and not fully move on the map

or explore the environment. The time limit for this mini

game is 2 minutes.

Proposed Solution

As mentioned previously, the experiments try to replicate

the ones described in the original paper that introduced

PySC2, so next we will present how the original solution

works [8].

The first important step in building the solution is to

understand how the actions are represented in the PySC2

API. An action is formally defined by an unique function

identifier and a sequence of parameters which are needed

for the function to run properly. As a simplified example, if

Proceedings of RoCHI 2022

139

we would want to select a rectangle with the mouse we

would have to use select_rect function identifier and pass

two pairs of coordinates (x1, y1) and (x2, y2). In this case, the

coordinates represent the top-left corner and the bottom-

right corner of the rectangle. Using this representation, the

action space contains around 300 unique function

identifiers which can receive up to 13 different types of

arguments. Each individual action-function has a fixed

defined number of parameters and there are also actions

which don’t require any type of argument.

The proposed solution uses a simple neural network

architecture based on convolutional neural networks. The

algorithm used to optimize the parameters of the policy is

the Asynchronous Advantage Actor Critic with a custom

defined gradient. It would require a large number of

parameters to represent the policy in the naive way, so the

Vinyals et al. [8] proposed a simplified version, described

in Equation (2).

(2)

In this equation, L is the number of total parameters and a0

represents the function identifier. More intuitively, the

equation states that the function identifier and its

parameters are chosen independently from one another

depending on the state in which the agent is. The policy will

be used to firstly predict what function identifier to use and

then independently will also predict its parameters, if any

are required. As another simplification, the actions that are

unavailable in a given state are masked out. This is

achieved by masking out the respective function identifiers

and by normalizing the probability distribution over the

identifiers.

The proposed network architecture employs a

Convolutional Neural Network (CNN) as shown next in

Figure 1.

Figure 1 – Fully Conv Architecture [8]

The architecture was named Fully Conv. This agent is

proposed as a baseline and the main idea behind using a

CNN was that they help in building a more abstract

representation of spatial features. This property helps a lot

in the context of StarCraft 2 where most of the actions are

related to spatial features. The network receives 3 different

types of inputs: the screen of the game, different types of

mini maps offered by the PySC2 API, and all non-spatial

numerical features such as: number of units, number of

resources, etc.

All the discrete and numerical features are pre-processed,

being rescaled with a logarithmic function, and mapped to a

continuous space using a 1x1 convolution. The screen and

mini map features are both passed each to a different pair of

2 Convolutional Layers. The structure of the layers is the

same for both the screen features and the mini map features.

The first layer uses 16 filters and a kernel size of 5x5. The

second layer uses 32 filters and a kernel size of 3x3. All the

layers don’t have a stride and use padding.

In this way the original resolution of the features is

maintained throughout the network. After encoding the 3

types of inputs they are concatenated in a single

representation. To achieve this, the numerical features are

broadcasted to the correct shape. Finally, this representation

is used to define 2 policies, one over spatial actions and one

over non-spatial actions. The former uses a 1x1 convolution

with 1 filter over the state representation. The later initially

flattens the state representation and passes it through 2

Linear Layers. The first Linear Layer has 256 output units

and a ReLU activation function.

The input in the case of the screens / mini maps will be the

following: (Number of frames, Height, Width, Channels),

where the “Number of frames” dimension acts like a batch

size. In the original experiments, the researchers propose to

use a 64x64 resolution and act at an 8 game frames rate.

This baseline is reimplemented as an open-source API3

which we also used in our experiments. The only difference

is that they use the Advantage Actor Critic method and not

the asynchronous variant.

Architecture Variations

Beside replicating the experiments described above, we also

tried small variations of the architecture presented above

that in theory could improve the behavior and the

convergence of the agent.

