
Machine Learning System for Natural Language to SQL
Translation

Rareș Mihai Dinu
University of Craiova

raresmihai18@gmail.com

Marian Cristian Mihăescu
University of Craiova

cristian.mihaescu@edu.ucv.ro

Traian Eugen Rebedea
University Politehnica of

Bucharest
traian.rebedea@cs.pub.ro

ABSTRACT
This paper introduces a system specifically designed for
natural language to SQL translation. Leveraging the power
of machine learning, the system incorporates deep learning
models, namely RAT-SQL and RoBERTa, to improve the
accuracy and effectiveness of the translation process. The
paper provides an in-depth overview of the system's high-
level design, including using RAT-SQL as the core model
and integrating the BERT approach for enhanced
performance. It also discusses the dataset employed during
the system's development and presents the results and
conclusions. By utilising the synergy of RAT-SQL and
RoBERTa, the system demonstrates promising
advancements in the natural language to SQL translation
domain, showcasing its potential to simplify and streamline
the interaction between human language and structured
database queries.

Author Keywords
BERT, Transformer, Spider, Text-to-SQL.

ACM Classification Keywords
H.5.m. Information interfaces and presentation:
Miscellaneous.

General Terms
Human Factors; Design; Measurement.

DOI: 10.37789/rochi.2023.1.1.3

INTRODUCTION
We live in the era of technology merging into our day-to-day
lives, either personally or professionally; we depend on it in
one way or another. SQL is a broadly used language related
to databases and commands that allows implicit users to
retrieve information based on their input. Despite being
present for quite a long time, there are still problems, or
better said, difficulties when approaching a larger structure
that needs to be tackled. The motivation comes from the
desire to understand and further explore the natural language
processing domain, a popular topic nowadays that aims to
expand and generate better and better results.

The purpose of the application stands in the desire to create
an environment meant for translating human-written text into
SQL queries. This application can be further used by those
who want to create queries based on a provided database
input swiftly or for those who wish to explore the structure
of the database.

Aside from the practical approach, using different models to
achieve the previously stated goal adds to the final value of
the project. Having multiple workspaces and understanding
such models' structure and behaviour will always be a plus
for the intended work.

The system provides a linear implication for the user, from
uploading the database to typing in their request. Upon
receiving the user's command, the application generates the
SQL query through the help of RAT-SQL [1], but not quite
fully. In that regard, RoBERTa [2], through its question-
answering ability, provides the missing context, filling in the
gaps. The resulting output is a fully operational SQL query
that can render information in the given environment. It is
noted that both mentioned models are based on the BERT [3]
architecture.

Considering the specialisation, the presented application is
aimed at those who use SQL regularly and want to optimise
their efficiency and productivity. Moreover, the machine
learning system can also be used as a navigation environment
for a data set/database structure unknown to the advanced
user. Users can formulate requirements and questions the
system will translate into SQL. Thus, those who know the
structure given to the system can use the generated queries
or, otherwise, better understand the shape of the loaded
structure through the queries.

At the core of an application that implies any user's input
stands the human-computer interaction baseline. In this
situation, the system should be able to handle the barriers of
the natural language to which it is exposed. In other words,
the natural language input should be broad enough so that the
users can express themselves freely, without any occurring
issues regarding their input. The text-to-SQL system output
should yield the corresponding query to the manual input
previously mentioned. Simply put, the system should be
designed so that it will not be punishing for the users based
on their input and their way of writing prompts; it must
broadly understand the concepts of the language and let the
inputs be as expressive or redundant as possible.

Technically speaking, the project utilises the Python
programming language and a range of specialised libraries,

Proceedings of RoCHI 2023

7

such as torch,1 transformers2, and nltk,3 for natural language
processing and machine learning tasks. Developed in Google
Colab Pro, a cloud-based development environment similar
to Jupyter, the project focuses on machine learning and data
analysis.

The cloud nature of Colab Pro allows for remote
accessibility, with virtualised hardware resources, ensuring
independence from the local machine. Two models are
employed for machine learning: RAT-SQL and RoBERTa
Base Squad 2. RAT-SQL is the base for translating natural
language to SQL, with preprocessing and training performed
using the Spider dataset [4]. While RAT-SQL provides the
fundamental query structure, it lacks specific details. To
overcome these limitations, RoBERTa Base Squad 2, a pre-
trained model specialised in question-answering, is utilised.
Combining RoBERTa and code improvements allows the
system to generate questions that address RAT-SQL gaps,
resulting in a complete and syntactically correct query.

