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ABSTRACT 
Movie recommender systems have evolved significantly by 
harnessing the power of NLP. Recent research has focused 
on leveraging deep learning models, sentiment analysis, and 
multimodal approaches to enhance recommendation 
accuracy and relevance. In this paper, a new movie 
recommender system app that is based on NLP is presented. 
The classical recommender system is extended by processing 
all the available information about a movie, including text 
reviews, descriptions, and user behaviour. 
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INTRODUCTION 
The current film market is complex and diversified, with 
various trends and developments that influence how people 
choose the movies they want to watch. Moreover, people 
tend to focus on different categories of cinema, a clustering 
that can be achieved based on many film characteristics: 
genres, directors, cast, etc. In these circumstances, there is a 
need for an application that assists the user in managing the 
movies they have watched or would like to watch, but more 
than that, it provides other possible perspectives of interest 
based on various interactions: a particular movie, a history, a 
search for a keyword, or even choosing a film based on a 
genre. From the perspective of languages and frameworks 
used, they were chosen to provide an easy and rapid 
development mode.  
Movie recommender systems play a pivotal role in assisting 
users in navigating the vast landscape of movies available 
today.  

In order to quickly process information about movies, the use 
of artificial intelligence algorithms becomes necessary [10, 
15, 16]. 
Leveraging the advancements in NLP, these systems have 
witnessed significant progress in recent years.  
There are more approaches developed by other authors by 
using Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), in capturing complex 
patterns and latent features from movie-related textual data, 
including plot summaries, reviews, and user feedback [12]. 
Another approach uses a personalised recommendation 
method to address traditional algorithms' limitations. This 
approach mixes a deep belief network (DBN) with SoftMax 
regression to improve the precision of recommendations and 
better approaches to challenges such as sparse data and cold-
start scenarios. The DBN fulfils the task of acquiring 
complex user and item representations optimising the user-
item rating matrix. At the same time, SoftMax regression is 
employed to predict the likelihood of user-item interactions. 
The methodology uses negative sampling, resulting in 
enhanced recommendation efficacy and the generation of 
precise recommendations. This approach underwent 
rigorous evaluation on DOUBAN and various MOVIELENS 
datasets, demonstrating superior performance when 
contrasted with reference models such as singular value 
decomposition (SVD). It achieved a mean absolute error 
(MAE) value of 98%, attesting to its very good accuracy and 
generalisation capabilities [5]. In addition, a personalised 
multimodal movie recommendation system was developed 
to address the challenges like sparse data and cold-start 
scenarios. This system uses the power of multimodal data 
analysis and deep learning techniques to highlight latent 
features of both movies and users. A deep-learning network 
algorithm model was trained to predict movie ratings, and its 
accuracy was assessed using MOVIELENS datasets. The 
results exhibited increased accuracy, with root mean squared 
error (RMSE) scores of 0.9908 and 0.9096 for the 
MOVIELENS 100K and 1M datasets, respectively. 
Remarkably, this multimodal movie recommendation 
system, empowered by deep learning, surpasses traditional 
collaborative filtering algorithms like User-CF, Item-CF, and 
SVD, delivering superior personalised recommendations and 
mitigating the issues associated with sparse data. This 
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investigation underscores the potential for enhancing 
recommendation systems through the fusion of deep learning 
and multimodal data analysis [6]. 
A multi-feature attention mechanism with deep neural 
networks and convolutional neural networks has been 
proposed. User and movie networks are introduced to learn 
respective features, and a feature attention mechanism is 
employed to determine the importance of different parts in 
movie ratings. Convolutional neural networks are used to 
extract text features, with an additional attention mechanism 
to enhance accuracy. The algorithm achieves personalised 
and accurate movie recommendations. Experimental results 
substantiate the algorithm's efficacy, unequivocally 
illustrating that user and movie attribute characteristics 
influence ratings favourably. Incorporating a feature 
attention mechanism contributes significantly to discerning 
the relative significance of these attributes. Moreover, the 
attention mechanism integrated into the convolutional neural 
network enhances the precision of text feature extraction, 
yielding a commendable level of accuracy across various 
evaluation metrics, including but not limited to Mean 
Squared Error (MSE), Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), R-squared (R2), and 
Root Mean Squared Error (RMSE) [9]. 

