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RELATED WORK 

Classical approaches 
Modern video captioning techniques follow the pattern of 
employing an encoder-decoder architecture that uses neural 
networks as its components [1, 15, 16, 17, 19, 20]. The 
encoder part of the model is responsible for extracting 
visual features from the input video which basically encode 
the semantics of the visual content. These encodings are 
then passed to the decoder which generates the sequence of 
words whose semantic encodings match the visual features 
the best, such that the resulting sentence correctly describes 
the input video, or in other words, it describes the same 
entities and events as the video does. 

For the encoder, usually a pretrained, 2D or 3D 
Convolutional Neural Network (CNN), a Recurrent Neural 
Network (RNN), a Vision Transformer (ViT) or a 
combination of them (e.g. CNN followed by an RNN or by 
a ViT [5]) is used. Options for the decoder include RNNs 
and Transformers [13]. 

Pretrained Transformers 
In recent years, large Transformer models with tens and 
hundreds of billions of parameters trained on vast amounts 
of data have obtained outstanding results in a wide range 
and domains and tasks, especially when used as language 
models in natural language processing. One of the most 
popular such models is the Generative Pre-Trained 
Transformer (GPT) [10] family of models which was used 
in various text generation tasks such as generating stories 
starting from an initial prompt, creating text-based video 
games [22] or generating code from descriptive comments 
[23]. Interestingly, due to the large amount of diverse data 
that the models were trained on, the GPT models were 
shown to generalize to very different tasks, even without 
any fine-tuning, by simply giving them the appropriate 
input prompt (e.g. instructing the model to translate a 
following input text from one language to another [24]). 

Another example of architecture that employs heavily 
pretrained Transformers is the one introduced by CLIP [9]. 
The CLIP architecture consists of an image encoder in the 
form of a Vision Transformer (ViT) and of a textual 
encoder in the form of a Transformer. These two are trained 
in a contrastive manner on a relatively simple task: 
determining if an input image and label match together. By 
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representation of the content presented visually in a video, a 
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for  a  better navigation  through  large video  repositories. In 
this  paper  we describe a  model  that  employs  the  heavily 
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pretrained  CLIP  ViT  with LSTM  networks, outperforming 
CLIP  +  GPT2  models. We validate  our  method on  the 
popular MSVD  [4] and MSR-VTT [18] datasets, showing 
the potential of the proposed model for video captioning.
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INTRODUCTION
Video  captioning  refers  to  the  process  of  generating  a 
textual  representation in  natural language  of  the  relevant,
semantic  content  presented  in an  input  video.  Similarly,
image captioning  aims  to  textually  describe  images,  but 
video  captioning  is  relatively  more  difficult  than  image 
captioning  because  it  faces  the additional  challenges 
introduced  by  a  new  dimension:  the  time. Therefore, it  is 
necessary  to  also  put  emphasis  on  activity recognition  and 
understanding  to  some  degree  and  exposing  causality 
between events.

Both  image  and  video  captioning  have  important 
applications in Human-Computer Interaction. The  most 
important ones are improving accessibility to visual content 
for  visually  impaired  persons,  indexing  visual  data  in  a 
database  by  its  written  description, and  automatically 
converting information from visual to textual form so that it 
can  be employed quicker by  humans in  specific  scenarios 
(e.g. extracting the steps of a recipe from a cooking video).
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training the two image and text encoders using losses 
computed based on the cosine similarity of their generated 
embeddings, the objective is to teach both encoders to 
represent their inputs in a shared latent space. Keeping in 
mind our task of video captioning, the image encoder of the 
CLIP model is very promising because it can generate 
embeddings in a latent space that has been specifically 
designed to be shared with the embeddings of the textual 
information. Although we might use a different textual 
encoder, learning a mapping from the CLIP latent (textual) 
embedding space to our particular textual embedding space 
could be easier to do than to train an image or video 
encoder from scratch to generate "textually-aware" visual 
embeddings. 

