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interpretability arises from an incompleteness in problem 
formalization, which means that for many problems it is not 
enough to get the prediction, but also the explanation” [3]. 
Regarding the importance of interpretability, there are more 
reasons for this which will be listed below: human curiosity 
and learning, safety measures, and detecting biases. 

STATE OF THE ART 
SHAP 
SHAP is a method which explains individual predictions [4]. 
The goal of this method is to explain an instance by 
calculating the contributions made by all implied features. 
By using Shapley values, we find out how to correctly 
attribute the prediction among features. Furthermore, there is 
an innovation [4] which suggests that Shapley values should 
be represented as an additive feature attribution method, like 
LIME. Shapley values have the following properties: 
Efficiency, Symmetry, Dummy and Additivity [5].  

LIME 
LIME (Local Interpretable Model-agnostic Explanations) is 
a model-agnostic explanation method [6], which explains 
predictions locally by the use of a surrogate model and local 
perturbations. The goal of this explanation method is to give 
attributions for each input feature by performing local 
permutations and training a surrogate interpretable model 
that is weighted according to the distance between the 
original prediction and the latter one. Due to the local nature 
of LIME, the learned model is a good approximation of the 
original model locally, thus the accuracy may be interpreted 
as fidelity of the prediction 

Integrated Gradients 
Integrated gradients is an attribution method, which requires 
no modifications to the networks [7] and is a combination of 
the Implementation Invariance from Gradients and 
Sensitivity from LRP or DeepLift. Let us consider a neural 
network, that is trained on a certain data set. In order to 
retrieve the attributions for a certain prediction, the gradients 
are computed in all of the points along the path between the 
example and a baseline input, which is a zero embedding 
vector. One of the most important benefit of this method is 
the fact that it satisfies the completeness axiom, which states 
that ”the sum of attributions is equal to the difference 
between the output of the network at the input x and the 
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INTRODUCTION
The domain of eXplainable Artificial Intelligence (XAI) is 
rapidly  growing because many artificial intelligence (AI)
applications based on machine learning (ML), even if they 
perform  excellently,  they  cannot  provide  explanations in 
order that users can interpret their proposed solutions. This 
fact caused the rapid development of several algorithms and 
methods to interpret and explain ML models. The goal of this
paper  is  to  study  the  state-of-the-art of explainability 
techniques, present  them  in  an  informative  manner and 
analyse them from the performance standpoint.

Interpretability is defined in  literature as ”the  degree  to 
which a human can understand the cause of a decision” [1]
and as ”the degree to which a human can consistently predict 
the  model’s  result”  [2]. Unfortunately,  there  is  a  trade-off 
between  the performance  of  a  model  and  its  transparency 
(interpretability).  Furthermore, knowing  ”why”  may  help 
with learning more about the problem, or about the data, and 
how it  behaves  in  certain  situations.  The  most important
thing for the designer of the model is to figure out if the task 
at  hand  is  a  low-risk  or  a  high-risk task.  ”The  need  for
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baseline” [8]. An example of model-agnostic explanation 
method that also satisfies this axiom is SHAP [4]. 

Expected Gradients 
Expected Gradients is a method derived from Integrated 
Gradients but with fewer hyperparameters [9]. The authors 
of the paper that introduced this method argued that it is a 
hard task of choosing the baseline embedding, and some 
choosing may be wrong, yielding wrong attributions. They 
have proposed a non-arbitrary selection of baseline, 
modelling the value of a not-known feature by integrating 
over a distribution of background data. The only problem this 
method has when comparing it to integrated gradients is the 
fact that the complexity of the algorithm increases, leading 
to a more processing power needed for generating 
attributions for a single example. We will try to conclude an 
experiment regarding the time required for each algorithm to 
generate local attributions based on the example’s size. 
Evaluation metrics 
A very thorough review on the evaluation metrics for XAI 
was performed on approximately 600 papers, and concluded 
that there are 12 quality properties that should be further 
studied [8]. Unfortunately, few research studies focused on 
applying these properties in explanation methods for textual 
data. For that reason, we will try to alter these metrics such 
that they will fit NLP models. These properties are 
categorized into two primary areas: with or without user 
studies. Hence the previous experiments, we will focus on 
the properties that do not depend on peer review or user 
studies. 
Further, we dived deeper into each of the four categories [8] 
in order to find suitable functional evaluation methods for 
NLP explanations. The types with which we will try to 
evaluate the methods we have chosen are: Incremental 
Deletion / Addition; Single Deletion; Data Randomization 
Check; Covariate Regularity 