The first obvious idea is to increase the Receptive Field of

the CNNs that are used to embed the features of the screen

and mini map inputs. In Deep Learning, the Receptive Field

defines the size of the region in the input that is used to

compute a single feature. In theory, the bigger the

3 GitHub - simonmeister/pysc2-rl-agents: StarCraft II /

PySC2 Deep Reinforcement Learning Agents (A2C) Last

accessed at: July 07, 2022

Proceedings of RoCHI 2022

140

https://github.com/simonmeister/pysc2-rl-agents/
https://github.com/simonmeister/pysc2-rl-agents/

Receptive Field the more information embeds an output

feature from the networks’ input. Using more information

should produce more qualitative representations. More

concretely, in the context of a Convolutional Layer the

Receptive Field defines the size of the pixels patch that

influences an outputted encoded pixel. To measure the

Receptive Field, we can use Equation (3).

(3)

In the previous equation, L represents the total number of

layers, the k parameters the kernel size of each layer, and s

parameters the strides of each layer. Calculating the

Receptive Field for the given network we obtain a value of

7, which means that a total of 49 pixels contribute to each

output pixel. There are multiple methods to increase the

Receptive Field, such as adding a new convolutional layer,

adding a pooling layer, or using depth-wise convolution

layers. Our idea was to add another convolution layer

before the other ones which has a kernel size of 7x7, 8

filters and no stride. By doing this, we increase the

Receptive Field to 15, which means that 125 pixels are now

used to encode information.

The second proposed variation was to exploit the temporal

information that the fixed number of game frames offers to

us. More specifically, the architecture proposed in the paper

uses 2D convolutions, which means that the frames are

treated independently one from the other, as a batch. In

practice, the frames encode temporal information that is not

exploited by the agent. To capture it, we decided to use a

3D convolution layer which is specifically designed to

apply filters to such kind of inputs [2]. In theory, the input

of such a convolution is of shape (Batch Size, Frames,

Width, Height, Channels). This new layer is added after the

two convolution layers in the original architecture, and we

need to transform the input to fit the size of the new

convolution. To achieve this, we reshape the output of the

last 2D convolution from (Frames, Width, Height,

Channels) to (1, Frames, Width, Height, Channels). The

reshaped representation is passed to the 3D convolution and

after that is reshaped back to its original form. The

hyperparameters set for this new layer are: 32 filters, 3x3

kernel size, and no stride. Moreover, this approach also

exploits the idea described above of increasing the

Receptive Field.

Lastly, we experiment with adding “memory” to the

network. In the original paper [8], they try a similar

approach by introducing a Convolutional LSTM Layer after

obtaining the concatenated representation. Similarly, we

add a GRU Cell [1] after the concatenated representation.

As time steps, we decided to use the channels dimension of

the representation. The representation was initially flattened

and passed to the GRU Cell. After obtaining the output we

reshaped it to the initial dimension.

Heuristic Based Agent

Additionally, we propose a hand-crafted agent for the

Collect Mineral Shards mini game which does not use any

type of Machine Learning methods. It is designed to select

one marine at random and use it to collect the minerals. The

marine selects at random a mineral shard placed on the map

and goes straight to collect it. It may happen that on the

way to the selected shard for the marine to collect

accidentally more shards. The other unselected marine will

remain unused during the running of the game. After

collecting all the shard from a batch, the agent will not stop

and will continue to apply the same algorithm to collect

even more points. We chose the Collect Mineral Shards

mini game because it is more complex than the easiest one

and also has an obvious heuristic that could be used for the

agents. It is important to note that this hand-crafted agent

uses not only rules, but also information about the current

game – such as position of mineral shards. In comparison,

the RL agents do not use any such information, they need to

learn to infer it from the frames of the game.

EXPERIMENTS

Experiments’ Setup

Vinyals et al. [8] present the values for all hyper-parameters

in order to reproduce their results. However, it is not easy to

use all the mentioned settings on a commercial computer.

The resolution proposed for representing the mini maps and

the screen is 64x64. In their experiments, they use 64

parallel asynchronous actor critic agents which act at every

8 game steps. This number of game steps was chosen to

limit the number of actions per minute of the agent to 180,

which is equivalent to the performance of a good StarCraft

player. The results reported in the original paper were the

best results obtained after running the experiments with

different hyper-parameters for ~100 times.

