
Movie recommender system app based on natural
language processing

Diana Iulia Bleoancă1, Costel Ionașcu2, Marian Cristian Mihăescu1
1Department of Computers and Information Technology,

University of Craiova, Romania
bdianaiulia@yahoo.com, cristian.mihaescu@edu.ucv.ro

Faculty of Economics and Business Administration,
University of Craiova, Romania
costel.ionascu@edu.ucv.ro

ABSTRACT
Movie recommender systems have evolved significantly by
harnessing the power of NLP. Recent research has focused
on leveraging deep learning models, sentiment analysis, and
multimodal approaches to enhance recommendation
accuracy and relevance. In this paper, a new movie
recommender system app that is based on NLP is presented.
The classical recommender system is extended by processing
all the available information about a movie, including text
reviews, descriptions, and user behaviour.

Author Keywords
technology, web application, recommender system, natural
language processing, user interface, responsive interface

ACM Classification Keywords
I.2.6: Artificial Intelligence: Learning, I.2.7. Natural
Language Processing (Text analysis), H.5.m:
Miscellaneous.

General Terms
Human Factors; Design; Applied Computing.

DOI: 10.37789/rochi.2023.1.1.�

INTRODUCTION
The current film market is complex and diversified, with
various trends and developments that influence how people
choose the movies they want to watch. Moreover, people
tend to focus on different categories of cinema, a clustering
that can be achieved based on many film characteristics:
genres, directors, cast, etc. In these circumstances, there is a
need for an application that assists the user in managing the
movies they have watched or would like to watch, but more
than that, it provides other possible perspectives of interest
based on various interactions: a particular movie, a history, a
search for a keyword, or even choosing a film based on a
genre. From the perspective of languages and frameworks
used, they were chosen to provide an easy and rapid
development mode.
Movie recommender systems play a pivotal role in assisting
users in navigating the vast landscape of movies available
today.

In order to quickly process information about movies, the use
of artificial intelligence algorithms becomes necessary [10,
15, 16].
Leveraging the advancements in NLP, these systems have
witnessed significant progress in recent years.
There are more approaches developed by other authors by
using Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), in capturing complex
patterns and latent features from movie-related textual data,
including plot summaries, reviews, and user feedback [12].
Another approach uses a personalised recommendation
method to address traditional algorithms' limitations. This
approach mixes a deep belief network (DBN) with SoftMax
regression to improve the precision of recommendations and
better approaches to challenges such as sparse data and cold-
start scenarios. The DBN fulfils the task of acquiring
complex user and item representations optimising the user-
item rating matrix. At the same time, SoftMax regression is
employed to predict the likelihood of user-item interactions.
The methodology uses negative sampling, resulting in
enhanced recommendation efficacy and the generation of
precise recommendations. This approach underwent
rigorous evaluation on DOUBAN and various MOVIELENS
datasets, demonstrating superior performance when
contrasted with reference models such as singular value
decomposition (SVD). It achieved a mean absolute error
(MAE) value of 98%, attesting to its very good accuracy and
generalisation capabilities [5]. In addition, a personalised
multimodal movie recommendation system was developed
to address the challenges like sparse data and cold-start
scenarios. This system uses the power of multimodal data
analysis and deep learning techniques to highlight latent
features of both movies and users. A deep-learning network
algorithm model was trained to predict movie ratings, and its
accuracy was assessed using MOVIELENS datasets. The
results exhibited increased accuracy, with root mean squared
error (RMSE) scores of 0.9908 and 0.9096 for the
MOVIELENS 100K and 1M datasets, respectively.
Remarkably, this multimodal movie recommendation
system, empowered by deep learning, surpasses traditional
collaborative filtering algorithms like User-CF, Item-CF, and
SVD, delivering superior personalised recommendations and
mitigating the issues associated with sparse data. This

Proceedings of RoCHI 2023

23

investigation underscores the potential for enhancing
recommendation systems through the fusion of deep learning
and multimodal data analysis [6].
A multi-feature attention mechanism with deep neural
networks and convolutional neural networks has been
proposed. User and movie networks are introduced to learn
respective features, and a feature attention mechanism is
employed to determine the importance of different parts in
movie ratings. Convolutional neural networks are used to
extract text features, with an additional attention mechanism
to enhance accuracy. The algorithm achieves personalised
and accurate movie recommendations. Experimental results
substantiate the algorithm's efficacy, unequivocally
illustrating that user and movie attribute characteristics
influence ratings favourably. Incorporating a feature
attention mechanism contributes significantly to discerning
the relative significance of these attributes. Moreover, the
attention mechanism integrated into the convolutional neural
network enhances the precision of text feature extraction,
yielding a commendable level of accuracy across various
evaluation metrics, including but not limited to Mean
Squared Error (MSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), R-squared (R2), and
Root Mean Squared Error (RMSE) [9].