DATASET 

An existing database was used to analyse and include a wide 
range of movies (along with their data), containing details 
about 45,466 movies [13]. All the data is stored in .csv files, 
divided into data categories that will be consumed according 
to the algorithm's stages: 
movies_metadata.csv - From this database, we use the 
following fields: genres, vote_count, vote_average, and 
release_date. The genres field helps us make genre-based 
recommendations based on the rating or popularity of the 
most-watched movies. From the release_date, we extract the 
day of release for additional information. Furthermore, we 
need to use the tagline and overview fields for the algorithm 
based on movie descriptions and other details. 
links.csv - This table provides the movie IDs, which are used 
to filter the information we want to access. 
credits.csv - For the third case, where we analyse movies 
based on credits, we are specifically interested in characters, 
actors, directors, etc. 
keywords.csv - We use the keywords for each movie from 
this table, which will be processed later to influence the 
recommendation algorithm based on movie details. 

DATA PREPROCESSING 

For the data, we have to be relevant both to the machine and 
especially to the machine learning algorithms they need to be 
processed. Besides removing incorrect or incomplete values, 
the data must be prepared in a specific format, composed, 
and combined. Data preprocessing is vital in machine 
learning as it directly impacts our model's ability to learn 

from the data. Thus, it's crucial to prepare our data carefully 
before using it in our model. 
Data preprocessing involves several tasks, including: 
1. Data cleaning involves handling missing values, outliers,
and incorrect data. Missing values can be imputed or
removed, outliers can be detected and treated accordingly,
and inaccurate data can be corrected or removed.
2. Data transformation: This includes transforming data into
a suitable format for the algorithms. It may involve scaling
numerical data, encoding categorical variables, or
normalising the data distribution.
3. Feature engineering: This involves creating new features
or selecting relevant features from the existing data that can
enhance the model's predictive power.
4. Data integration: Combining multiple datasets or sources
enriches the available information and provides a more
comprehensive data view.
5. Data splitting: Splitting the data into training and testing
sets to evaluate the model's performance on unseen data.
Through the execution of these preprocessing procedures, we
can guarantee the cleanliness, uniformity, and appropriate
formatting of the data, thereby enhancing the precision and
efficiency of our machine learning algorithms.
Handling Null Values
In real-world datasets, null values are invariably present.
Regardless of whether the problem is regression,
classification, or another type, models cannot autonomously
manage these NULL or NaN values. Hence, intervention is
essential.
Standardisation
It is another integral step in preprocessing. In
standardisation, we transform the values so that the mean of
the values is 0 and the standard deviation is 1. Since we have
chosen to keep the most important actors, the director will be
duplicated the same number of times to not influence the
group of actors compared to the film's director just because
it is a more extensive list. We want the weighting of the
director, as described above, to be equal to that of other
significant characters.
Avoiding Multicollinearity
Multicollinearity arises within our dataset when features
exhibit substantial interdependence. When multicollinearity
is present, using our weight vector for feature importance
assessment becomes unfeasible.
Various techniques and libraries are available to handle these
preprocessing tasks, such as imputation methods for
handling missing values, feature scaling techniques for
standardisation, and methods for detecting and dealing with
multicollinearity. By applying these techniques, we can
ensure that our data is prepared in a way that optimises the
performance of the machine learning models and avoids
potential issues during the training and evaluation process.
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DESCRIPTION OF ALGORITHMS AND INTERMEDIATE 
VALUES 

Recommender System Based on Genre 
In this approach, movies are recommended based on the 
genre and the ratings or popularity of the movies watched by 
most people. Firstly, we extract the genre values from the 
dictionary so that only the names are retrieved and put into a 
list. 
The TMDB rating is used to evaluate the top movies. We will 
use the weighted IMDB rating to construct the graph. 
Weighted Rating (WR) = (vv+m.R)+(mv+m.C) where, 
● v is the number of votes for the movie
● m is the minimum number of votes required to be listed

in the graph
● R is the average rating of the movie
● C is the mean vote across the whole report
● The value of m is determined by taking the 80th

percentile as the cutoff. In other words, we consider
movies with more votes than 80% of the movies.