An approach that employs the pretrained CLIP ViT and 
GPT2 for the relatively easier problem of image captioning 
was introduced by Mokady, Hertz, and Bermano [7]. Our 
work builds on top of this and tries to adapt CLIP and 
GPT2 to the problem of video captioning, while also 
introducing a better performing hybrid model in the end 
that uses CLIP ViT as a visual encoder and LSTMs as a 
textual decoder. 

METHODS 

Baselines 
As a comparison baseline, we used an encoder-decoder 
architecture that follows the more classical pattern of 
employing CNNs and RNNs. As such, we used the 
Inception-ResNet-V2 [12] pretrained on ImageNet [11] as 
the visual encoder in combination with an LSTM encoder 
and an LSTM decoder with attention. The 2D CNN extracts 
visual features from several equally distanced frames from 
the input videos. The number of selected frames is the 
median length of all videos in the respective dataset (in our 
case, 240 for MSVD and 360 for MSR-VTT). These 
features are then processed as a sequence by the encoding 
LSTM whose implicit objective is to capture temporal or 
order information in its hidden states at each timestep. The 
encoding LSTM hidden states at each timestep (i.e. at each 
frame) are kept and used as entries in the attention memory 
of the LSTM decoder. The initial hidden and cell states of 
the LSTM decoder are computed through two learned linear 
projections of the mean of all the encoder’s hidden states. 

Initial CLIP & GPT2 approaches 
The main challenge in using CLIP and GPT2 for the 
problem of video captioning consists in projecting the 
textually aware CLIP visual embeddings to the input 
embedding space of GPT2 such that the visual information 
can be fed to GPT2 as a prefix in its input prompt. 

Initially, we experiment with straightforward approaches to 
handle this projection. One such approach was to use a 
single CLIP embedding to represent the entire video: either 
the embedding of the middle frame in each video or the  

 

Figure 1. The frame level approach for projecting the CLIP 
embeddings into the GPT2 input embedding space. 

 

mean of the CLIP embeddings of 64 equally distanced 
frames from each video. When using a single CLIP 
embedding to represent the entire video, we experimented 
with the techniques introduced by Mokady, Hertz, and 
Bermano [7] to adapt the CLIP embeddings to GPT2 
embeddings. The first technique projects the single CLIP 
embedding into 10 GPT2 input embeddings using a Multi-
layer Perceptron (MLP). The other adaptation technique 
proposed by the authors that we used was to first project the 
CLIP embedding into 10 vectors having the dimension of 
the GPT2 embeddings, then concatenate these with an equal 
number of learned constants which also have the dimension 
of the GPT2 embeddings. Finally, the resulting sequence is 
passed through a Transformer encoder and the resulting 
embeddings associated with the learned constants are used 
in the input prompt of the GPT2. 

Another approach that we used was to project all the CLIP 
embeddings of all the selected frames from a video through 
an MLP and such obtain a GPT2 input embedding for each 
frame.  

CLIP & Frame level Transformer Adapter & GPT2 
Previously, we had only used an MLP as the adapter 
network when projecting each frame individually from the 
CLIP embedding space to the GPT2 input embedding 
space. The next step we took was to implement a 
Transformer encoder adapter that worked with individual 
frames' CLIP embeddings as inputs. We experimented with 
2 ways of projecting the input frame level CLIP 
embeddings into the GPT2 input space with the help of this 
new transformer adapter, both considering 10 equally 
distanced frames from each input video.  
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Figure 2.  The frame chunk level approach for projecting the CLIP embeddings into the GPT2 input embedding space. 