RELATED WORK
The state-of-the-art domain in discussion comprises different
concepts and ideas, each having an intricate solution to the
problem. The direction of assessment follows the dataset
used and the models and techniques involved in their
pretraining and evaluation methods. Since there are plenty of
approaches, they have advantages and disadvantages.

Deng et al. [5] cover the performance of the supervised
structure pretraining framework (StruG) for text-to-SQL. It
fundamentally uses RAT-SQL, which, when writing the
paper, is the state-of-the-art model according to the official
leaderboard. By using the Spider dataset, they proved its
outperformance compared to RAT-SQL. Despite the better
performance, the paper mentions the complementary matter
of the experiment. The core technique used in the previous
article is semantic parsing, which stays at the root of the
Spider dataset [4]. As mentioned by the paper, the dataset
underlines the extensive use of multi-table databases and
complex queries. To be noted, Deng et al. [5] used both a
manual and automatic approach to achieve higher scores. At
the same time, the BERT Large considerably ranks lower due
to the non-specificity of the dataset and the "more realistic"
alignment settings of the text tables.

Finegan-Dollak et al. [6] cover the generalisation of systems
to realistic unseen data. The probation of the performance
was based on the variation of the seq2seq model, with the
implication of the attention technique. The paper's main

1 Torch, https://pytorch.org/, last accessed at 30.06.2023
2 Transformers, https://huggingface.co/docs/transformers,
last accessed at 30.06.2023
3 NLTK, https://www.nltk.org/, last accessed at 30.06.2023
4 SQLNet, https://github.com/xiaojunxu/SQLNet, last
accessed at 01.07.2023

takeaway results in the current systems' inability to
understand the properties of human-generated datasets.
Furthermore, the experiments proved the exaggerated
perception of the system's ability to generalise to new or
unseen data. This particularity defeats the point of the use of
such systems. Making good use of the considerations of the
users, which are the primary target, implies a low ability to
emerge and be used on a large scale, especially in the text-
to-SQL approach.

Yu et al. [7] underline using a similar system to SQLNet4 or
TypeSQL5 to achieve the human interactivity proposed. The
natural language to SQL task implies the swift translation of
the human-generated text to executable queries, which, in the
presented paper, are presented in a general accent. By that,
the authors underline that, due to the dataset approach
(WikiSQL6), the queries generated lack the use of GROUP
BY and JOIN keywords, which are vital for more complex
alignments with the database. In other words, this particular
approach does not fully implement the entire SQL behaviour,
the behaviour we would consider in the first place. It is
obvious that, due to the limited keywords used and the old-
fashioned knowledge-based type-awareness, we would
consider a better alternative: the attention mechanism and
relational reasoning.

Narechania et al. [8] address the entire application flow
regarding the user input to the executed database queries. In
other words, the infrastructure proposed designs a debug-like
environment where the user can handle different columns
and approaches while running the system. A downside to the
proposed method is that tokens can only be mapped if they
are already applied. In this particularity, a freedom constraint
will not allow the users to experiment with the dataset fully.
Additionally, the system described, similarly to Yu et al. [7],
does not follow the entire SQL vocabulary; keywords such
as LIKE and OVER are absent.

Shah et al. [9] presented complies with the architectural
progress from the seq2seq to the BERT model. Despite
having an interesting elaborative idea, the results yield
similar results to RAT-SQL's. The main compression is, in
this case, the ready-to-go formality of the application in
which, upon entering the desired prompt, the query is
executed immediately. In other words, Shah et al. [9] outlines
a very similar to RAT-SQL in its final attempts, which is
coloured furthermore by an adequate interface for such a
task.

5 TypeSQL, https://github.com/taoyds/typesql, last accessed
at 01.07.2023
6 WikiSQL, https://github.com/salesforce/WikiSQL, last
accessed at 01.07.2023

Proceedings of RoCHI 2023

8

An interesting approach presented by Gan et al. [10] implies
the usage of two categories: synonym annotations and
adversarial training. These approaches create a broader
spectrum of understanding for the model when being trained
and, in other words, help in better understanding the given
context and prompt. This approach is achieved by manually
modifying the Spider dataset that offers more than one
nuance to a certain schema word. Despite the interesting
process that allows the users to have a more colourful
vocabulary, most state-of-the-art models have a significantly
reduced performance on the modified benchmark presented.