Next, we will build two content-based recommendation 
systems. 

Recommendation for a movie based on the description 
Recommendation based on the movie description is 
supported by both the tag lines and the overview, which we 
paste to create the movie description: 

"A single and lonely woman finds the seemingly perfect man 
to date, but soon regrets it when his deranged and possessive 
other personality emerges, and worst still, she cannot 
convince anyone else of his Jekyll/Hyde true nature." 
"Ray Liotta stars as a medical examiner who has been 
acquitted for his wife's murder but many still question his 
innocence. Obsessed with finding his wife's killer, a possible 
solution presents itself in an experimental serum designed by 
a neurobiology Linda Fiorentino which has the ability to 
transfer memories from one person to another, but not 
without consequences. Liotta driven to solve the case injects 
himself with the serum, bringing him closer and closer to 
finding her killer but bringing him closer to death. He loved 
her. He lost her. He won't let her memory die... until it tells 
him who killed her." 
Because we have a data set in which words are influenced by 
their context, we chose to convert the collection of 
documents into a matrix with TF-IDF properties. TF-IDF 
stands for "Term Frequency — Inverse Document 
Frequency". This is a technique for quantifying the words in 
a set of documents. We calculate a score for each word to 
signify its importance in the document and corpus. This 
method is a widely used technique in Information Retrieval 
and Text Mining. We use the list of stop words provided by 
the library. Since all the descriptions are in English, without 
any special repetitions that we would like to remove, the 
default list is sufficient. 
Stopwords are words in every language that don't add much 
meaning to a sentence. They can be safely ignored without 
sacrificing the meaning of the sentence. For example, words 

like the, he, have etc. Such words are already captured in the 
corpus. 

tf = TfidfVectorizer(analyzer='word', ngram_range = (1,2), 
min_df = 0, stop_words = 'english') 

The analyser indicates what needs to be analysed in the 
document, such as words, numbers, and characters. The 
ngram_range is used to specify the grouping in the tf-idf 
vectoriser - (1,2) indicates the grouping of letters into 
unigrams and bigrams. For example, if we consider the 
document "I study NLP" for bigrams, it will be grouped as "I 
study" and "study NLP". 
tfid_mat = tf.fit_transform(smd['description']) 

We thus encode the description in the TFid matrix. 

cos_sim = linear_kernel(tfid_mat, tfid_mat) 

We employed cosine similarity to measure the similarity 
between movies. This cosine similarity can be visualised by 
plotting the data on an XY graph, with the TF-IDF values of 
each document representing the X and Y axes. Given that the 
dot product of the cosine similarity has already been 
computed, we will employ the linear_kernel method to 
determine similarity. 
len(cos_sim[0]) 
From the above we can see that each record has created a list 
of values that contains their similarity. To be able to resolve 
for each search the title index and vice versa, we will create 
a mapping between the two [Table 1]: 
# A map between titles and movies index 
indices = pd.Series(smd.index, index = smd['title'])  

Table 1 Mapping between titles and indexes 

Movie title Index 
Toy Story 0 
Jumanji 1 
Grumpier Old Men 2 
Waiting to Exhale 3 
Father of the Bride Part II 4 

Thus, if we access the index, we can request the scores of the 
other preprocessed films so that we have them best 
recommendations: 
sim_scores = list(enumerate(cos_sim[idx])) 
print(sim_scores[:5])[(0, 0.0), (1,0.007774131635450035), 
(2, 0.0), (3, 0.0), (4, 0.0)] 