The first approach was to pass the entire sequence of frame 
level features through the adapter. Before doing so, we 
linearly projected each CLIP frame feature to the 
dimensionality of the GPT2 input space through a learned, 
fully connected layer, going from an embedding size of 512 
to one of 768. Apart from the frame features, a sequence of 
learned constants – having the role of special visual 
“tokens”– that is equal in length and overall shape to the 
sequence of frame features is passed through the adapter 
transformer after being concatenated to the sequence of 
frame features, similarly to image captioning approaches 
[7]. These learned constants, which are used for all the 
input sequences of frames, are meant to help with the task 
adaptation of the CLIP and GPT2 networks to working 
together by being optimized, together with the adapter 
transformer, to "absorb" information from the input CLIP 
embeddings through self-attention in a way that generates 
the best translation into the GPT2 input space. In the end, 
the resulting projected embeddings associated with the 
input learned constants are used as part of the GPT2 input 
prompt. A visual representation of this approach can be 
seen in Figure 1.  

CLIP + Frame-chunk level Transformer Adapter + GPT2 
For the second approach of employing a transformer 
adapter, we first divided each frame’s CLIP embedding into 
four chunks of equal size in the initial linear projection to 

the GPT2 input space, before passing them through the 
adapter.  

This time, instead of passing a sequence of frame-level 
features through the adapter transformer, we pass 
individually each sequence of chunks associated with a 
frame, together with the four constants of the same shape 
that are trainable by the model. After each frame’s chunks 
and constants are embedded by the transformer, for each 
frame we keep only the four constants, similarly to the 
previous approach, and concatenate them together to form 
the frame-level GPT2 input space embedding which is later 
used in the prompt of GPT2. 

The thought process behind this approach is that we try to 
break the input CLIP embedding in multiple sub-
components, then project these individual sub-components 
to the GPT2 input space with the hope that it is a simpler 
task and, finally, we put together the resulting projected 
sub-components into a single final embedding for the 
frame, with the added caveat of also employing the learned 
constants for helping with the task adaptation.  

This idea is conceptually similar to breaking a vector into a 
set of base vectors and then applying a function on the base 
vectors instead of the "assembled" vector. A schematic of 
how this approach works is presented in Figure 2. 
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 MSVD MSR-VTT 

#Total video clips 1,970 10,000 

#Training clips 1,200 6,513 

#Validation clips 100 497 

#Testing clips 670 2,990 

Mean #frames 275.0 407.9 

Median #frames 240.0 360.0 

#Total captions 85,529 200,000 

Mean #words 7.10 9.28 

Median #words 6.0 8.0 

Table 1. Statistics of the MSVD and MSR-VTT video 
captioning datasets. 

A hybrid approach: CLIP & LSTMs 
Finally, after obtaining improved results with the CLIP & 
transformer adapter & GPT2 model, we decided to take a 
step back and try to combine the two base approaches at the 
end of the spectrums: on one side, using simpler models 
with an LSTM encoder and an LSTM decoder with 
attention, and, on the other side, using extensively 
pretrained large transformer models. Thus, we introduce a 
hybrid model consisting of the pretrained CLIP Vision 
Transformer, an LSTM visual encoder, and an LSTM 
textual decoder. 

DATASETS 
We report the results of our experiments on the MSVD and 
MSR-VTT video captioning datasets. Both are generalist 
datasets that capture a wide variety of actors, objects, 
actions and environments. A quantitative description of the 
two datasets is presented in Table 1. The MSR-VTT has 
more samples and, on average, its videos and captions are 
longer than the MSVD dataset. 

RESULTS 
We evaluate our proposed methods using popular natural 
language metrics in the form of BLEU4 [8], METEOR [3], 
ROUGE-L [6] and CIDEr [14]. 

Initial CLIP & GPT2 approaches 
In Table 2 we present the results obtained on the MSVD 
validation set by the initial, more simplistic approaches to 
adapting the CLIP and GPT2 models to the problem of 
video captioning. 