On the visual side and understanding the processes partaken
by the models through statistical output, Mitra et al. [11]
propose this approach as there are no historical trials for such
practices. It suggests that chatbots may create a better
understanding environment and augment the current context.
The chatbots can further elaborate the prompt by addressing
questions or asking for more input. Despite the view-
broadening approach, these are not perfect since, by adding
another question, the direction might change drastically.

Ning et al. [12] have an interesting concept: to consolidate
the human-computer interaction and natural language
concept together, the state-of-the-art natural language to
SQL models were studied based on the errors made. By that,
different methods of error-handling and recovery were
conducted and tested via many users. The results show that
the handling facilitates the non-experienced users. Still, the
mechanisms developed do not significantly improve the
quality of the queries generated and the time of completion
when the said queries are executed.

In other words, the state-of-the-art regarding text-to-SQL
comprises advanced neural networks like transformers and
pre-trained models such as BERT to convert natural
language queries into structured SQL commands effectively.
Despite the said approaches' complexity, limitations and
challenges persist, including handling complex queries
comprising multiple clauses and joins, model generalisation
across databases, language ambiguity and so on.

SYSTEM DESIGN
The application's primary purpose in discussion is to
translate natural language into SQL queries through user
inputs. The system is based on machine learning models
either trained on the Spider dataset or pre-trained and ready
to use through different Python libraries.

The system is a command line-based application that
requires the user's input, which is both uploading files and
typing in text and outputs the query based on the initial
circumstances.

The main flow of the application is relatively simple: the user
can upload their database structure based on which the files
tables.json and dev.json are rerendered. Using RAT-SQL the
user can generate SQL queries. RAT-SQL has a flaw: the
predicates of the queries are replaced by the word 'terminal',

which is fixed through RoBERTa Base SQuAD 2. Figure 1
broadly describes the processes involved.

Figure 1. System workflow

RAT-SQL
RAT-SQL is the core functionality of the system, the gate
that allows the application to properly translate human-
generated text into SQL queries.

RAT-SQL was originally based on Docker images, a
technology that Google Colab does not allow. The best
solution was manually creating the virtual environment,
namely CUDA, line by line in Google Colab for RAT-SQL
to work properly. Despite the Docker fashion of the project,
the initial phase was solely creating the right dependencies
between the libraries.

There were some other issues along the way; namely, the
Stanford NLP Server would always run out and errors at the
level of RAT-SQL. The first issue was simple to overcome
by simply changing the connection port. Updates at the sudo
level of Google Colab covered the errors retrieved.

Proceedings of RoCHI 2023

9

BERT was the decisive point in the training stage of RAT-
SQL, representing the project's continuous and integrative
part. In other words, BERT was decided to be the technology
to be further used during the project's development. The main
point of using BERT was the attention module and the higher
learning rate provided.

The provided environment implications are mandatory for
the smooth running of RAT-SQL, and its primary goal is the
query generation at the user's input.

User input
As discussed, the RAT-SQL part represents the system's core
functionality, which allows the natural language translation
to SQL code. Since the user plays another vital role, we will
look closely at their interaction with the application and the
steps to orchestrate the communication.

Figure 2. User input flow

Since the SQL code generated is strongly bonded with the
files related to the database structure, based on the user input,
RAT-SQL has to be configured on newly generated files to
only operate on the given set of data.

After entering questions, the user is asked to name and
upload a database structure to the system. Upon loading the
SQL file, the following documents are created:

• database_name.sqlite, schema.sql: The schema is
the given structure, while the sqlite file is the
translated schema in SQLite;

• tables.json: The tables of the database in a JSON
format;

• dev.json: The development file. It is essential for
RAT-SQL at any implementation stage.

The files dev.json and tables.json are mandatory for RAT-
SQL since they are the basis of the inferring process.

Having both the user input, summarised in figure 2, and
RAT-SQL implemented and running, based on a database
structure referring to geography, we can ask the following
question: "Show all details regarding cities from Romania."
RAT-SQL generates the following SQL query based on the
given input: "SELECT * FROM cities WHERE cities.country
= 'terminal'". The schema further exemplifies the system's
user input and RAT-SQL flow.

RoBERTa Base SQuAD 2
RoBERTa has been used in the text-to-SQL system to patch
the terminal keyword into the appropriate query predicates.
The following section will define the procedures considered
to achieve the abovementioned goal using its question-
answering capabilities.

As mentioned, RoBERTa is mainly used to find the replacing
word for the terminal tokens. In this context, a workflow was
created so that all terminals were found and replaced by the
appropriate words. Both the question and the generated
output from the previous section will be considered for better
exemplification.