DATASET

An existing database was used to analyse and include a wide
range of movies (along with their data), containing details
about 45,466 movies [13]. All the data is stored in .csv files,
divided into data categories that will be consumed according
to the algorithm's stages:
movies_metadata.csv - From this database, we use the
following fields: genres, vote_count, vote_average, and
release_date. The genres field helps us make genre-based
recommendations based on the rating or popularity of the
most-watched movies. From the release_date, we extract the
day of release for additional information. Furthermore, we
need to use the tagline and overview fields for the algorithm
based on movie descriptions and other details.
links.csv - This table provides the movie IDs, which are used
to filter the information we want to access.
credits.csv - For the third case, where we analyse movies
based on credits, we are specifically interested in characters,
actors, directors, etc.
keywords.csv - We use the keywords for each movie from
this table, which will be processed later to influence the
recommendation algorithm based on movie details.

DATA PREPROCESSING

For the data, we have to be relevant both to the machine and
especially to the machine learning algorithms they need to be
processed. Besides removing incorrect or incomplete values,
the data must be prepared in a specific format, composed,
and combined. Data preprocessing is vital in machine
learning as it directly impacts our model's ability to learn

from the data. Thus, it's crucial to prepare our data carefully
before using it in our model.
Data preprocessing involves several tasks, including:
1. Data cleaning involves handling missing values, outliers,
and incorrect data. Missing values can be imputed or
removed, outliers can be detected and treated accordingly,
and inaccurate data can be corrected or removed.
2. Data transformation: This includes transforming data into
a suitable format for the algorithms. It may involve scaling
numerical data, encoding categorical variables, or
normalising the data distribution.
3. Feature engineering: This involves creating new features
or selecting relevant features from the existing data that can
enhance the model's predictive power.
4. Data integration: Combining multiple datasets or sources
enriches the available information and provides a more
comprehensive data view.
5. Data splitting: Splitting the data into training and testing
sets to evaluate the model's performance on unseen data.
Through the execution of these preprocessing procedures, we
can guarantee the cleanliness, uniformity, and appropriate
formatting of the data, thereby enhancing the precision and
efficiency of our machine learning algorithms.
Handling Null Values
In real-world datasets, null values are invariably present.
Regardless of whether the problem is regression,
classification, or another type, models cannot autonomously
manage these NULL or NaN values. Hence, intervention is
essential.
Standardisation
It is another integral step in preprocessing. In
standardisation, we transform the values so that the mean of
the values is 0 and the standard deviation is 1. Since we have
chosen to keep the most important actors, the director will be
duplicated the same number of times to not influence the
group of actors compared to the film's director just because
it is a more extensive list. We want the weighting of the
director, as described above, to be equal to that of other
significant characters.
Avoiding Multicollinearity
Multicollinearity arises within our dataset when features
exhibit substantial interdependence. When multicollinearity
is present, using our weight vector for feature importance
assessment becomes unfeasible.
Various techniques and libraries are available to handle these
preprocessing tasks, such as imputation methods for
handling missing values, feature scaling techniques for
standardisation, and methods for detecting and dealing with
multicollinearity. By applying these techniques, we can
ensure that our data is prepared in a way that optimises the
performance of the machine learning models and avoids
potential issues during the training and evaluation process.

Proceedings of RoCHI 2023

24

DESCRIPTION OF ALGORITHMS AND INTERMEDIATE
VALUES

Recommender System Based on Genre
In this approach, movies are recommended based on the
genre and the ratings or popularity of the movies watched by
most people. Firstly, we extract the genre values from the
dictionary so that only the names are retrieved and put into a
list.
The TMDB rating is used to evaluate the top movies. We will
use the weighted IMDB rating to construct the graph.
Weighted Rating (WR) = (vv+m.R)+(mv+m.C) where,
● v is the number of votes for the movie
● m is the minimum number of votes required to be listed

in the graph
● R is the average rating of the movie
● C is the mean vote across the whole report
● The value of m is determined by taking the 80th

percentile as the cutoff. In other words, we consider
movies with more votes than 80% of the movies.