Since we are only interested in high scores, the next step is 
to sort the list in descending order and save the first n movies 
we are interested in. 
# Sort the movie based on the similarity score 
sim_scores = sorted(sim_scores, key=lambda x: x[1], 
reverse=True)  
# Take first 30 movies (first one is itself) 
sim_scores = sim_scores[1:31]  

The first index is excluded because it represents the very own 
index, in which the weight will have a maximum score, 
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namely 1. From the above we can see a recommendation 
algorithm, where it found the similarity based on the 
description and slogan. This recommendation is especially 
good when we want a sequel to the movie, but let's say if the 
movie doesn't have a sequel or there isn't a proper 
description, or even the lack of it. 
Then we have to recommend movies based on other criteria 
like cast, crew, genres and keywords. 

Recommendation for a movie based on keywords and 
plot  
To make this recommendation, we need to incorporate extra 
data from our database, specifically crew information and 
keywords. This will centre on evaluating the resemblance 
between two movies based on actors involved in the 
storyline, directors of photography, and keywords that 
provide context. Initially, the movie crew data offers us a 
directory of individuals along with their respective roles and 
names. 
Since we believe that the director plays one of the most 
important roles in a movie, we will specifically look for him 
to assign him a separate field. 
def director_name(crew): 
for job in crew: 
if job['job'] == 'Director': 
return job['name'] 
return np.nan 

From the cast we only keep a maximum of the first three 
names [Table 2]: 
# Take the character names alone and make it as cast then 
take the first  three cast members 
smd['cast'] = smd['cast'].apply(lambda cast_list: 
[cast['name'] for cast in cast_list] if isinstance(cast_list, 
list) else [])  
# If list  
smd['cast'] = smd['cast'].apply(lambda cast_list: 
cast_list[:3] if len(cast_list) >= 3 else cast_list) 

Table 2 Cast list after processing by movie index 

Index Cast name 
0 [Tom Hanks, Tim Allen, Don Rickles] 
1 [Robin Williams, Jonathan Hyde, Kirsten 

Dunst] 
2 [Walter Matthau, Jack Lemmon, Ann-

Margret] 
3 [Whitney Houston, Angela Bassett, Loretta 

Devine] 
4 [Steve Martin, Diane Keaton, Martin Short] 

We also process the keywords to get a concatenated list of 
sequences [Table 3]: 

Table 3 List of keywords before processing according to the 
film index 

Index Keywords 
0 [jealousy, toy, boy, friendship, friends, 

rivalry, boy n... 
1 [board game, disappearance, based on 

children's book, ne... 
2 [fishing, best friend, duringcreditsstinger, 

old men] 
3 [based on novel, interracial relationship, 

single mother... 
4 [baby, midlife crisis, confidence, aging, 

daughter, moth... 
Because we don't want the names and surnames of the 
characters to weigh differently, but we want a unique 
identification of each person and we want to reduce the 
possibility of mismatch due to small differences in 
typography, we process the names so that they are made up 
only of small letters and without spaces: 

# Process director and cast names to lowercase and no space 
smd['cast'] = smd['cast'].apply(lambda cast_names: 
[str.lower(name.replace(" ","")) for name in cast_names]) 
smd['directors'] = 
smd['directors'].astype('str').apply(lambda 
director_name: str.lower(director_name.replace(" ",""))) 

Because, at the moment, we have a list of characters and only 
one director and the weight of the director must be as 
significant as that of the actors, we will apply a multiplication 
of his name in a stack of the same size as that of the cast. 

# Make directors into three stacked lists to match the cast 
members 

smd['directors'] = smd['directors'].apply(lambda name: 
[name, name, name]) 

Next, we deal with keywords. 