The best performing model among these initial pretrained 
transformers models is the one using a transformer as the 
adapter that projects the mean of the CLIP embedding of 64 
equally distanced samples and which also fine-tunes the 
GPT2 model during training. Considering for comparison 
the model which uses the middle frame of a video as the  

Adapter Frames Trained BLEU4 METEOR ROUGE-L CIDEr 

MLP Uniform 64 
mean adapter 0.2368 0.2700 0.5337 0.2260 

MLP Uniform 10 adapter + GPT2 0.2618 0.2873 0.5506 0.2606 

Transf. Uniform 64 
mean adapter + GPT2 0.2818 0.2899 0.5625 0.2903 

Transf. Middle 
frame adapter + GPT2 0.2415 0.2656 0.5346 0.2058 

Table 2. MSVD validation set metrics for the initial models 
using CLIP & GPT2 architectures. 

single representative of a video, this best performing model 
brings an improvement of 16.68% in BLEU4, 9.14% in 
METEOR, 5,21% in ROUGE-L, and 41.05% in CIDEr. 

The models which use the mean of different frame features 
perform better than the middle frame baseline, suggesting 
that even this relatively crude method of aggregating 
information from the video is beneficial, although temporal 
information is lost in the process. 

It is also worth noting that the second best performing 
model is the one using the distinct CLIP features of 10 
equally distanced frames from the input video, without 
computing their mean. Given that this model uses the 
simpler MLP as the adapter network (although with a 
simpler task of projecting a single embedding to a single 
embedding, not one to many), this is a promising result that 
suggests that this approach makes better use of temporal 
information in a beneficial way for video captioning. 

MSVD validation set 
In Table 3 we present the results of the most relevant 
models we experimented with on the MSVD validation set. 

The initial model that uses both pretrained Transformers 
and adapts the mean of all the CLIP embeddings to the 
GPT2 input embedding size using a Transformer adapter 
performs poorly, even in comparison with the classical 
baseline that employs Inception-ResNet-V2 in combination 
with an encoding video LSTM and a decoding textual 
LSTM and therefore we dropped it from our next 
experiments on the MSR-VTT dataset. It is worth noting 
though that this simplistic model manages to obtain the best 
METEOR score across all our models. As such, in 
comparison with the classical baseline, this initial 
adaptation of CLIP and GPT2 obtains the following relative 
results: -40.76% BLEU4, +16.94% METEOR, -18.07% 
ROUGE-L, -61.26% CIDEr. 

Comparing the frame-level and chunk-level improved 
models, we see that the chunk-level adapter model performs 
better with respect to BLEU4, with a favorable difference 
of 4.47%, and with respect to METEOR, with an increase 
of 3.33%. The frame-level model performs better on 
ROUGE-L with a slight positive difference of 1.04% and 
with a larger positive difference of 14.33% on CIDEr. 
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Model BLEU4 METEOR ROUGE-L CIDEr 

IRN-V2 + LSTM enc + LSTM dec 0.4757 0.2479 0.6866 0.7493 

CLIP + Mean Transf. Adapt. + GPT2 0.2818 0.2899 0.5625 0.2903 

CLIP + Frame-level Transf. Adapt. + 
GPT2 

0.4628 0.2766 0.7296 0.9485 

CLIP + Chunk-level Transf. Adapt. + 
GPT2 

0.4835 0.2858 0.7221 0.8296 

Hybrid CLIP + LSTM enc + LSTM dec 0.5685 0.2756 0.7391 0.9662 

Table 3. MSVD validation set results for our most relevant 
models. 

The relatively small differences between performances of 
the improved frame-level and chunk-level models, apart 
from not showing a clear superior approach, also makes 
them both good candidates for evaluation on the test set of 
MSVD. 

When compared to the previously introduced CLIP + 
frame/chunk-level adapter + GPT2 models, the hybrid 
approach performs better across all metrics on the 
evaluation set, except for the METEOR metric, where the 
chunk level CLIP + GPT2 model still performs better. As 
such, we see for the hybrid model, in comparison with the 
best metrics obtained by any CLIP + GPT2 model: 17.58% 
increase in BLEU4, 3.57% decrease in METEOR, 1.30% 
increase in ROUGE-L and 1.87% increase in CIDEr. 