Next, we will build two content-based recommendation
systems.

Recommendation for a movie based on the description
Recommendation based on the movie description is
supported by both the tag lines and the overview, which we
paste to create the movie description:

"A single and lonely woman finds the seemingly perfect man
to date, but soon regrets it when his deranged and possessive
other personality emerges, and worst still, she cannot
convince anyone else of his Jekyll/Hyde true nature."
"Ray Liotta stars as a medical examiner who has been
acquitted for his wife's murder but many still question his
innocence. Obsessed with finding his wife's killer, a possible
solution presents itself in an experimental serum designed by
a neurobiology Linda Fiorentino which has the ability to
transfer memories from one person to another, but not
without consequences. Liotta driven to solve the case injects
himself with the serum, bringing him closer and closer to
finding her killer but bringing him closer to death. He loved
her. He lost her. He won't let her memory die... until it tells
him who killed her."
Because we have a data set in which words are influenced by
their context, we chose to convert the collection of
documents into a matrix with TF-IDF properties. TF-IDF
stands for "Term Frequency — Inverse Document
Frequency". This is a technique for quantifying the words in
a set of documents. We calculate a score for each word to
signify its importance in the document and corpus. This
method is a widely used technique in Information Retrieval
and Text Mining. We use the list of stop words provided by
the library. Since all the descriptions are in English, without
any special repetitions that we would like to remove, the
default list is sufficient.
Stopwords are words in every language that don't add much
meaning to a sentence. They can be safely ignored without
sacrificing the meaning of the sentence. For example, words

like the, he, have etc. Such words are already captured in the
corpus.

tf = TfidfVectorizer(analyzer='word', ngram_range = (1,2),
min_df = 0, stop_words = 'english')

The analyser indicates what needs to be analysed in the
document, such as words, numbers, and characters. The
ngram_range is used to specify the grouping in the tf-idf
vectoriser - (1,2) indicates the grouping of letters into
unigrams and bigrams. For example, if we consider the
document "I study NLP" for bigrams, it will be grouped as "I
study" and "study NLP".
tfid_mat = tf.fit_transform(smd['description'])

We thus encode the description in the TFid matrix.

cos_sim = linear_kernel(tfid_mat, tfid_mat)

We employed cosine similarity to measure the similarity
between movies. This cosine similarity can be visualised by
plotting the data on an XY graph, with the TF-IDF values of
each document representing the X and Y axes. Given that the
dot product of the cosine similarity has already been
computed, we will employ the linear_kernel method to
determine similarity.
len(cos_sim[0])
From the above we can see that each record has created a list
of values that contains their similarity. To be able to resolve
for each search the title index and vice versa, we will create
a mapping between the two [Table 1]:
A map between titles and movies index
indices = pd.Series(smd.index, index = smd['title'])

Table 1 Mapping between titles and indexes

Movie title Index
Toy Story 0
Jumanji 1
Grumpier Old Men 2
Waiting to Exhale 3
Father of the Bride Part II 4

Thus, if we access the index, we can request the scores of the
other preprocessed films so that we have them best
recommendations:
sim_scores = list(enumerate(cos_sim[idx]))
print(sim_scores[:5])[(0, 0.0), (1,0.007774131635450035),
(2, 0.0), (3, 0.0), (4, 0.0)]

Since we are only interested in high scores, the next step is
to sort the list in descending order and save the first n movies
we are interested in.
Sort the movie based on the similarity score
sim_scores = sorted(sim_scores, key=lambda x: x[1],
reverse=True)
Take first 30 movies (first one is itself)
sim_scores = sim_scores[1:31]

The first index is excluded because it represents the very own
index, in which the weight will have a maximum score,

Proceedings of RoCHI 2023

25

namely 1. From the above we can see a recommendation
algorithm, where it found the similarity based on the
description and slogan. This recommendation is especially
good when we want a sequel to the movie, but let's say if the
movie doesn't have a sequel or there isn't a proper
description, or even the lack of it.
Then we have to recommend movies based on other criteria
like cast, crew, genres and keywords.