Incremental Addition is a method that tries to evaluate 
output-completeness by incrementally adding features for an 
example that are important for that prediction. If a method 
completely satisfies the output-completeness, then a wrong 
decision should be made by the model when all the important 
features are removed. Another method of measuring this 
property by using incremental addition is to count how many 
important features need to added / deleted in order to change 
the prediction of the model. 
The Single Deletion method consists of deleting one feature 
from the initial example, measuring the difference in output, 
and finally comparing it with the difference in explanation. 
In the ideal case, ”the explanation’s feature importance score 
should be proportional to the output shift” [10]. Simply put, 
if a feature with a high importance score is deleted from the 
input example, then the output should have also a big change. 
This method can also be used to test the ”null hypothesis”, 
which states that if a feature has an almost 0 feature 
importance, the change in model output should not exist. 

The Data Randomization Check is a method which acts as a 
sanity check for the ”sensitivity of an explanation method to 
the relationship between instances and targets” [11]. This 
method states that if a model is trained on a dataset with 
shuffled labels, then since the model will learn a different 
target distribution, the explanations should be different. We 
will try to measure the difference by using a function that 
computes cosine distance between pairs of explanations, and 
then averaging them.  
Yu and Varshney [12] suggest that a decision rule should be 
easier to remember if it is less entropic. By following this 
argument, we can calculate the Shannon entropy of the 
importance scores, and then computing the average for the 
entire test set. Theoretically, this score would indicate how 
noisy the explanations given by a method are.  

IMPLEMENTATION 

Dataset 
The dataset used to make the experiments is ”Conversations 
Gone Awry” from Cornell University [13], which is pre-
processed by removing stop words and special characters, 
emojis and punctuation. 

 
Figure 1. Label distribution for the original dataset (left) 

and for the sampled dataset (right) 
 
It can be seen in Figure 1 (left) that the dataset is very 
unbalanced between not attacking and attacking utterances 
in conversations, implying that the model’s performance on 
the small class is very poor and the explanation method’s 
performance will be affected. Therefore, we sampled an 
equal number of examples from both classes, as seen in 
Figure 1 (right). 

Model setup 
Regarding the model choice, we have chosen a model that 
would work with both types of methods, the pretrained 
DistilBERT transformer network, from the HuggingFace 
library [14]. Table 1 shows the performance of the model we 
have fine-tuned on the dataset.  

 Precision Recall F1 Score 

Train 0.967 0.980 0.973 

Test 0.971 0.966 0.968 

Table 1. Model performance 
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As we can see, the performance on the test set is very good, 
so we will not need to investigate this matter, thus focus on 
the explanation methods and how we can compare the two 
categories. 

Evaluation metrics 
For these experiments, we have chosen four evaluation 
methods: Faithfulness, Monotonicity, Shannon Entropy, and 
Data Randomization Check 

Comparison Setup 
A couple of experiments were performed regarding the 
overall performance of the four explanation methods, and 
compared in terms of how different they are to one another. 
As shown in Figure 2, there are hree layers of abstractization 
in our experiments: deep learning model, explanation 
method and lastly the evaluation method. 

 
Figure 2. Layers of abstractization. 

 
Figure 3 shows the steps taken to evaluate the explanation 
methods. The first step required to evaluate these methods 
was to train a model that would have an incredibly good 
performance, such that we would exclude the prediction 
errors from our analysis. After that, we have used the 
explanation methods to extract attributions for each word in 
each test example. By using these attribution vectors, we 
were able to compute the evaluation methods and interpret 
the results. 

 

 
Figure 3. Comparison experiments’ methodology. 

RESULTS AND DISCUSSION 

Table 2 shows the comparison experiment we have 
conducted in order to see the differences between model-
agnostic and model-specific explanation methods. 