The first step is the tokenisation and normalisation of the
given query. By that, we would obtain a list of uncapitalised
words that exclude non-primary punctuation marks.

Secondly, the terminal words are to be found and indexed
and upon seeing one, a pair of the token and the subject is
taken. The subject is the first token that appears right after an
SQL keyword. For instance, if considering the cities' query,
the pair of subject-terminal would be ['cities.country =
terminal'].

Next, having the subject, we want to know the quantity of it.
This, in most considered cases, is represented by the
attribution sign. If any comparison signs were to be executed,
the quantity would be proportional to it. "More than/after"
would be attributed to > since it applies to number and date
types.

Having all the components of a question, we can populate the
question structure that is based on the proceeding SQL
keyword. RoBERTa is provided with the compounded
question and the initial question asked by the user. RoBERTa
answers it, and the response is further processed according
to different nuances.

Having the answers to the generated questions, there are four
main points taken into consideration when further processing
the answer retrieved, namely, the SQL specific keywords
'LIMIT', 'LIKE' and 'BETWEEN' as well as handling the
number conversion from string to integer or float, based on
the given context.

The easiest to get around is the keyword 'LIMIT'. Instead of
creating a subject-quantity question, we can simply ask, upon

Proceedings of RoCHI 2023

10

identifying this keyword, a standard question that allows the
answer of limitation.

The keyword 'LIKE' is handled based on context. As we all
know, the main areas that LIKE can cover are the words that
begin, contain or end in a set of letters or substrings.
Considering the words in the context, such as "start", "have",
"include", "end", etc. we can simply append the necessary
percent signs accordingly.

The keyword 'BETWEEN' covers two terminal tokens. The
output is the same whether the answers are withdrawn from
the first or the second. The best solution is to discard an
answer and split the kept one into two separate ones.

The number translation was based on the library
word2number and regex. Word2number has the slight flaw
of summing two consecutive numbers, such as "one two"
would result in "3". Regardless of that, the library only keeps
the number-related words, so answers such as "two large
compartments" would be turned into "2". If the answer does
not have number-related words, an error is thrown. When
this case occurs, regex is used, and the numbers are translated
into integers or, finally, float values.

Figure 3. RoBERTa Base SQuAD 2 flow

Having an equal number of terminal tokens and answers, we
can now replace them one by one in the initial query, but we
have to keep in mind whether or not it is a number or not
since quotations are needed only for strings.

Figure 3 describes the processes summarily.

The Dataset
Spider was used as the main source for training RAT-SQL.
It is a large-scale, complex, cross-domain dataset excellent
for natural language processing (NLP) models and
approaches.

As mentioned in the introductory section of the dataset,
Spider consists of several files mandatory for training and
evaluating machine learning models. As a prime step, we
will look at its general structure and then at a more in-depth
description of each file.

Spider provides various files meant to be used in the creation
of text-to-SQL models. The files cover the main flow for the
training and evaluation stages. Right off the bat, the dataset
has the following hierarchic structure:

Figure 4. Spider dataset file architecture

Each file has an upright importance and a unique structure ,
the hierarchal distribution of files being presented in figure
4. Managing to create such a complex environment, the files
and their inner format, their fields to be more exact, are an
important topic to acknowledge:

• dev.json: A JSON file that contains a subset of the
Spider dataset delivered as an array specifically
designed for development and evaluation purposes;

• table.json: A JSON file that provides the structure
representation of the tables found in the Spider
dataset;

• train_others.json, train_spider.json: JSON files that
contain a subset of training data of the Spider
dataset;

• dev_gold.sql, train_gold.sql: SQL files that provide
the ideal output for the development and training

Proceedings of RoCHI 2023

11

stages conducted under the previously mentioned
files;

• database folder: A folder with the proper dataset as
folders containing a number of exactly two files:
schema.sql (the database structure) and
database_name.sqlite (the SQLite equivalent);

• README.txt, .DS_Store: Miscellaneous files.

EXPERIMENTAL RESULTS
This section contains the results of testing the models
mentioned in the implementation and design section. The
outcomes and satisfaction will be covered, as well as the way
the testing occurred for each machine learning model.

RAT-SQL – BERT
As mentioned above, due to the outstanding performance, the
BERT version of RAT-SQL was used for the further
investigations and usage.
Regarding the satisfactory testing and the percentage of
adequate results, two main approaches were applied in order
to define them:

• Manual testing: By entering inputs on a given data
structure;

• Against ChatGPT [13]: By comparing their outputs
based on the same data structure and context.