It is also worth mentioning that training the best performing 
hybrid model took significantly less time when compared to 
the CLIP + GPT2 alternatives. On average, training the 
hybrid model for an epoch on the MSVD training set using 
a single RTX 3080 mobile GPU took 187 seconds, which, 
when compared to the average of 860 seconds per epoch of 
the frame level CLIP + GPT2 model, amounts to a 
reduction of 78.26% in training time. 

MSVD test set 
In Table 4 are presented the results of our most relevant 
models and of some of the top models from the literature on 
the MSVD test set. 

Compared to the classical baseline, the best performing 
model overall that employs in any way pretrained 
transformers, namely the hybrid, CLIP + LSTM model, 
performs better across all evaluation metrics on the test set, 
except for METEOR. As such, compared to the best non-
transformer model, we see: 15.09% increase in BLEU4, 
12.45% decrease in METEOR, 4.24% increase in ROUGE-
L and 11.73% increase in CIDEr. 

It is also worth noting the improvement brought by the 
refined CLIP + GPT2 models, when compared to the best 
model from the first iteration of experiments on this 
architecture, namely the CLIP + GPT2 model that 

Model BLEU4 METEOR ROUGE-L CIDEr 

Yao et al., 2015 [19] 0.4190 0.2960 - 0.5160 

Yu et al., 2016 [20] 0.4990 0.3260 - 0.6580 

Ballas et al., 2015 [2] 0.4330 0.3160 - 0.6800 

Zhang et al., 2020 [21] (SotA) 0.5430 0.3640 0.7390 0.9520 

IRN-V2 + LSTM enc + LSTM dec 0.4519 0.2444 0.6592 0.6561 

CLIP + Mean Transf. Adapt. + GPT2 0.2450 0.2650 0.5312 0.2042 

CLIP + Frame-level Transf. Adapt. + 
GPT2 

0.4431 0.2656 0.6925 0.7409 

CLIP + Chunk-level Transf. Adapt. + 
GPT2 

0.4384 0.2756 0.7024 0.7229 

Hybrid CLIP + LSTM enc + LSTM dec 0.5201 0.2693 0.7074 0.7331 

Table 4. MSVD test set results for our best performing models 
and for some of the top models from the literature (best values 

are in bold, best values among our models are underlined). 

computed the mean of all the CLIP embeddings associated 
with the different input frames, then used a Transformer 
adapter to project this single mean embedding into a prefix 
for the GPT2 prompt. This mean computing approach 
obtained better results than the per individual frame 
projection one using a multilayer perceptron instead of the 
transformer for the adapter network. Compared to this 
initial CLIP + GPT2 best model, our best metrics for any 
CLIP + GPT2 models were improved as such: 80.86% 
increase in BLEU4, 4.0% increase in METEOR, 32.23% 
increase in ROUGE-L and 363% increase in CIDEr for the 
MSVD test set. 

With respect to the other models in the literature, we 
managed to obtain better results across multiple metrics 
than the earlier state of the art (SotA) models, but when 
compared to the most up to date SotA on the MSVD dataset 
we could find, namely the method proposed by Zhang et al. 
[21], our best overall model – the hybrid CLIP + LSTM 
one, is still behind it. As such, our best model has: a 4.22% 
disadvantage on BLEU4, a 26.02% disadvantage on 
METEOR, a 4.28% disadvantage on ROUGE-L and a 
22.30% disadvantage on CIDEr. 

It is worth noting that the aforementioned SotA model uses 
a complex approach regarding the embedding of visual 
features by combining the features extracted by multiple 2D 
and 3D CNNs, as well as the information extracted about 
objects detected in the input by a pretrained object detector. 
These aspects make the visual embedding process resemble 
a pseudo-manual feature engineering approach which 
would make, for example, the execution of such a model in 
near real-time very difficult, as the execution path seems to 
be longer and going through multiple submodules. This  
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Model BLEU4 METEOR ROUGE-L CIDEr 

IRN-V2 + LSTM enc + LSTM dec 0.3815 0.2076 0.5738 0.3509 

CLIP + Frame-level Transf. Adapt. + 
GPT2 

0.3616 0.2312 0.5892 0.3892 

CLIP + Chunk-level Transf. Adapt. + 
GPT2 

0.3480 0.2304 0.5845 0.4015 

Hybrid CLIP + LSTM enc + LSTM dec 0.4250 0.2356 0.6154 0.4815 

Table 5. MSR-VTT validation set results for our most relevant 
models. 

approach also implies the need for a potentially larger 
memory capacity in order to store the weights of the 
different networks as well as their gradients throughout the 
training process, making it less feasible to train and use 
with limited resources. 