Recommendation for a movie based on keywords and
plot
To make this recommendation, we need to incorporate extra
data from our database, specifically crew information and
keywords. This will centre on evaluating the resemblance
between two movies based on actors involved in the
storyline, directors of photography, and keywords that
provide context. Initially, the movie crew data offers us a
directory of individuals along with their respective roles and
names.
Since we believe that the director plays one of the most
important roles in a movie, we will specifically look for him
to assign him a separate field.
def director_name(crew):
for job in crew:
if job['job'] == 'Director':
return job['name']
return np.nan

From the cast we only keep a maximum of the first three
names [Table 2]:
Take the character names alone and make it as cast then
take the first three cast members
smd['cast'] = smd['cast'].apply(lambda cast_list:
[cast['name'] for cast in cast_list] if isinstance(cast_list,
list) else [])
If list
smd['cast'] = smd['cast'].apply(lambda cast_list:
cast_list[:3] if len(cast_list) >= 3 else cast_list)

Table 2 Cast list after processing by movie index

Index Cast name
0 [Tom Hanks, Tim Allen, Don Rickles]
1 [Robin Williams, Jonathan Hyde, Kirsten

Dunst]
2 [Walter Matthau, Jack Lemmon, Ann-

Margret]
3 [Whitney Houston, Angela Bassett, Loretta

Devine]
4 [Steve Martin, Diane Keaton, Martin Short]

We also process the keywords to get a concatenated list of
sequences [Table 3]:

Table 3 List of keywords before processing according to the
film index

Index Keywords
0 [jealousy, toy, boy, friendship, friends,

rivalry, boy n...
1 [board game, disappearance, based on

children's book, ne...
2 [fishing, best friend, duringcreditsstinger,

old men]
3 [based on novel, interracial relationship,

single mother...
4 [baby, midlife crisis, confidence, aging,

daughter, moth...
Because we don't want the names and surnames of the
characters to weigh differently, but we want a unique
identification of each person and we want to reduce the
possibility of mismatch due to small differences in
typography, we process the names so that they are made up
only of small letters and without spaces:

Process director and cast names to lowercase and no space
smd['cast'] = smd['cast'].apply(lambda cast_names:
[str.lower(name.replace(" ","")) for name in cast_names])
smd['directors'] =
smd['directors'].astype('str').apply(lambda
director_name: str.lower(director_name.replace(" ","")))

Because, at the moment, we have a list of characters and only
one director and the weight of the director must be as
significant as that of the actors, we will apply a multiplication
of his name in a stack of the same size as that of the cast.

Make directors into three stacked lists to match the cast
members

smd['directors'] = smd['directors'].apply(lambda name:
[name, name, name])

Next, we deal with keywords.

Process most important keywords to lowercase stem
words with no space
smd['keywords'] = smd['keywords'].apply(lambda
keywords:
keep_most_important_keywords(keywords,
keywords_movies))
smd['keywords'] = smd['keywords'].apply(lambda
keywords:
[stemmer.stem(keyword) for keyword in keywords])
str.lower(keyword.replace("","")) for keyword in
keywords])
The first important step is to keep the most important
keyword corpus separately and remove the records that have
fewer keywords. This is because we do not want to analyse
keywords that appear uniquely or that do not have such a
significant weight. This influences the possibility of false
recommendations based on keywords no longer found in
other movies.

Proceedings of RoCHI 2023

26

The second step is extracting the word stem, a thing often
encountered in NLP and which helps a lot to reduce the range
of possible words encountered and to form some sets of
correct words ("playing" and "game" must be part from the
same beach of words).

The last step is represented by the processing of the
sequences so that the keywords are made up of lowercase
letters and without spaces between words [Table 4].