Manual testing and comparison represent the first, most
important, and obvious way of testing anything. This means
that different inputs were given, and the output queries were
tested in an SQL environment in order to output the same
components.
The results did not disappoint since RAT-SQL managed to
provide excellent results with an accuracy of 70% - 80%, as
described in the evaluation stage of the model. The flaw that
stood up the most is how RAT-SQL selects the fields based
on the input. Unless specifically written, RAT-SQL will not
choose the most appropriate displayable field. For instance,
if the context does not ask for the name of the products, RAT-
SQL can decide to display the code, the production date, or
any other field but the name.

The next experimental testing was against the well-known
ChatGPT. The experiment followed the outcome of both
models when given a database structure and different
requests on that particular dataset. Considering that ChatGPT
is the reference point for our core component, RAT-SQL, the
experiment follows the correct level of the OpenAI model.
Considering that both the database and user-inputs were not
changed to better suit any of the two models, the outcome
yielded can be showcased using a table. The table below
shows the similarities and differences between ChatGPT and
RAT-SQL regarding the query structure and quality and the
usage of names. The notes are provisory but crucial when
comparing the two systems side-by-side.

Topic RAT-SQL ChatGPT
Similarities

Query
quality

Both models provided a solid outcome.
ChatGPT had a better performance.

Query
structure

Both RAT-SQL and ChatGPT had a very
similar approach to computing the query.

Differences

Qualified
column
names

 It will provide
non-crucial
SELECT items
unless specifically
asked

It will return the
best suited fields
based on the
input.

Table aliases
 It will most likely
not use aliases for
tables when
generating queries.

It will most likely
use the initial
letter(s) of the
name of the
tables.

Readability
 Due to not using
aliases, the user can
navigate faster
through the query.

Having aliases, it
becomes difficult
to understand
longer queries.

Table 1. RAT-SQL vs ChatGPT

In other words, both outcomes are usable and work perfectly
well. The sole notable difference that stands between the two
is the style preference.

RoBERTa Base SQuAD 2
RoBERTa was used as a base model to revert the
incompleteness of the generated output of RAT-SQL,
namely, replacing the 'terminal' keywords to the appropriate
subject for that particular query.

The main form of testing here was solely the manual one,
which implied that the algorithm that englobed RoBERTa
over some queries provided by the GOLD files. These were
compared and evaluated one by one to sketch out any outliers
there was.

As RoBERTa is a question-and-answer model, the results
depend heavily on both the question addressed and the
context given. Having that in mind, we can already see some
flaws in that using a QnA model when replacing certain parts
of a query can lead to inconsistencies and wrong answers due
to the subjective side of it.

The most predictable errors can be overseen regarding
extensive queries with repetitive subjects. A sample context
would be to name the nations of which the official languages
are English and French. The associated query contains
repeated subjects regarding nationality etiquette; thus,
RoBERTa is overwhelmed and replies with the same answer.

On top of that, for the dataset above, there is also an attribute
that says whether or not a language is official, having the

Proceedings of RoCHI 2023

12

values 'T', for true, and 'F', for false. This leads us in another
unknown direction: the lack of knowledge regarding the
datatypes and annotations from the dataset. The RoBERTa
structure is built so that it only has access to the question
asked and the query generated by RAT-SQL. No additional
information is provided since that is the only input RoBERTa
requires to function.

Last, regardless of how well the query and context are built,
there is always room for subjective randomness. Subjective
randomness refers to events, or in our case, events that
cannot be predicted due to the nature of the model. A slightly
different word in inputs can lead to totally different
outcomes. The table below shows the context, RoBERTa
generated answers and the preprocessed outcome of each
concerning the cylinder subject.

Context RoBERTa (QnA) Resulting
query

What is the
maximum miles
per gallon of the
car with 8
cylinders or
produced before
1980 ?

Q
cylinders is
what?/ How
much?

select
max(mpg)
from cars_data
where
cylinders =
'miles per
gallon'

A miles per
gallon

What is the
maximum mpg of
the cars that had 8
cylinders or that
were produced
before 1980 ?

Q
cylinders is
what?/ How
much?

select
max(mpg)
from cars_data
where
cylinders = 8 A 8

Table 2. RoBERTa Base SQuAD 2 – flaws

As we can see, the context has a slightly changed structure,
while the base query remains the same. By far, this is the
most vulnerable point of RoBERTa. We cannot define
specific rules for any other context since that would require
an in-depth evaluation and testing process. In most cases,
RoBERTa excels in replacing and enforcing the correct
predicate to its appropriate place.