# Process most important keywords to lowercase stem 
words with no space 
smd['keywords'] = smd['keywords'].apply(lambda 
keywords: 
keep_most_important_keywords(keywords, 
keywords_movies)) 
smd['keywords'] = smd['keywords'].apply(lambda 
keywords: 
[stemmer.stem(keyword) for keyword in keywords]) 
str.lower(keyword.replace("","")) for keyword in 
keywords]) 
The first important step is to keep the most important 
keyword corpus separately and remove the records that have 
fewer keywords. This is because we do not want to analyse 
keywords that appear uniquely or that do not have such a 
significant weight. This influences the possibility of false 
recommendations based on keywords no longer found in 
other movies. 
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The second step is extracting the word stem, a thing often 
encountered in NLP and which helps a lot to reduce the range 
of possible words encountered and to form some sets of 
correct words ("playing" and "game" must be part from the 
same beach of words). 

The last step is represented by the processing of the 
sequences so that the keywords are made up of lowercase 
letters and without spaces between words [Table 4]. 

Table 4 List of keywords after processing according to movie 
index 

Index Keywords 
0 [jealousi, toy, boy, friendship, friend, 

rivalri, boynex... 
1 [boardgam, disappear, 

basedonchildren'sbook, newhom, rec... 
2 [fish, bestfriend, duringcreditssting] 
3 [basedonnovel, interracialrelationship, 

singlemoth, divo... 
4 [babi, midlifecrisi, confid, age, daughter, 

motherdaught… 
All the information processed so far is pasted into a list of 
representative sequences for each movie. 

smd['soup'] = smd['keywords'] + smd['cast'] 
+smd['directors'] +smd['genres']
smd['soup'] = smd['soup'].apply(lambda x: " ".join(x))

We will use the similarity matrix to obtain weights for the 
word analysis part, similar to the previously described 
algorithm. But, this time, it is no longer necessary to apply 
the TF-IDF algorithm because the context no longer 
influences the words. Hence, a simple application of an 
occurrence counter is sufficient. 

count = CountVectorizer(analyzer = 'word', ngram_range = 
(1,2), min_df =0, stop_words = 'english') 
count_mat = count.fit_transform(smd['soup']) 
cos_sim = cosine_similarity(count_mat, count_mat) 

If we apply as in the previous case a simple sorting, we will 
have results in which the common elements can be identified 
[Table 5]: 

Table 5 Example result for plot and keyword recommendation 
for 'The Dark Knight' 

Index Movie title 
8031 The Dark Knight Rises 
6218 Batman Begins 
6623 The Prestige 
2085 Following 
7648 Inception 
4145 Insomnia 
3381 Memento 

Index Movie title 
8613 Interstellar 
7659 Batman: Under the Red Hood 
1134 Batman Returns 

Recommendation based on keyword search 
We currently have a description and a list of keywords 
attached. We want to turn them all into a list of words to 
create our knowledge base and dictionary. 
def getWordList(x): 
rough_wordList = re.sub("[^\w]", " ", x).split() 
wordList = [] 
for word in rough_wordList: 
if word not in stop_words: 
wordList.append(word) 
return wordList 
gathered_md['dataset'] = 
gathered_md['description'].apply(lambda 
description: getWordList(description)) 
gathered_md['dataset'] = gathered_md['dataset'] + 
gathered_md['keywords'] 

For our training model, we need a knowledge base and a 
dictionary. 
words_for_dictionary = gathered_md['dataset'].tolist() 
dictionary = 
gensim.corpora.Dictionary(words_for_dictionary) 
bow_corpus = [dictionary.doc2bow(doc) for doc in 
words_for_dictionary] 

Now we have the entire data set transformed into structures 
that the model we are about to enter is able to interpret in 
such a way as to transform the words into landmarks for our 
dictionary. 

Dictionary(41348 unique tokens: ['Afraid', 'Andy', 'But', 
'Buzz', 'Led']...) 
Bow_corpus: [[(0, 1), (1, 3), (2, 1), (3, 3), (4, 1), (5, 1), (6, 
3), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), 

(13, 1), ..] 

