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parameters, such as weight, body circumferences, body fat 

percentage, metrics used by cardiologists and nutritionists. 

Moreover, MRI and RX scanners can be optimized, using 

the measurements in the calibration stage. 

Accurate human body measurements extraction is a 

complex problem, tackled in Computer Vision research 

since late 20th century. The goal in this problem is to extract 

measurements with a maximum of 5 millimeters (mms) 

error – the widely-accepted tolerance in tailoring. In the 

following sections we present an Ensemble Solution, which 

makes use of traditional Computer Vision techniques, as 

well as Deep Learning and Statistical Models. 

RELATED WORK 

Our solution uses techniques such as pose-estimation, 

semantic segmentation, and depth-estimation. In the 

following section, the state-of-the-art in these areas will be 

described. 

EfficientNet [1] is a convolutional neural network 

architecture and scaling method. It can scale depth, width, 

and resolution uniformly by using a compound coefficient. 

The coefficients are different from the conventional scales, 

as they are fixed. The logic behind the compound part is 

that, if the image is bigger, then the network will need more 

layers and channels to capture patterns. 

The compound scaling method can be generalized to an 

existing CNN architecture. Choosing a good baseline 

network is a priority, as the method only enhances the 

predictive capacity of the base network. The EfficientNet-

B0 is based on the inverted bottleneck residual blocks of 

MobileNetV2 [2]. 

PyTorch3D [3] is a framework from Facebook Research 

that handles working with meshes and it is designed to 

integrate with deep learning to predict and manipulate 3D 

data. This framework will be used to develop a version of 

the measurement prediction model, where it will receive the 

weight, height and the 2 images to generate the mesh of the 

person, from which more than 200 measurements can be 

extracted. 

In the next few paragraphs, some relevant history of the 

evolution of anthropometric features extraction will be 

presented. 

ABSTRACT

The Computer Vision task  of extracting  body 

measurements from images has many applications in online 

shopping,  medical, sport  &  fitness  and other  fields  which 

require knowing or monitoring body measurements. Ideally,

this should be achieved without complex hardware, fast and 

with high availability. In this paper, we describe a solution 

which extracts  body  measurements  using  any  smartphone 

with  a  camera  and  internet  access. Using  as  input  two 

photos – one frontal and one lateral – and the user’s height,

weight, age and gender, our solution is able to extract more 

than 100 body measurements with a measurement error less 

than 5mm, and an inference time of around 5 seconds.
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INTRODUCTION

Finding the perfect size when ordering clothes from online 

fashion  shops is  known  to be  a  difficult  task. Most  shops 

only publish their products’ sizing charts – tables showing 

correspondence  between products’  sizes  and  body 

measurements  in  inches  or  centimeters. Thus, the  most 

challenging  part  of  finding  out  what  size  to  order  is 

knowing your own  measurements. Therefore, many  orders 

end  up  being  wrong,  and  both  the  client  and  the  shop  can 

assess that only after the product is received and tried. This 

causes high return rates, which, in turn, cause profits loss.

The  healthcare  industry also  benefits  from remote  body 

measurements extraction. Specialists  can consult patients 

virtually for prosthetics, orthopedic braces or kinesitherapy 

instruments. They  can also monitor  their  patients  body
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As early as 1934, scientists have demonstrated that 

traditional ways of measuring anthropometric features are 

prone to errors [4], either because of their human operators, 

or because of their intrinsic quality. Ever since, people have 

been trying to grasp control over accuracy and precision of 

these measurements, which have so long been at the hands 

of the measurers. 

One of the earliest uses of Computer Vision in measuring 

anthropometric features was attempted by Meunier, P., & 

Yin, S. in 2000 [5], as an alternative to traditional and 

three-dimensional methods of measuring the human body. 

By taking 2 pictures of the subject (frontal and lateral) at 

the same time on a background populated with landmarks 

and then applying body segmentation and landmark 

detection algorithms, they were able to estimate the 

following anthropometric variables with up to ± 5mm error: 

stature, neck circumference, chest circumference, waist 

circumference, hip circumference, sleeve length. These 

measurements were done on a pool of 349 male and female 

subjects and compared to measurements extracted by 

traditional means. This proposal, particularly extracting the 

features by using only 2 pictures, seems to have inspired the 

majority of the subsequential approaches. However, when 

taking into consideration larger pool of subjects and more 

body measurements, errors tend to rise. To date, there is no 

known robust body measurement solution, that extracts any 

body measurement of any person – of any nationality, 

ethnicity, gender, and age. 