MSR-VTT validation set 
In Table 5 we show the results of our models on the MSR-
VTT validation set. 

We can observe that across all metrics there is a general 
decrease in values. This observation is also true for the 
SotA models from the literature presented in the following 
section. This suggests that not only MSR-VTT is a larger 
dataset than MSVD, but that it is overall a more difficult 
dataset for the video captioning task. 

The hybrid model is, once again, the best performing model 
overall from our proposed models. Compared to the best 
metrics obtained by any of the model that employs CLIP 
and GPT2, the hybrid model obtains: 17.53% increase in 
BLEU4, 1.90% increase in METEOR, 4.45% increase in 
ROUGE-L and 19.93% increase in CIDEr. Compared to the 
baseline classic architecture model, namely the one based 
on the Inception-ResNet-V2 encoder, the advantages are 
also significant for the hybrid model: 11.40% increase in 
BLEU4, 13.49% increase in METEOR, 7.25% increase in 
ROUGE-L and 37.22% increase in CIDEr.  

MSR-VTT test set 
In Table 6 are presented the results of our most relevant 
models and of some of the best models from the literature 
on the MSR-VTT test set. 

As was the case when presenting the results on the MSVD 
test set, on the MSR-VTT test dataset, our hybrid model, 
employing the CLIP visual embeddings and an LSTM 
video encoder and an LSTM textual decoder, does not 
manage to surpass the existing SotA model. The differences 
compared to the SotA [21] are: a 4.54% disadvantage on 
BLEU4, a 21.01% disadvantage on METEOR, a 2.54% 
disadvantage on ROUGE-L and a 10.29% disadvantage on 
CIDEr. 

Model BLEU4 METEOR ROUGE-L CIDEr 

Wang et al., 2018 [17] 0.3813 0.2658 - - 

Wang et al., 2019 [16] 0.4130 0.2870 0.6210 0.5340 

Zhang et al., 2020 [21] (SotA) 0.4360 0.2880 0.6210 0.5090 

IRN-V2 + LSTM enc + LSTM dec 0.3562 0.2010 0.5658 0.3540 

CLIP + Frame-level Transf. Adapt. + 
GPT2 

0.3570 0.2265 0.5856 0.3983 

CLIP + Chunk-level Transf. Adapt. + 
GPT2 

0.3437 0.2268 0.5811 0.3953 

Hybrid CLIP + LSTM enc + LSTM dec 0.4162 0.2275 0.6052 0.4566 

Table 6. MSR-VTT test set results for our best models and for 
top models from the literature (best values are in bold, best 

values among our models are underlined). 

MSVD qualitative analysis 
In Figure 3, relevant frames from a sample video in the 
MSVD validation set are presented and, in Table 7, the 
captions generated by our top performing models, together 
with some human, ground truth annotations are presented. 

We can observe by looking at these predictions that none of 
the models manage to generate captions that correctly 
describe the complete semantics of the video, but all of 
them generate captions that are plausible from a 
grammatical point of view. 