Table 4 List of keywords after processing according to movie
index

Index Keywords
0 [jealousi, toy, boy, friendship, friend,

rivalri, boynex...
1 [boardgam, disappear,

basedonchildren'sbook, newhom, rec...
2 [fish, bestfriend, duringcreditssting]
3 [basedonnovel, interracialrelationship,

singlemoth, divo...
4 [babi, midlifecrisi, confid, age, daughter,

motherdaught…
All the information processed so far is pasted into a list of
representative sequences for each movie.

smd['soup'] = smd['keywords'] + smd['cast']
+smd['directors'] +smd['genres']
smd['soup'] = smd['soup'].apply(lambda x: " ".join(x))

We will use the similarity matrix to obtain weights for the
word analysis part, similar to the previously described
algorithm. But, this time, it is no longer necessary to apply
the TF-IDF algorithm because the context no longer
influences the words. Hence, a simple application of an
occurrence counter is sufficient.

count = CountVectorizer(analyzer = 'word', ngram_range =
(1,2), min_df =0, stop_words = 'english')
count_mat = count.fit_transform(smd['soup'])
cos_sim = cosine_similarity(count_mat, count_mat)

If we apply as in the previous case a simple sorting, we will
have results in which the common elements can be identified
[Table 5]:

Table 5 Example result for plot and keyword recommendation
for 'The Dark Knight'

Index Movie title
8031 The Dark Knight Rises
6218 Batman Begins
6623 The Prestige
2085 Following
7648 Inception
4145 Insomnia
3381 Memento

Index Movie title
8613 Interstellar
7659 Batman: Under the Red Hood
1134 Batman Returns

Recommendation based on keyword search
We currently have a description and a list of keywords
attached. We want to turn them all into a list of words to
create our knowledge base and dictionary.
def getWordList(x):
rough_wordList = re.sub("[^\w]", " ", x).split()
wordList = []
for word in rough_wordList:
if word not in stop_words:
wordList.append(word)
return wordList
gathered_md['dataset'] =
gathered_md['description'].apply(lambda
description: getWordList(description))
gathered_md['dataset'] = gathered_md['dataset'] +
gathered_md['keywords']

For our training model, we need a knowledge base and a
dictionary.
words_for_dictionary = gathered_md['dataset'].tolist()
dictionary =
gensim.corpora.Dictionary(words_for_dictionary)
bow_corpus = [dictionary.doc2bow(doc) for doc in
words_for_dictionary]

Now we have the entire data set transformed into structures
that the model we are about to enter is able to interpret in
such a way as to transform the words into landmarks for our
dictionary.

Dictionary(41348 unique tokens: ['Afraid', 'Andy', 'But',
'Buzz', 'Led']...)
Bow_corpus: [[(0, 1), (1, 3), (2, 1), (3, 3), (4, 1), (5, 1), (6,
3), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1),

(13, 1), ..]

The knowledge base (bow_corpus) contains the word ID and
its frequency in each document. Therefore, an additional
detail added to the algorithm is transforming it into the TF-
IDF space.

Transform bow_corpus in a tf-idf vector
tfidf = models.TfidfModel(bow_corpus)
corpus_tfidf = tfidf[bow_corpus]

Next comes the actual training and indexing of the trained
model in matrix form.

lsi = models.LsiModel(corpus = corpus_tfidf, id2word =
dictionary,num_topics = 5)
Compute a similarity matrix, which it's necessary later,
for query
indexList = similarities.MatrixSimilarity(lsi[corpus_tfidf])

Proceedings of RoCHI 2023

27

RESULTS ACHIEVED AND ANALYSIS

The results obtained for each algorithm will be presented and
analysed individually in the following section. All movie
values relevant for analysis will be considered in the list of
responses. Furthermore, comparisons will be made with
similar functionalities provided by publicly available
applications to assess the results correctly.

Genre-Based Recommendation

The genre-based recommendation algorithm aims to provide
the best movies within a specific genre, considering user
ratings in proportion to the quantity. To interpret the data, we
have referred to reviews provided by both Google and
IMDB, considering the average ratings from these platforms
as well as the number of users who participated in the voting
[Table 6].