When researching this subject, one would be tempted to 

start with Body Shape Analysis. 

Body Shape Analysis means determining the shape, figure, 

or type of the human body, fully or partially, by taking into 

consideration pictures, 3D models, body dimensions, 

geographical, biological, hereditary, or other type of 

information. This type of analysis is crucial for 

anthropometry, because, even though there are clues that 

each of the human body dimensions can be a continuum 

between some intervals, it is known that the limits of those 

intervals cannot vary too much, as the human body has its 

limits, to preserve its shape. 

Body Shapes and Somatotypes are two different concepts. 

The somatotype concept is a type of classification of the 

human body shapes, popularized in the 1940s by 

psychologist W. H. Sheldon. The somatotype taxonomy is a 

popular, yet highly disputed way to categorize the human 

body into classes like ectomorph, mesomorph, and 

endomorph. This taxonomy, W. H. Sheldon claims, can 

differentiate between different psychological and 

personality traits, shared only by people whose bodies 

belong to a specific category. In what follows, I will 

describe each category without detailing the psychological 

traits. 

Even though W. H. Sheldon’s claims regarding the 

psychological traits connected to those body types have 

been since dismissed, this classification remains the most 

popular in our society’s culture.  

Below, we are going to detail some other attempts to body 

shape analysis and classification, which are more 

scientifically reliable. 

Anthropometric measurements in combination with 

dimensionality reduction and clustering techniques show 

promise for partitioning individuals into distinct groups [6]. 

Most research in this direction falls into three categories: 

• body shape clustering using tabular data 

• body shape clustering using photos and/or 3D data 

• partial body shape clustering – clustering the lower 

body, the upper body, the head shape etc. 

Research in these directions – particularly in partial body 

shape clustering and whole-body clustering using tabular 

data – usually build up on the somatotypes, do not 

explicitly describe their processes, deliver inconsistent data, 

or check all three problems. 

One research paper that stands out is [6], that focuses on 

clustering body dimensions data of New Zealand Defense 

Force soldiers. The dataset used in this paper is made of 84 

anthropometric measurements of 1003 participants – 212 

females and 791 males –, data also present in NZDFAS 

dataset. In this paper, the authors applied PCA to find the 

most important variables for clustering. They concluded 

that, for both male and female upper body, the most 

important variables for clustering are the body height and 

the waist circumference, whereas for the male lower body, 

the most important variables for clustering are inseam 

length and the waist circumference, while for females, the 

variables are inseam length and maximum hip 

circumference. Finally, they used a combination of two-step 

and k-means clustering to derive cluster characteristics. 

Two-step cluster analysis is a technique developed by Punj 

and Steward [7] and firstly published in 1983, and then 

further developed by Chui et al. [8] in 2001. This technique 

is an exploratory tool designed to reveal clusters within a 

dataset that would otherwise not be apparent. It uses a 

likelihood distance measure which assumes that variables in 

the cluster model are independent. Furthermore, each 

continuous variable is assumed to have a normal 

distribution and each categorical variable is assumed to 

have a multinomial distribution. Empirical internal testing 

indicates that the procedure is fairly robust to violations of 

both the assumption of independence and the distributional 

assumptions, but you should try to be aware of how well 

these assumptions are met. 

To determine which number of clusters is "best", each of 

these cluster solutions is compared using Schwarz's 

Bayesian Criterion (BIC) or the Akaike Information 

Criterion (AIC) as the clustering criterion. 
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In this research paper, the two most important variables, as 

defined by the PCA step, were used in the Two-step cluster 

analysis part. By minimizing the AIC and BIC, the optimal 

number of clusters for females was discovered to be 6, and 

for men was discovered to be 10. Finally, the authors used 

k-means to cluster the individuals. 

This research paper cites [9], which shows, on a rather 

small dataset of 382 men and 391 women, that two-step 

cluster analysis can detect clusters within an anthropometric 

dataset, based on different body types. 