The computer used for running our experiments has the

following setup: Nvidia 3080 GPU, 32GB RAM, and AMD

Ryzen 9 3900XT 12-Core Processor. The processor has

enabled hyper-threading, meaning that in theory it could

run in parallel 24 processes at a time. Taking these

specifications into consideration, the best set of hyper-

parameters that we found is the following: 32x32 resolution

and a maximum of 10 parallel actor critic agents which act

also at every 8 game steps. Even if in practice we could run

with 10 parallel actor critic agents, it didn’t behave reliably.

This means that the training process would result in a

memory error due to having too much StarCraft2 clients

started at the same time. Using just 8 parallel actor critic

agents performed much better, as it didn’t result in such an

error.

For each mini game all the experiments were trained using

approximately the same number of episodes. Except the

easiest mini game, the experiments on all the mini games

were run for around 3000-4000 episodes. For the easiest

Proceedings of RoCHI 2022

141

mini game all the agents were trained until reaching the

maximum attainable reward.

Results

During the experiments the first step was to make sure that

each model variation could converge on the easiest game:

Move To Beacon. All the models could converge on this

game, except the variation that uses GRU Cells. Due to this

fact, the following tables and results won’t include any

statistics about this variation. The reason why we think that

this experiment failed is due to the fact that the channels are

used as time steps for the Recurrent Neural Network. The

intuition is that they don’t encode enough important

information about the state representation. Another possible

problem is that we apply this recurrent cell on the

concatenated input features which might not correlate so

well as some of them are not spatial features.

For the rest of the models, we experimented with each of

them on all the four described mini games. We decided to

plot some graphs that show that the models succeed in

converging to a concrete reward value. The graphs are

plotted for Find And Defeat Zerglings, as we considered it a

more challenging game than the basic mini game. In Figure

2 it is plotted the evolution of the received reward during

the training process of the model that uses a 3D

convolution.

Figure 2 – Reward gained during the training process by

the Fully Conv with a 3D Convolution

The x-axis represents the total number of episodes on which

the agent was trained on. The y-axis represents the reward

collected by the agent in an episode. Additionally, in Figure

3 we present a comparison between the convergence of all 3

different models on the Find And Defeat Zerglings mini

game.

Figure 3 – Convergence comparison between all the 3

different model variations

The axes in Figure 3 have the same meaning as the ones in

Figure 2. As it can be seen, for this specific mini game the

network with a 3D convolution layer converges to a better

reward value. To better compare the performance of the

variations, we computed for each mini game a reward

average over 100 episodes. Additionally, we computed the

standard deviation of the rewards during these 100 episodes

and also the maximum and minimum obtained rewards. All

these values are presented in Tables 1 - 4. The tables also

include for reference the best results obtained by the

DeepMind team in their paper [8]. The bolded values

represent the best values obtained by one of our agents for

the respective mini game.

 Average

Reward

STD Max

Reward

Min

Reward

FullyConv

(Ours)

24.22 2.20 29.0 15.0

FullyConv with

bigger RF

25.28 1.93 29.0 21.0

FullyConv with

3D convolution

25.20 2.48 30.0 15.0

FullyConv

(DeepMind [8])

26.00 - 45.0 -

Table 1 – Move To Beacon Mini Game Comparison

Proceedings of RoCHI 2022

142

 Average

Reward

STD Max

Reward

Min

Reward

FullyConv

(Ours)

61.50 9.07 84.0 35.0

FullyConv with

bigger RF

15.94 2.39 29.0 10.0

FullyConv with

3D convolution

26.05 7.75 39.0 17.0

Heuristic Based

Agent

54.51 5.76 71.0 43.0

FullyConv

(DeepMind [8])

103.00 - 134.0 -

Table 2 – Collect Mineral Shards Mini Game Comparison

 Average

Reward

STD Max

Reward

Min

Reward

FullyConv

(Ours)

7.55 2.43 14.0 2.0

FullyConv with

bigger RF

18.32 5.08 29.0 5.0

FullyConv with

3D convolution

22.06 3.81 40.0 6.0

FullyConv

(DeepMind [8])