Table 6 Results obtained for the Comedy genre

Id Title Year Votes
count

AVG
score

Popu-
larity

Weighted
score

351 Forrest
Gump 1994 8147 9 34.457024 8.891981

1225 Back to the
Future 1985 6239 8 48.307194 7.993442

18465 The
Intouchables 2011 5410 8 25.778509 7.991443

22841

The
Grand

Budapest
Hotel

2014 4644 8 16.086919 7.990136

2211 Life Is
Beautiful 1997 3643 8 14.442048 7.988516

732

Dr.
Strangelove
or: How I
Learned to

…

1964 1472 8 39.39497 7.985378

3342 Modern
Times

1936 881 8 9.80398 7.964101

883 Some Like
It Hot

1959 835 8 8.159556 7.940554

1236 The Great
Dictator

1940 756 8 11.845107 7.937356

10309 Dilwale
Dulhania
Le Jayenge

1995 661 8 9.241748 7.930978

Through analysis, we can easily observe the following two
essential aspects:

● All ratings given to the movies have very high scores,
indicating that they can be classified as some of the best films
within their respective genres.

● Even though the ratings have a decreasing trend, a strong
weighting factor in the recommendation calculation is the
number of votes, with the observation that this factor is also
consistently decreasing.

Recommendation Based on Movie Properties using a
Given Title

The recommendation algorithms based on movie properties
aim to provide the best recommendations relative to a given
title, analysing various properties of the items [Table 7].

Table 7 Example of a response as a recommendation for the
movie "Toy story"

Recommendation based
on description

Recommendation based on
plot

10754 Luxo Jr. 3833 Monsters, Inc.

3024 Toy Story 2 7629 Toy Story 3
17551 Cars 2 2522 Toy Story 2
11074 Cars 8595 The Lego Movie
2262 A Bug's Life 6968 Horton Hears a Who!
22126 Toy Story of

Terror!
3016 Chicken Run

15519 Toy Story 3 1832 Antz
3336 Creature

Comforts
1662 One Hundred and

One Dalmatians
4797 Monsters, Inc. 7404 Cloudy with a

Chance of Meatballs
1738 Meet the

Deedles
1883 A Bug's Life

Although it is about two different algorithms, which analyse
different data, a percentage of 40% repetition of the titles can
be observed(regardless of the order in the top)[Table 8].

Table 8 Example of a response as a recommendation for the
movie "Interstellar"

Recommendation based
on description

Recommendation
based on plot

115651 Inception 115651 Inception

2486 Following 6981 The Dark
Knight

11463 The Prestige 6623 The Prestige
12589 The Dark Knight 3381 Memento

Proceedings of RoCHI 2023

28

Recommendation based
on description

Recommendation
based on plot

4126 Memento 8031 The Dark Knight
 Rises

5302 Insomnia 6218 Batman
Begins

18442 The Dark Knight
 Rises

8983 The Martian

5324 Silent Running 756 2001: A Space
 Odyssey

10210 Batman Begins 129 Apollo 13
30261 The Martian 8726 The Giver

In this case, a repetition rate of 60% can be observed. For
validation,10 different movies were searched on the Google
search engine and, by comparing the list of answers of the 2
algorithms and their list of recommendations, we managed
to extract the number of movies that coincide [Table 9].

Tabel 9 Coincidence between algorithm responses and those of
other platforms

Title Coincidence
algorithm 1

Coincidence
algorithm 2

Toy Story
 Inception
The Polar Express
Jump Street
Harry Potter and the
Prisoner of Azkaban
300
Matrix Revolutions
Interstellar
Rocky Balboa
Django Unchained

7/10
6/10
5/10
7/10
6/10

6/10
8/10
7/10
7/10
8/10

7/10
6/10
4/10
8/10
8/10

4/10
6/10
8/10
7/10
6/10

Although the information is different, the percentage of
repetition between the answers is relatively high (over 50%
on average), strengthening the algorithms' credibility.
Moreover, we can recognise a large number of
recommendations that coincide with those of the Google
search platform.

Recommendations for searching by keywords
The keyword recommendation aims to serve the most
relevant items based on one or more words [Table 10].

Table 10 Example of response for the keyword "Love"

Id Title Year
2370 Rain 1932
5041 Last Tango in Paris 1972
563 The Superwife 1996
5872 L'eclisse 1962
1026 Annie Hall 1977
6443 Dinner with Friends 2001
8255 Take This Waltz 2011

Id Title Year
1829 About Last Night 1986
7648 Persuasion 2007
2230 Jules and Jim 1962

CONCLUSION

The current movie recommendation application that utilises
recommendation algorithms brings numerous benefits to
users and enhances their experience in finding suitable films.
Here are some important takeaways:

1. Personalisation and relevant recommendations: The use of
recommendation algorithms allows us to provide
personalised recommendations based on user preferences
and feedback. This significantly improves the user
experience and increases the chances of discovering new and
interesting movies.