PROPOSED SOLUTION 

We present a novel approach of the human body 

measurement problem, using an Ensemble Model 

containing Computer Vision (CV) techniques, Deep 

Learning (DL) models, classic Machine Learning (ML) and 

Statistical Methods, that extracts body measurements with 

an error of maximum 5 mms, by only using some basic user 

information – weight, height, age, gender – and by taking 2 

images – frontal and lateral. 

The Ensemble Model consist of two principal solutions: one 

based on Machine Learning and Statistical Methods, and 

the other based on Deep Learning and Computer Vision 

techniques. 

The Machine Learning and Statistical Methods solution 

consists of a double-input Neural Network, that is fed raw 

data and a Multivariate Gaussian’s predictions on the raw 

data and that outputs an array of more than 50 predicted 

body dimensions. This solution does not require pictures 

and the predictions are mean to serve as anomaly detectors, 

correctors, and failsafe for the Computer Vision solution. 

Moreover, this solution has been deployed as a standalone 

fit predictor – sizing recommender based on predicted body 

measurements. 

The Computer Vision solution consists of a complex 

combination of different models, one for pose estimation, 

one for segmentation, one for depth estimation and another 

one for extracting the actual dimensions based on the key-

points, body binary mask, weight, and height. The pose 

estimation model is based on PoseNet [10], developed by 

Google and published as an Open-Source Solution. The 

semantic segmentation model has U2-Net [11] as a 

backbone and was trained specifically on a dataset 

containing only images with humans. The depth-estimation 

model was trained on a dataset containing images with 

rooms, thus predictions on a close picture with a person 

would have a relatively high accuracy. The final model 

receives the 2 original images as input, the 2 resulted 

masks, the 2 depth-estimated images, the key-points for 

both images, height, and weight. The output is an array of 

over 100 body dimensions. 

By extracting these 100 body measurements, we can then 

create the user’s 3D Avatar, and then further extract any 

dimension, regardless of its specifications. 

To ensure that the users are correctly positioned in the 

frame to take the photos, we have built an in-house 

Positioning Model, that runs inside the UI in the browser. 

We describe it below. 

POSITIONING MODEL 

This model is based on [10] and extracts 17 body key-

points, that the model further uses to verify whether the 

user is fully visible in the frame, whether they have 

correctly positioned their phone, at the height of their hips 

and to further guide them to raise their hands, turn around 

and overall act as a failsafe that ensures correctly taken 

photos. The guidance is done both visually, and by playing 

audio snippets. 

There are 2 main solutions for creating a real-time 

experience during the positioning phase, first one would be 

to create a live stream between the user’s device and a 

server, where on the server would run the same positioning 

code, thus not relying on the user’s device for processing 

power. But this process would be dependent on the internet 

speed, which happens to be relatively bad in most of the 

places around the globe and it would also need a lot of 

processing power on the server side (or multiple servers) in 

the case of having simultaneous connections. This approach 

currently runs at a maximum of 15 fps, given the best-case 

scenario. 

A second solution would be a very light-weight model that 

could be compatible with most of the devices from 

nowadays and that would work in real-time. In this 

approach, the model is loaded on the device’s processor, 

which could take up to 15 seconds, depending on the type 

of the processor, and how new the device is. After the 

model is loaded, though, the key-point prediction is done in 

less than 40ms, thus resulting in a consistent 20fps 

performance, which can be considered real time. 

Having both video and audio guide for the positioning 

solution, creating a real-time version affected the audio 

guidance, so that it would play the same instruction on and 

on, or it would play more than one instruction at a time, 

which would certainly confuse the user. In this situation, 

the audio system had to be changed too, by creating a 

custom data structure that would hold and play only one 

audio file at a time, depending on the priority. For example, 

the guidance will stop any instruction if the user is in the 

correct position, and it will wait for the image to be taken 

before continuing with the other instructions. The 

positioning process is mainly built as a complex state-

machine. 

GATHERING TRAINING DATA 

Both solutions need some anthropometric datasets for 

training, validation, and testing. Since the beginning of this 

project, we have analyzed 4 datasets that we have used 

throughout our work: ANSUR & ANSUR II, CAESAR, 
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and a proprietary dataset, gathered by us in Costinești, 

Romania. 