45.00 - 56.0 -

Table 3 – Find And Defeat Zerglings Mini Game

Comparison

 Average

Reward

STD Max

Reward

Min

Reward

FullyConv

(Ours)

23.20 18.55 121.0 -9.0

FullyConv with

bigger RF

16.53 18.47 71.0 -9.0

FullyConv with

3D convolution

20.50 17.56 81.0 -9.0

FullyConv

(DeepMind [8])

100.0 - 355.0 -

Table 4 – Defeat Roaches Mini Game Comparison

As it can be seen from the tables, none of the experiments

compare to the results obtained by the Deep Mind team, but

they are still good. The only exception is the Move To

Beacon mini game, where all the variations converged to

similar values. As it can be seen from the Table 2, the Fully

Conv agent trained by us performs better than the “hand

crafted” one.

The tables also show that the variations perform similarly

for the Move To Beacon and Defeat Roaches mini games.

For the former one, both proposed variations perform

slightly better than the classical Fully Conv one. The 2 mini

games where there are more notable differences are the

Collect Mineral Shards mini game and Find And Defeat

Zerglings. For the first mentioned one, all the agents learn

to collect a consistent number of shards, but the classical

Fully Conv agent learns a better policy overall by a big

margin. This can be explained by the fact that all 3 models

where trained on approximately the same number of

epochs, but the classic Fully Conv model has far less

parameters than the other 2 models. Due to this property

this model should converge faster than the other 2 ones.

An interesting observation can be made for the Find And

Defeat Zerglings, where the classical architecture doesn’t

perform so well as the other 2 different variations, even if it

has an advantage in convergence speed. Moreover, the

variation that exploits both temporal information and a

bigger Receptive Field generally performs better than the

other simpler variation.

CONCLUSIONS

In conclusion, in this paper we showed that by replacing the

Asynchronous Actor Critic algorithm with the Advance

Actor Critic one in the proposed solution by DeepMind [8]

the resulting agent still performs well on the tested mini

games. Moreover, the experiments showcased in this paper

are obtained using a lot less computational power than the

ones performed in the original solution, proving that they

can be replicated to some degree even on some more

accessible computers. Lastly, the variations proposed to the

architecture present a great potential on improving results

on some more of the more complex tasks from the StarCraft

game. This statement was empirically proven by the results

obtained on the Find and Defeat Zerglings mini game. In

the future, we would like to expand these solutions on the

other 3 mini games that weren’t described in this research

report and on the early game phase of the game.

REFERENCES

1. Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio,

Y. (2014). On the properties of neural machine

translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259.

2. Ji, S., Xu, W., Yang, M., & Yu, K. (2012). 3D

convolutional neural networks for human action

recognition. IEEE transactions on pattern analysis and

machine intelligence, 35(1), 221-231.

3. Lee, D., Tang, H., Zhang, J. O., Xu, H., Darrell, T., &

Abbeel, P. (2018). Modular architecture for starcraft ii

with deep reinforcement learning. Fourteenth Artificial

Intelligence and Interactive Digital Entertainment

Conference.

Proceedings of RoCHI 2022

143

4. Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,

T., Harley, T., & Kavukcuoglu, K. (2016).

Asynchronous methods for deep reinforcement learning.

International conference on machine learning, 1928-

1937.

5. Pang, Z. J., Liu, R. Z., Meng, Z. Y., Zhang, Y., Yu, Y.,

& Lu, T. (2019). On reinforcement learning for full-

length game of starcraft. Proceedings of the AAAI

Conference on Artificial Intelligence.

6. Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G.,

Nardelli, N., Rudner, T. G., & Whiteson, S. (2019). The

starcraft multi-agent challenge. arXiv preprint

arXiv:1902.04043

7. Sutton, R. S., & Barto, A. G. (2018). Reinforcement

learning: An introduction. MIT press.

8. Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P.,

Vezhnevets, A. S., Yeo, M., & Tsing, R. (2017).

Starcraft ii: A new challenge for reinforcement learning.

arXiv preprint arXiv:1708.04782.

Proceedings of RoCHI 2022

144

	23-RoCHI_2022_paper_3155_Dumitrescu 137-144