CONCLUSIONS
This paper presented the flow of an application with the
functionality of natural language to SQL translations at its
core, along with its design, dataset, and results. The system
can be used via the command line by those who want to
understand better or generate queries based on a given
context.

The HCI aspect revolves around the accessibility approach
with regard to the level of experience of the users. This type
of system shall be comprised in such a manner that non-
experienced users should have access to the structured
dataset. In other words, the system should facilitate any type
of users, regardless of their background.

The experiments revealed that RAT-SQL requires better
accuracy using the BERT approach, while RoBERTa can
have some issues in slightly different contexts, namely,
subjective randomness. But, having more than decent
outcomes, we can justify the coexistence of multiple purpose
models in the same system.

The project's current state outlines the usability of different
models coexisting within the same environment, namely, the
text-to-SQL translation. Despite this successful
collaboration, there are still some limitations that persist: the
complexity of both the user and database are a direct factor
that may lead to erroneous outputs, the vocabulary used
cannot be limited, thus the surging numbers of error that may
occur and, finally, the word replacement that suffers from the
query abstraction and context ambiguity.

As for the foreseeable future, we are going to try to patch as
much as possible the aforementioned drawbacks by
expanding the training dataset or using several different
datasets [14, 15] and improving the query analysis for word
replacement.

REFERENCES
1. Wang, B., Shin, R., Liu, X., Polozov, O., & Richardson,

M. (2019). Rat-sql: Relation-aware schema encoding
and linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942.

2. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
... & Stoyanov, V. (2019). Roberta: A robustly
optimised bert pretraining approach. arXiv preprint
arXiv:1907.11692.

3. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805.

4. Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D.,
Li, Z., ... & Radev, D. (2018). Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. arXiv preprint
arXiv:1809.08887.

5. Deng, X., Awadallah, A. H., Meek, C., Polozov, O.,
Sun, H., & Richardson, M. (2020). Structure-grounded
pretraining for text-to-sql. arXiv preprint
arXiv:2010.12773.

6. Finegan-Dollak, C., Kummerfeld, J. K., Zhang, L.,
Ramanathan, K., Sadasivam, S., Zhang, R., & Radev, D.
(2018). Improving text-to-sql evaluation methodology.
arXiv preprint arXiv:1806.09029.

7. Yu, T., Li, Z., Zhang, Z., Zhang, R., & Radev, D. (2018).
Typesql: Knowledge-based type-aware neural text-to-
sql generation. arXiv preprint arXiv:1804.09769.

8. Narechania, A., Fourney, A., Lee, B., & Ramos, G.
(2021, April). DIY: Assessing the correctness of natural

Proceedings of RoCHI 2023

13

language to sql systems. In 26th International
Conference on Intelligent User Interfaces (pp. 597-607).

9. Shah, D., Das, A., Shahane, A., Parikh, D., & Bari, P.
(2021). Speakql natural language to sql. In ITM Web of
Conferences (Vol. 40, p. 03018). EDP Sciences.

10. Gan, Y., Chen, X., Huang, Q., Purver, M., Woodward,
J. R., Xie, J., & Huang, P. (2021). Towards robustness
of text-to-SQL models against synonym substitution.
arXiv preprint arXiv:2106.01065.

11. Mitra, R., Narechania, A., Endert, A., & Stasko, J.
(2022). Facilitating conversational interaction in natural
language interfaces for visualisation. In 2022 IEEE
Visualization and Visual Analytics (VIS) (pp. 6-10).
IEEE.

12. Ning, Z., Zhang, Z., Sun, T., Tian, Y., Zhang, T., & Li,

 T. J. J. (2023, March). An empirical study of model
errors and user error discovery and repair strategies in
natural language database queries. In Proceedings of the
28th International Conference on Intelligent User
Interfaces (pp. 633-649).

13. Zhu, J. J., Jiang, J., Yang, M., & Ren, Z. J. (2023).
ChatGPT and environmental research. Environmental
Science & Technology.

14. Iacob, R. C. A., Brad, F., Apostol, E. S., Truică, C. O.,
Hosu, I. A., & Rebedea, T. (2020). Neural approaches
for natural language interfaces to databases: A survey.
In proceedings of the 28th International Conference on
Computational Linguistics (pp. 381-395).

15. Brad, F., Iacob, R., Hosu, I., & Rebedea, T. (2017).
Dataset for a neural natural language interface for
databases (NNLIDB). arXiv preprint arXiv:1707.03172.

Proceedings of RoCHI 2023

14