The Costinești dataset was gathered by our team on a 3-

day trip to the seaside, in the summer of 2021, organized 

for data collection. The location was chosen so that the 

people posing would be comfortable in wearing only their 

swimsuit, the situation improving the measuring process 

(the accuracy of the measurements should be higher if the 

images do not contain noise - such as baggy clothes). The 

purpose was to build a dataset of as many people as 

possible, from which we would measure 12 dimensions: 

weight, height, neck circumference, chest circumference, 

waist circumference, bottom circumference, both biceps 

circumference, both forearms circumference, both wrists 

circumference, both thighs circumference, both calves 

circumference and both ankles circumference. 

The steps of the measurement process are the following: 

1. The person is weighted, and their height is measured. 

2. One team member is measuring 12 body parts of the 

person, using a tape measure, while another team 

member is writing them down. 

3. The person is photographed using a specifically built 

app (that would automatically take the pictures when 

the person positions themselves correctly). 

The problem encountered during this data collection trip 

was that the shorts worn by the male participants would 

interfere with the thigh measurements (the shorts being too 

loose). Besides this, it was hard to find interested 

participants and it would take a relatively long time to get 

through the entire measuring process, because it had to be 

done thoroughly. 

ANSUR [12] and ANSUR II [13] are some of the most 

comprehensive anthropometry datasets publicly available. 

Created by the US Army, they contain over 100 

measurements of approximately 10 000 reserve soldiers. 

ANSUR was published in 1988, while ANSUR II was 

published in 2014. The main objective of these datasets was 

to extract body-size information to have a guide of design 

and sizing of clothing and protective equipment, while 

providing diversity in data when it comes to race, gender, 

and age. Moreover, both datasets come with reports 

attached, which provide information about data acquisition 

and, most importantly, the exact body position where the 

measurement was extracted from and indications on how 

the subject should position themselves for the 

measurements. On top of these comprehensive descriptions, 

the report also contains photos with each measurement 

pointed out on a sample human body. 

CAESAR - Civilian American and European Surface 

Anthropometry Resource - was designed to provide 

researchers with the most current measurements for today's 

body. This dataset was developed because of a 

comprehensive research project that brought together 

representatives from numerous industries including apparel, 

aerospace, and automotive. CAESAR began as a 

partnership between government and industry to collect and 

organize the most extensive sampling of consumer body 

measurements for comparison. The project collected and 

organized data on 2,400 U.S. & Canadian and 1,900 

European civilians and a database was developed. [14] The 

CAESAR database contains anthropometric variability of 

men and women, ages 18-65. Representatives were 

solicited to ensure samples for various weights, ethnic 

groups, gender, geographic regions, and socio-economic 

status.  The study was conducted from April 1998 to early 

2000 and includes three scans per person in a standing pose, 

full coverage poses and relaxed seating pose. Data 

collection methods were standardized and documented so 

that the database can be consistently expanded and updated. 

BODY MEASUREMENTS EXTRACTION MODEL 

Both multi-input models were created using the Keras 

Functional API. The multi-input model was invented to 

conquer the need of having more information formed of 

mixed data, because there are some cases where it is needed 

to have more than just image or numeric data. 

Alternatively, there are cases where it is needed to have 

multiple inputs from the same type of data - such as more 

than one image in case of super-resolution, used for 

example in extracting more information from MRI scans, 

used for an accurate assessment of cardiovascular 

physiology. 

First Version 

The first generation of the model is constructed as a multi-

input classification model. The 2 types of input data will be 

a simple image (the frontal picture received from the 

widget) and the weight and the height of the person in the 

picture. The output will be one of the following 10 size 

classes: [“xxs”, ”xs”, “s", “m", “l", “xl", “xxl", “xxxl", 

“xxxxl", “xxxxxl”]. The dataset used for this generation and 

for the next is formed of the 115 measured people described 

in the earlier section. 