The knowledge base (bow_corpus) contains the word ID and 
its frequency in each document. Therefore, an additional 
detail added to the algorithm is transforming it into the TF-
IDF space. 

# Transform bow_corpus in a tf-idf vector 
tfidf = models.TfidfModel(bow_corpus) 
corpus_tfidf = tfidf[bow_corpus] 

Next comes the actual training and indexing of the trained 
model in matrix form. 

lsi = models.LsiModel(corpus = corpus_tfidf, id2word = 
dictionary,num_topics = 5) 
# Compute a similarity matrix, which it's necessary later, 
for query 
indexList = similarities.MatrixSimilarity(lsi[corpus_tfidf]) 
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RESULTS ACHIEVED AND ANALYSIS 

The results obtained for each algorithm will be presented and 
analysed individually in the following section. All movie 
values relevant for analysis will be considered in the list of 
responses. Furthermore, comparisons will be made with 
similar functionalities provided by publicly available 
applications to assess the results correctly.  

Genre-Based Recommendation 

The genre-based recommendation algorithm aims to provide 
the best movies within a specific genre, considering user 
ratings in proportion to the quantity. To interpret the data, we 
have referred to reviews provided by both Google and 
IMDB, considering the average ratings from these platforms 
as well as the number of users who participated in the voting 
[Table 6]. 

Table 6 Results obtained for the Comedy genre 

Id Title Year Votes 
count 

AVG 
score 

Popu-
larity 

Weighted 
score 

351 Forrest 
Gump 1994 8147 9 34.457024 8.891981 

1225 Back to the 
Future 1985 6239 8 48.307194 7.993442 

18465 The 
Intouchables 2011 5410 8 25.778509 7.991443 

22841 

The 
Grand 

Budapest 
Hotel 

2014 4644 8 16.086919 7.990136 

2211 Life Is 
Beautiful 1997 3643 8 14.442048 7.988516 

732 

Dr. 
Strangelove 
or: How I 
Learned to 

… 

1964 1472 8 39.39497 7.985378 

3342 Modern 
Times 

1936 881 8 9.80398 7.964101 

883 Some Like 
It Hot 

1959 835 8 8.159556 7.940554 

1236 The Great 
Dictator 

1940 756 8 11.845107 7.937356 

10309 Dilwale 
Dulhania 
Le Jayenge 

1995 661 8 9.241748 7.930978 

Through analysis, we can easily observe the following two 
essential aspects: 

● All ratings given to the movies have very high scores,
indicating that they can be classified as some of the best films
within their respective genres.

● Even though the ratings have a decreasing trend, a strong
weighting factor in the recommendation calculation is the
number of votes, with the observation that this factor is also
consistently decreasing.

Recommendation Based on Movie Properties using a 
Given Title 

The recommendation algorithms based on movie properties 
aim to provide the best recommendations relative to a given 
title, analysing various properties of the items [Table 7]. 

Table 7 Example of a response as a recommendation for the 
movie "Toy story" 

Recommendation based 
on description 

Recommendation based on 
plot 

10754 Luxo Jr. 3833 Monsters, Inc. 

3024 Toy Story 2 7629 Toy Story 3 
17551 Cars 2 2522 Toy Story 2 
11074 Cars 8595 The Lego Movie 
2262 A Bug's Life 6968 Horton Hears a Who! 
22126 Toy Story of 

Terror! 
3016 Chicken Run 

15519 Toy Story 3 1832 Antz 
3336 Creature 

Comforts 
1662 One Hundred and 

One Dalmatians 
4797 Monsters, Inc. 7404 Cloudy with a 

Chance of Meatballs 
1738 Meet the 

Deedles 
1883 A Bug's Life 

Although it is about two different algorithms, which analyse 
different data, a percentage of 40% repetition of the titles can 
be observed(regardless of the order in the top)[Table 8]. 