2. Intuitive experience and responsive interface: The current
application is designed to provide an intuitive and user-
friendly experience. The responsive design allows users to
access the application from various devices, regardless of
screen size. As a result, users can explore and discover
movies anytime and anywhere.

3. Efficiency and scalability: With a dedicated server for
managing the database and another server for machine
learning algorithms, our application can operate efficiently
and handle a large volume of data. This ensures a fast and
uninterrupted experience for users, even with an increasing
number of users.

4. Continuous improvement of recommendation algorithms:
With a dedicated server for machine learning algorithms, we
can implement and test new machine learning models and
techniques. This allows us to constantly improve the
recommendation algorithms, achieving more accurate results
and better catering to the needs and preferences of users.

Movie recommendations can be done in various ways, and
there is enough data to analyse each movie from multiple
perspectives (genre, description, actors, etc.). However, user
feedback is the most important missing piece of information
that could have led to many improvements. This can be
considered as a potential future approach. When comparing
algorithms, we can say that the initial recommendations
described, where users can search by genre or title, are the
most common algorithms on any dedicated platform. The
responses are quite accurate, and we can observe the same
trend for any search engine where users cannot leave their
imprint (Google, IMDB, etc.).

REFERENCES
1. Alexander Clark, Chris Fox, Shalom Lappin. The

Handbook of Computational Linguistics and Natural
Language Processing, 271-290, 2010.

2. Ben HE, Iadh Ounis, A study of parameter tuning for term
frequency normalisation. 2003.

Proceedings of RoCHI 2023

29

3. D. D. Lewis and K. S. Jones. Natural language processing
for information retrieval. Communications of the ACM,
39(1):92–101, 1996.

4. Jonathan J. Webster & Chunyu Kit. TOKENISATION
AS THE INITIAL PHASE IN NLP, 1992

5. Li L, Huang H, Li Q, Man J. 2023. Personalised movie
recommendations based on deep representation learning.
PeerJ Computer Science 9:e1448,
https://doi.org/10.7717/peerj-cs.1448

6. Mu, Y.;Wu, Y. Multimodal Movie
Recommendation System Using Deep Learning.
Mathematics, 2023, 11, 895.
https://doi.org/10.3390/math11040895

7. S. Deerwester, S. T. Dumais, T. K. Landauer, G. Furnas,
F. d. L. BECK, and L. Leighton-Beck. Improving
Information-retrieval with latent semantic indexing.1988.

8. T. Cvitanic, B. Lee, H. I. Song, K. Fu, and D. Rosen. Lda
vs lsa: A comparison of two computational text analysis
tools for the functional categorisation of patents.In
International Conference on Case-Based Reasoning,
2016.

9. Yu, S.; Guo, M.; Chen, X.; Qiu, J.; Sun, J. Personalized
Movie Recommendations Based on a Multi-Feature
Attention Mechanism with Neural Networks.

Mathematics, 2023, 11, 1355.
https://doi.org/10.3390/math11061355

10. Yue Kang, Zhao Cai, Chee-Wee Tan, Qian Huang
& Hefu Liu. Natural language processing (NLP) in
management research: A literature review, 2020.

11. Z. Kastrati, A. Kurti, and A. S. Imran. Wet: Word
embedding-topic distribution vectors for mooc video
lectures dataset. Data in brief, page 105090, 2020.

12. Zhang et al.: Deep Learning for Recommender
Systems: A Survey and New Perspectives, 2019

13. ***
https://grouplens.org/datasets/movielens/latest/

14. *** https://medium.com/@deanrubin/the-three-
layered-architecture-fe30cb0e4a6

15. *** https://www.marketingaiinstitute.com/blog/7-
key-differences-between-nlp-and-machine-learning-and-
why-you-should-learn-
both#:~:text=Machine%20learning%20is%20primarily
%20concerned,amounts%20of%20natural%20language
%20data.

16. ***
https://iodinesoftware.com/insights/blog-machine-
learning-versus-natural-language-processing-what-
is-the-difference/

Proceedings of RoCHI 2023

30