Faithfulness 

Figure 4 shows, from the faithfulness perspective, that SHAP 
achieved the highest score. Both SHAP and Faithfulness 
metric assume the fact that features are independent, not 
taking into account the context. On the other hand, gradient-
based methods should in theory consider the context. As a 
conclusion, SHAP and these performance metrics have more 
in common, which could be a motive for the higher score. 

From the monotonicity standpoint, all three methods have a 
very low performance, with an average of 3 percent of all the 
explanations being monotonic. Another assumption that we 
might take is the fact that, since we are using a small sample 
of baseline examples for Expected Gradient, the manifold of 
the data might be under-representative for our training 
dataset, hence the low score. Initially, we have measured 
only faithfulness and monotonicity metrics, but hence the 
assumption that these metrics are biased we have also 
computed two more evaluation metrics, Data Randomization 
Check and Mean Shannon Entropy. Figure 5 shows the 
distribution of faithfulness scores for each example in the 
sampled dataset. LIME and SHAP have better singular 
results on the explanations, where integrated gradients has 
worse results than expected gradients, as we have had 
predicted. 

 Faithfulness Monotonicity Data 
Randomization 
Check 

Mean 
Shannon 
Entropy 

SHAP 0.3578 0.03% 0.0729 3.2063 

LIME 0.3315 0.03% -0.0138 3.2108 

Integrated 
Gradients 

0.0749 0.03% -0.0399 5.2985 

Expected 
Gradients 

-0.1028 0.02% -0.0285 4.8441 

Table 2. Faithfulness and monotonicity metrics calculated 
for the four methods. 

 
Figure 4. Faithfulness Scores’ distribution on the test 

examples. 

Data Randomization Check 

From an intuitive standpoint, Data Randomization Check 
measures the ability of explanation methods to be able to 
distinguish between models that are trained on examples 
with initial and randomized labels. As further the random 
explanations are from the initial explanations, the better the 
explanation methods is, because it computes Spearman 
Correlation on feature attribution vectors. From our 
measurements found in Table 2, all four explanation methods 
have the same performance, which is particularly good, since 
the values hover around 0. Figure 5 shows the distribution of 
correlations measured on all the sampled examples. All the 
methods’ correlations have a distribution that is close to a 
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normal distribution, which is seen in the Mean Spearman 
Correlations as well, which indicates that all the methods 
correctly assign the good attributions to the model that is not 
trained on randomized labels. 

 
Figure 5. Data Randomization Check distribution of 

correlations.

 

Figure 6. Shannon Entropies’ distribution 

Shannon Entropy 

The Shannon Entropy metric tries to describe the readability 
of the explanations. Since we use a task of text classification, 
each word having an attribution score to the prediction, the 
metric will evaluate if an explanation is relying on few words 
or more, in which case the Shannon Entropy will be higher. 
As it can be seen in Table 2, model-agnostic explanation 
methods clearly performed better than model-agnostic 
methods, but the difference is not large. This result was 
expected since the granularity of methods that use gradients 
is much higher, hence the higher entropy. In this case, since 
this metric is not scaled between certain values, we do not 
know the minimum value that can be achieved by an 
explanation method, and so we will only compare the mean 
values of the four explanation methods between each other. 
Figure 6 shows the calculated entropies’ distribution for all 
four methods. It can clearly be seen that Expected Gradients 
has a much higher mean, which is expected since it calculates 
mean values over a lot of samples. Attribution vectors given 
by this methods tend to have more non-zero values, and this 
is not desirable since we want to have concise explanations. 

CONCLUSIONS 
This paper had the purpose of comparing the two types of 
explainability algorithms, model-agnostic and model-

specific. We have partially achieved this task by finding 
different evaluation metrics for this explainable AI 
algorithms, such that we could have a valid comparison. We 
firstly trained a text classification model on the dataset we 
have presented, and then by validating that this model has a 
particularly superior performance, we were able to use it 
further in our experiments. After this step was achieved, we 
have extracted explanations with the four presented 
algorithms such that we would be able to analyze the results, 
and then calculated the metrics mentioned in the article to 
decide which type of explanation algorithm is better for this 
task. Despite our expectation that the model-specific 
algorithms would perform better due to their access to the 
model’s architecture, model-agnostic methods performed 
better taking into consideration all the metrics. Further work 
will try to fundament these findings and produce more 
evaluation methods for XAI methods. 
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