The VGG19 part of the model receives as input the frontal 

picture taken with the widget, where the user is forming an 

A pose. This layer from the model is meant to extract all the 

relevant visual information from the image and might 

replace segmentation, depth estimation and the pose- 

estimation models, thus basically recreating the human 

contour and estimating the body shape that would fit the 

correct size. The AutoEncoder will receive the height and 

the weight of the user. The 2 models are then concatenated 

and on top of them are added 3 more Dense layers with the 

last of them giving an output size of 10 (number of classes 

used in the classification). Inside the VGG, the activation 

functions used are ReLU, and in the AutoEncoder we used 

both ReLU and sigmoid activations. 
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Second Version 

The second generation of the model would receive 2 images 

as input in the VGG layer, the frontal, and the side pictures, 

but keeping the same architecture (only the input layer is 

changed to handle the updated input size). The images are 

concatenated one on top of the other forming a 6-channel 

picture. The AutoEncoder will maintain the same input 

form and architecture, still receiving the height and the 

weight of the subject. 

Third Version 

The third version is being tested on the same dataset with 3 

sets of images: the original images, the binary masks from 

the segmentation and the depth-estimation outputs, along 

with the weight and the height. 

Its architecture is more complex than the other versions, 

having 3 VGGs in composition instead of 1. Besides this, 

the key-points coming from the positioning model are 

added along with the height and the weight. Having more 

information about the environment, the model should 

behave better under those circumstances. The only 

inconvenience about this model would be that the pose-

estimation, semantic segmentation, and depth-estimation 

will be used as they “are”, meaning that they will not be 

improved in the process, but will only output data for the 

model. They will basically be a “black-box”. 

Current Version 

The main difference between the current version and the 

earlier ones is that this one is trained on the 3D CAESAR 

dataset. Having more data to train the models on is a huge 

improvement, even for the earlier generations of models, 

which can also be improved by training on these datasets. 

The VGGs from the third version were replaced by a single 

EffiecientNetB0 model and along with an AutoEncoder, 

that receives the height and the weight of the user, will 

create the multi-input model. The results of this iteration 

tend to be better by having an accuracy of 90% (in the 

classification scenario). 

The double-input model that uses tabular data and no 

pictures was constructed with the same idea: classifying 

subjects into the same 10 output sizes. The first input of this 

model is the raw tabular data containing the subject’s 

information and their body measurements, plus their body 

type – a categorical feature calculated by us. The second 

input is made up of the Multivariate Gaussian’s predictions 

on the subject’s raw data. The input would be concatenated 

in a third dimension to fit into a 3-channel input. Next, 

there are 2 fully connected layers, one with 32 neurons and 

one with 64 neurons, each followed by a Dropout layer with 

0.5 dropout rate. The number and size of the layers is 

subject to change following ongoing experiments. 

Preliminary results of this iteration are promising: the 

double-input neural network seems to correct the 

predictions of the Multivariate Gaussian, having an 

accuracy of approximately 70% in the classification 

scenario. 

Research on a Different Approach 

Having a large dataset of 3D meshes of people with 72 of 

their respective measurements, it tends to open a discussion 

about creating a different model, such that would receive 

the same input as the initial model (weight, height and the 2 

images - front and side) but will output a mesh of the 

person. From the resulted mesh, any body measurement can 

be extracted, using a method of computing the distances 

between vertices. This type of model would be similar to a 

GAN architecture, where it would generate the body mesh 

based on the input. 

The idea would be to split the dataset into the 2 genders, 

male and female, and train 2 GAN models for each one of 

them, thus increasing the accuracy. This would be great in 

the current situation where there is plenty of data (more 

than 2000 meshes from each gender). The approach will 

start from the idea used in generating point-clouds from 

images [14], most of them representing simple objects, such 

as chairs, planes, or guns. In the current situation, the model 

will receive as input 2 images, which would increase the 

information received, thus creating a more accurate 3D 

model. 

After the mesh will be generated, all the measurements will 

be extracted using the vertices and ignoring the missing 

ones, we can still extract more than 200 important 

dimensions of the body, like circumferences - chest, waist, 

neck, bottom - or linear dimensions, such as leg length, arm 

length, neck height, crotch height and many others. There 

are endless possibilities in computing those measurements, 

as we could calculate the distance from any vertex A to any 

vertex B. 

There could also be the case where some meshes would not 

correspond to the images and we must deform them to 

match the person’s body. The method used is called “Free-

form deformation”. 

FREE-FORM DEFORMATION 

Free form deformation [15] represents a method that a mesh 

could be deformed in any way by using control points and 

scale or translate them. This method can be used to deform 

a baseline model to reach a form like the user’s body. This 

can be done by modifying a humanoid model and scale it to 

reach the predicted body dimensions (received from the 

measurement model). 