The baseline classical model based on the Inception-
ResNet-V2 encoder is the only one which manages to 
correctly identify the age and gender of one of the actors in 
the scene, namely the boy. It predicts that the boy is eating, 
which, although incorrect, suggests that the model is aware 

 

Figure 3. Frames extracted from a sample video in the MSVD 
validation set presenting a boy and a woman playing catch 

with a small pumpkin [4]. 
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Model Caption 
IRN-V2 + LSTM enc 

+ LSTM dec “a boy is eating” 

CLIP + Frame-level 
Transf. Adapt. + GPT2 “a girl is doing a dance” 

CLIP + Chunk-level 
Transf. Adapt. + GPT2 “a girl is talking” 

Hybrid CLIP + LSTM 
enc + LSTM dec “a girl is dancing” 

Human 1 “a boy and woman are tossing a pumpkin” 

Human 2 “a woman and child is tossing a pumpkin 
to each other” 

Human 3 “people are throwing a pumpkin” 

Table 7. Predictions of our most relevant models and 3 of the 
human annotated captions for the video presented in Figure 3. 

of the pumpkin in the video, or at least that some eatable 
object is present. 

All the CLIP + GPT2 models, both the frame level and the 
chunk level one, and the hybrid one employing CLIP and 
LSTMs, fail to recognize all the actors in the scene, the 
correct action, and the main object of interest (the 
pumpkin). They all mention that there is a girl in the video. 
This result might be explained by the models confusing the 
little boy with a girl, which might be caused by an implicit 
bias in the dataset used to pretrain the CLIP visual encoder, 
namely that children with longer haircuts, such as the boy 
in this video, are more probable to be females. If this is the 
case, it is worth noting that the models correctly recognized 
the age of the child and therefore used the word "girl" 
instead of "woman".  

All the models recognized semantically reasonable actions, 
such as talking or dancing, but none of them managed to 
capture the true meaning of the motions presented in the 
input video. The frame level CLIP + GPT2 model and the 
hybrid, CLIP + LSTMs model both recognized the same 
action of dancing, but the GPT2 decoder generated a longer 
sentence describing the same thing, which might be an 
indication of the more expressive or "talkative" nature of 
the GPT2 model, compared to the relatively simpler LSTM 
decoder. 

MSR-VTT qualitative analysis 
Figure 4 presents frames from one of the validation videos 
in the MSR-VTT validation dataset and Table 8 showcases 
the captions generated by our most relevant models given 
this video as input. 

Only the model employing the CLIP visual encoder, the 
frame level adapter and the GPT2 decoder, as well as the 
hybrid model manage to generate a correct caption, namely 
by identifying the correct action taking place. The other two 

 

Figure 4. Frames extracted from a sample video in the MSR-
VTT validation set presenting multiple men running on a 

track [18]. 

models recognize that there is a sport event presented in the 
video, but fail to correctly identify its kind, misclassifying it 
as a soccer game, which can be explained by the 
background consisting of a grass field and spectator seats 
which resemble a soccer field. 

Model Caption 
IRN-V2 + LSTM enc 

+ LSTM dec “a soccer game is played” 

CLIP + Frame-level 
Transf. Adapt. + GPT2 

“a group of runners are running on a 
track” 

CLIP + Chunk-level 
Transf. Adapt. + GPT2 “a soccer team is playing soccer” 

Hybrid CLIP + LSTM 
enc + LSTM dec 

“a group of people are running on a 
track” 

Human caption 1 “runners in an event are running around 
the track” 

Human caption 2 “a group of men are racing around a track” 

Human caption 3 “people running in race” 

Table 7. Predictions of our most relevant models and 3 of the 
human annotated captions for the video presented in Figure 4. 

CONCLUSIONS 
In this paper we introduced two ways to adapt the heavily 
pretrained CLIP and GPT2 Transformer-based models to 
the problem of video captioning, then we presented a hybrid 
CLIP + LSTMs model that outperformed our models based 
exclusively on the CLIP + GPT2 architecture or on the 
classical CNN + LSTMs architecture. 

Although the newly introduced hybrid model does not 
manage to surpass the performance of the current state of 
the art in video captioning, it comes relatively close to it 
while proposing a new approach that requires no manual or 
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semi-manual feature engineering. Since this approach does 
not rely on pretrained object or action detectors, as the SotA 
and other well performing models in the literature do, it 
brings the potential to generalize better to different datasets 
and environments in general. 
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