
Machine Learning System for Natural Language to SQL 
Translation 

Rareș Mihai Dinu  
University of Craiova 

raresmihai18@gmail.com

Marian Cristian Mihăescu 
University of Craiova 

cristian.mihaescu@edu.ucv.ro

Traian Eugen Rebedea  
University Politehnica of 

Bucharest 
traian.rebedea@cs.pub.ro

ABSTRACT 
This paper introduces a system specifically designed for 
natural language to SQL translation. Leveraging the power 
of machine learning, the system incorporates deep learning 
models, namely RAT-SQL and RoBERTa, to improve the 
accuracy and effectiveness of the translation process. The 
paper provides an in-depth overview of the system's high-
level design, including using RAT-SQL as the core model 
and integrating the BERT approach for enhanced 
performance. It also discusses the dataset employed during 
the system's development and presents the results and 
conclusions. By utilising the synergy of RAT-SQL and 
RoBERTa, the system demonstrates promising 
advancements in the natural language to SQL translation 
domain, showcasing its potential to simplify and streamline 
the interaction between human language and structured 
database queries. 

Author Keywords 
BERT, Transformer, Spider, Text-to-SQL. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation: 
Miscellaneous.

General Terms 
Human Factors; Design; Measurement. 

DOI: 10.37789/rochi.2023.1.1.3

INTRODUCTION 
We live in the era of technology merging into our day-to-day 
lives, either personally or professionally; we depend on it in 
one way or another. SQL is a broadly used language related 
to databases and commands that allows implicit users to 
retrieve information based on their input. Despite being 
present for quite a long time, there are still problems, or 
better said, difficulties when approaching a larger structure 
that needs to be tackled. The motivation comes from the 
desire to understand and further explore the natural language 
processing domain, a popular topic nowadays that aims to 
expand and generate better and better results. 

The purpose of the application stands in the desire to create 
an environment meant for translating human-written text into 
SQL queries. This application can be further used by those 
who want to create queries based on a provided database 
input swiftly or for those who wish to explore the structure 
of the database. 

Aside from the practical approach, using different models to 
achieve the previously stated goal adds to the final value of 
the project. Having multiple workspaces and understanding 
such models' structure and behaviour will always be a plus 
for the intended work. 

The system provides a linear implication for the user, from 
uploading the database to typing in their request. Upon 
receiving the user's command, the application generates the 
SQL query through the help of RAT-SQL [1], but not quite 
fully. In that regard, RoBERTa [2], through its question-
answering ability, provides the missing context, filling in the 
gaps. The resulting output is a fully operational SQL query 
that can render information in the given environment. It is 
noted that both mentioned models are based on the BERT [3] 
architecture. 

Considering the specialisation, the presented application is 
aimed at those who use SQL regularly and want to optimise 
their efficiency and productivity. Moreover, the machine 
learning system can also be used as a navigation environment 
for a data set/database structure unknown to the advanced 
user. Users can formulate requirements and questions the 
system will translate into SQL. Thus, those who know the 
structure given to the system can use the generated queries 
or, otherwise, better understand the shape of the loaded 
structure through the queries. 

At the core of an application that implies any user's input 
stands the human-computer interaction baseline. In this 
situation, the system should be able to handle the barriers of 
the natural language to which it is exposed. In other words, 
the natural language input should be broad enough so that the 
users can express themselves freely, without any occurring 
issues regarding their input. The text-to-SQL system output 
should yield the corresponding query to the manual input 
previously mentioned. Simply put, the system should be 
designed so that it will not be punishing for the users based 
on their input and their way of writing prompts; it must 
broadly understand the concepts of the language and let the 
inputs be as expressive or redundant as possible.  

Technically speaking, the project utilises the Python 
programming language and a range of specialised libraries, 
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such as torch,1 transformers2, and nltk,3 for natural language 
processing and machine learning tasks. Developed in Google 
Colab Pro, a cloud-based development environment similar 
to Jupyter, the project focuses on machine learning and data 
analysis. 

The cloud nature of Colab Pro allows for remote 
accessibility, with virtualised hardware resources, ensuring 
independence from the local machine. Two models are 
employed for machine learning: RAT-SQL and RoBERTa 
Base Squad 2. RAT-SQL is the base for translating natural 
language to SQL, with preprocessing and training performed 
using the Spider dataset [4]. While RAT-SQL provides the 
fundamental query structure, it lacks specific details. To 
overcome these limitations, RoBERTa Base Squad 2, a pre-
trained model specialised in question-answering, is utilised. 
Combining RoBERTa and code improvements allows the 
system to generate questions that address RAT-SQL gaps, 
resulting in a complete and syntactically correct query. 

RELATED WORK 
The state-of-the-art domain in discussion comprises different 
concepts and ideas, each having an intricate solution to the 
problem. The direction of assessment follows the dataset 
used and the models and techniques involved in their 
pretraining and evaluation methods. Since there are plenty of 
approaches, they have advantages and disadvantages. 