The process of free-form deformation begins with loading a 

mesh similar to the user’s body. For the base there are 3 

categories of human models: short, medium, and tall, and 

for each category there are 3 body types: slim, regular, and 

fat. In total, there are 9 models from where the algorithm 

can choose. Based on the user’s dimension it will pick the 

most similar one and that one will be used as a baseline for 

Proceedings of RoCHI 2022

97



  

the free-from deformation process. After that, different 

body parts are scaled to match the measurements, starting 

from the torso, and then the upper body, legs, and hands. 

First Version 

The first version of the algorithm would select all the 

vertices in an interval and deform them using the Bernstein 

method. The steps would be to determine the min and max 

values of the vertices on the 3 axes, after that we would 

generate the control points based on the body part we would 

like to deform, and a final step would be to iterate through 

all the vertices that are in the selected interval and alter 

them using the control points and the Bernstein equation. 

We could also do a smoothing method, that would save the 

mean between the new deformed value and the old value of 

the vertices, so that there would not appear huge changes in 

the body. 

The problem with this first method was that it would not 

have smooth edges between the body parts, so that they 

would appear deformed unnaturally, like in the left side of 

Figure 2. 

Second Version 

The smoothing problem presented in the first version was 

fixed by creating an algorithm that would split the body part 

into many smaller pieces and would deform them according 

to the position in the selected interval. For example, if we 

would have to deform the waist, we would select all the 

vertices, starting from the lower-waist level and ending 

below the chest level and we would gradually deform each 

level until it reaches the expected deformation value 

needed. The right side of Figure 2 represents an example of 

the difference between the two versions. 

Also, for deforming the arms and the legs, we would have 

to rotate and translate the body for the body part we want to 

deform to be in the origin, so that the algorithm will 

perform correctly. 

Current Version – Full Body Deformation 

The current version of the algorithm basically uses the 

second version with a slight of performance improvement. 

It represents an iterative deformation of each body part at a 

time. In the left side of Figure 1, one can observe the belly 

deformation of the mesh, while in the right side of Figure 1, 

the deformation of the entire human body can be observed. 

VIRTUAL TRY-ON 

Having a 3D model similar to a user’s body, there is a small 

step until we can represent clothes on the resulted mesh. As 

discussed in the beginning of the free-form deformation 

method, having 9 body-shapes should be enough to 

represent any body type, but we could have a single model 

of a T-Shirt and we could mold it to fit the resulted body 

mesh of the user, thus creating a virtual try-on experience, 

as seen in Figure 2. 

 

 

Figure 1 - Full Body FFD. Left: Belly deformation; Right: 

Multiple body dimensions deformation 

 

Figure 2 - Virtual Try-On demo, using the deformed mesh. 

 

Figure 3:  Comparison between different FFD implementations. From left to right: FFD on the forearm and on the thighs, one can 

observe that the edges between body parts are not smoothed out; 2nd FFD iteration, major improvements in smoothing out edges
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RESULTS 

The evaluation of the measurement will only be related to 

the accuracy of the resulted dimensions of the users in 

environments where background, lighting and clothing can 

vary. The pose will not vary as the poisoning will always be 

the same, no ma]er the situation. Plus, evaluating the 

positioning side of the widget will cover two aspects: 

prediction time and prediction accuracy. 

Firstly, we are going to evaluate the positioning server. 

Testing was performed on two different versions of 

ResNet50 PoseNet models: first one uses an output stride of 

32, 1 quant byte and 200x200 input resolution; second one 

uses the same output stride, 4 quant bytes and 480x640 

input resolution. The devices used were a Samsung Galaxy 

S21 Ultra and an iPhone X, both with relatively bad internet 

connection (10 ping, 8Mbps download speed, 5Mbps 

upload speed). Table 1 shows PoseNet transmission and 

processing speed on the S21 Ultra, while Table 2 shows the 

same on the iPhone X. 

# 1st version  2nd version  Current version 

1 353.856 ms 502.08 ms 46.445ms 

2 382.997 ms 482.21 ms 52.027ms 

3 376.940 ms 458.10 ms 51.901ms 

4 391.269 ms 491.40 ms 48.341ms 

5 369.679 ms 535.43 ms 47.072ms 

Table 1 - performance of PoseNet on S21 Ultra 

An observation taken during testing was that the positioning 

algorithm performs better on iPhones. The prediction time 

would be the same as the server does not change, but the 

total time is smaller, which can indicate the fact that the 

compression of binary images is better, or the transmission 

uses a more efficient algorithm. 