Table 8 Example of a response as a recommendation for the 
movie "Interstellar" 

Recommendation based 
on description 

Recommendation 
based on plot 

115651 Inception 115651 Inception 

2486     Following 6981      The Dark 
Knight 

11463 The Prestige 6623      The Prestige 
12589  The Dark Knight 3381      Memento 
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Recommendation based 
on description 

Recommendation 
based on plot 

4126    Memento 8031   The Dark Knight 
      Rises 

5302    Insomnia 6218  Batman 
Begins 

18442 The Dark Knight 
 Rises 

8983  The Martian 

5324    Silent Running 756    2001: A Space 
 Odyssey 

10210  Batman Begins 129  Apollo 13 
30261  The Martian 8726  The Giver 

In this case, a repetition rate of 60% can be observed. For 
validation,10 different movies were searched on the Google 
search engine and, by comparing the list of answers of the 2 
algorithms and their list of recommendations, we managed 
to extract the number of movies that coincide [Table 9]. 

Tabel 9 Coincidence between algorithm responses and those of 
other platforms 

Title Coincidence 
algorithm 1 

Coincidence 
algorithm 2 

Toy Story 
 Inception 
The Polar Express  
Jump Street 
Harry Potter and the 
Prisoner   of Azkaban 
300 
Matrix Revolutions 
Interstellar 
Rocky Balboa 
Django Unchained 

7/10 
6/10 
5/10 
7/10 
6/10 

6/10 
8/10 
7/10 
7/10 
8/10 

7/10 
6/10 
4/10 
8/10 
8/10 

4/10 
6/10 
8/10 
7/10 
6/10 

Although the information is different, the percentage of 
repetition between the answers is relatively high (over 50% 
on average), strengthening the algorithms' credibility. 
Moreover, we can recognise a large number of 
recommendations that coincide with those of the Google 
search platform. 

Recommendations for searching by keywords 
The keyword recommendation aims to serve the most 
relevant items based on one or more words [Table 10]. 

Table 10 Example of response for the keyword "Love" 

Id Title Year 
2370 Rain 1932 
5041 Last Tango in Paris 1972 
563 The Superwife 1996 
5872 L'eclisse 1962 
1026 Annie Hall 1977 
6443 Dinner with Friends 2001 
8255 Take This Waltz 2011 

Id Title Year 
1829 About Last Night 1986 
7648 Persuasion 2007 
2230 Jules and Jim 1962 

CONCLUSION 

The current movie recommendation application that utilises 
recommendation algorithms brings numerous benefits to 
users and enhances their experience in finding suitable films. 
Here are some important takeaways: 

1. Personalisation and relevant recommendations: The use of
recommendation algorithms allows us to provide
personalised recommendations based on user preferences
and feedback. This significantly improves the user
experience and increases the chances of discovering new and
interesting movies.

2. Intuitive experience and responsive interface: The current
application is designed to provide an intuitive and user-
friendly experience. The responsive design allows users to
access the application from various devices, regardless of
screen size. As a result, users can explore and discover
movies anytime and anywhere.

3. Efficiency and scalability: With a dedicated server for
managing the database and another server for machine
learning algorithms, our application can operate efficiently
and handle a large volume of data. This ensures a fast and
uninterrupted experience for users, even with an increasing
number of users.

4. Continuous improvement of recommendation algorithms:
With a dedicated server for machine learning algorithms, we
can implement and test new machine learning models and
techniques. This allows us to constantly improve the
recommendation algorithms, achieving more accurate results
and better catering to the needs and preferences of users.

Movie recommendations can be done in various ways, and 
there is enough data to analyse each movie from multiple 
perspectives (genre, description, actors, etc.). However, user 
feedback is the most important missing piece of information 
that could have led to many improvements. This can be 
considered as a potential future approach. When comparing 
algorithms, we can say that the initial recommendations 
described, where users can search by genre or title, are the 
most common algorithms on any dedicated platform. The 
responses are quite accurate, and we can observe the same 
trend for any search engine where users cannot leave their 
imprint (Google, IMDB, etc.). 
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