# 1st version  2nd version Current version 

1 327.38 ms 509.31 ms 41.40 ms 

2 300.445 ms 381.38 ms 42.12 ms 

3 307.641 ms 328.11 ms 41.88 ms 

4 337.525 ms 339.25 ms 41.76 ms 

5 380.376 ms 468.88 ms 41.29 ms 

Table 2 - performance of PoseNet on iPhone X 

As it can be observed from both Table 1 and Table 2, the 

current version, running an in-house modification of 

PoseNet, directly on the device, runs considerably faster. 

Thus, it can be concluded that this version runs in real time. 

 

The measuring algorithm will be evaluated by comparing 

real measurements with predicted measurements of the 

same subject. The prediction time will be compared from 

the different versions of the algorithm. 

The whole purpose of the algorithm is to output accurate 

dimensions to various body parts of the human, eventually 

used for creating custom pieces. In Table 3, two subjects 

will be measured with the tape and the results will be 

compared to the predicted ones. The prediction and the 

actual measurement were done in a matter of minutes, thus 

short-term body changes do not apply here. 

Body 

Dimension 

(girths) 

Subject 1 Subject 2 

Actual Predicted Actual Predicted 

Chest 103 102.67 106.50 107.65 

Neck  38.5 39.00 40.50 40.59 

Up. Waist  89 88.97 96.00 96.31 

Waist 89.5 90.12 97.00 96.80 

Lw. Waist 94.5 95.33 98.00 95.56 

Bottom 107 105.40 105.00 105.47 

L. Biceps 35.5 34.0 33.00 31.58 

R. Biceps 35.5 34.6 34.00 33.38 

L. Forearm 28.5 29.05 28.00 27.00 

R. Forearm 28.5 28.92 29.00 28.85 

L. Wrist 18.00 18.25 18.00 16.46 

R. Wrist 18.00 17.63 18.00 17.59 

L. Thigh 56.00 59.09 58.50 59.19 

R. Thigh 56.00 59.19 59.5 60.01 

L. Calf 39.00 34.31 37.00 30.69 

R. Calf 39.00 34.34 39.00 32.93 

L. Ankle 26.00 27.42 25.00 22.03 

R. Ankle 26.00 25.73 24.00 23.79 

Table 3 - Actual vs. Predicted results on real humans 

The measured subjects are 183 cm tall, weighting 85 kgs, 

and 184 cm tall, weighting 87 kgs, respectively. 

From Table 3, it can be observed that, although there are 

improvements to be done, our body measurement model 

measures the human body consistently and with an error of 

under 0.5 cm for many dimensions. 

CONCLUSIONS AND FURTHER RESEARCH 

The proposed solution aims to remove any third-party 

model from the initial solution (pose, segmentation, depth-
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estimation), by embedding them into one larger 

architecture. The goal of the initial research study regarding 

the improvement of the positioning side of the widget was 

reached and the next steps would be to improve the 

accuracy of the extracted dimensions. 

In the next generation of models, there is expected a 

working GAN model that would generate the body mesh 

(without any missing vertices), from which the extracted 

measurements would have a maximum of 5mm error, on 

which a user could see how the clothes would actually fit 

their body, thus creating the ultimate real-time measuring 

experience. 

Ensemble, multi-input models seem to perform best on this 

kind of task, where the diversity of the input data is so 

large. Thus, when it comes to future work, we are thinking 

of building a more complex multi-input ensemble model, 

trained on both tabular data and pictures, plus some more 

feature-engineered data. 

Regarding body shape analysis, there seems to be two main 

promising avenues of research: the first would be in-depth 

Principal Component Analysis on the body measurements, 

extracting a number of features that explain most of the 

dataset’s variance and using them to find clusters in data; 

the second avenue of research would be to use two-step 

cluster analysis to determine the number of clusters, and 

then to use some other clustering technique to actually 

discover the clusters. Finally, one would build a 

classification model that would be able to pin-point what 

cluster should an individual be part of. 
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