Deng et al. [5] cover the performance of the supervised 
structure pretraining framework (StruG) for text-to-SQL. It 
fundamentally uses RAT-SQL, which, when writing the 
paper, is the state-of-the-art model according to the official 
leaderboard. By using the Spider dataset, they proved its 
outperformance compared to RAT-SQL. Despite the better 
performance, the paper mentions the complementary matter 
of the experiment. The core technique used in the previous 
article is semantic parsing, which stays at the root of the 
Spider dataset [4]. As mentioned by the paper, the dataset 
underlines the extensive use of multi-table databases and 
complex queries. To be noted, Deng et al. [5] used both a 
manual and automatic approach to achieve higher scores. At 
the same time, the BERT Large considerably ranks lower due 
to the non-specificity of the dataset and the "more realistic" 
alignment settings of the text tables. 

Finegan-Dollak et al. [6] cover the generalisation of systems 
to realistic unseen data. The probation of the performance 
was based on the variation of the seq2seq model, with the 
implication of the attention technique. The paper's main 

1 Torch, https://pytorch.org/, last accessed at 30.06.2023 
2 Transformers, https://huggingface.co/docs/transformers, 
last accessed at 30.06.2023  
3 NLTK, https://www.nltk.org/, last accessed at 30.06.2023 
4 SQLNet, https://github.com/xiaojunxu/SQLNet, last 
accessed at 01.07.2023 

takeaway results in the current systems' inability to 
understand the properties of human-generated datasets. 
Furthermore, the experiments proved the exaggerated 
perception of the system's ability to generalise to new or 
unseen data. This particularity defeats the point of the use of 
such systems. Making good use of the considerations of the 
users, which are the primary target, implies a low ability to 
emerge and be used on a large scale, especially in the text-
to-SQL approach. 

Yu et al. [7] underline using a similar system to SQLNet4 or 
TypeSQL5 to achieve the human interactivity proposed. The 
natural language to SQL task implies the swift translation of 
the human-generated text to executable queries, which, in the 
presented paper, are presented in a general accent. By that, 
the authors underline that, due to the dataset approach 
(WikiSQL6), the queries generated lack the use of GROUP 
BY and JOIN keywords, which are vital for more complex 
alignments with the database. In other words, this particular 
approach does not fully implement the entire SQL behaviour, 
the behaviour we would consider in the first place. It is 
obvious that, due to the limited keywords used and the old-
fashioned knowledge-based type-awareness, we would 
consider a better alternative: the attention mechanism and 
relational reasoning. 

Narechania et al. [8] address the entire application flow 
regarding the user input to the executed database queries. In 
other words, the infrastructure proposed designs a debug-like 
environment where the user can handle different columns 
and approaches while running the system. A downside to the 
proposed method is that tokens can only be mapped if they 
are already applied. In this particularity, a freedom constraint 
will not allow the users to experiment with the dataset fully. 
Additionally, the system described, similarly to Yu et al. [7], 
does not follow the entire SQL vocabulary; keywords such 
as LIKE and OVER are absent. 

Shah et al. [9] presented complies with the architectural 
progress from the seq2seq to the BERT model. Despite 
having an interesting elaborative idea, the results yield 
similar results to RAT-SQL's. The main compression is, in 
this case, the ready-to-go formality of the application in 
which, upon entering the desired prompt, the query is 
executed immediately. In other words, Shah et al. [9] outlines 
a very similar to RAT-SQL in its final attempts, which is 
coloured furthermore by an adequate interface for such a 
task. 

5 TypeSQL, https://github.com/taoyds/typesql, last accessed 
at 01.07.2023 
6 WikiSQL, https://github.com/salesforce/WikiSQL, last 
accessed at 01.07.2023  
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An interesting approach presented by Gan et al. [10] implies 
the usage of two categories: synonym annotations and 
adversarial training. These approaches create a broader 
spectrum of understanding for the model when being trained 
and, in other words, help in better understanding the given 
context and prompt. This approach is achieved by manually 
modifying the Spider dataset that offers more than one 
nuance to a certain schema word. Despite the interesting 
process that allows the users to have a more colourful 
vocabulary, most state-of-the-art models have a significantly 
reduced performance on the modified benchmark presented. 

On the visual side and understanding the processes partaken 
by the models through statistical output, Mitra et al. [11] 
propose this approach as there are no historical trials for such 
practices. It suggests that chatbots may create a better 
understanding environment and augment the current context. 
The chatbots can further elaborate the prompt by addressing 
questions or asking for more input. Despite the view-
broadening approach, these are not perfect since, by adding 
another question, the direction might change drastically. 

Ning et al. [12] have an interesting concept: to consolidate 
the human-computer interaction and natural language 
concept together, the state-of-the-art natural language to 
SQL models were studied based on the errors made. By that, 
different methods of error-handling and recovery were 
conducted and tested via many users. The results show that 
the handling facilitates the non-experienced users. Still, the 
mechanisms developed do not significantly improve the 
quality of the queries generated and the time of completion 
when the said queries are executed. 

In other words, the state-of-the-art regarding text-to-SQL 
comprises advanced neural networks like transformers and 
pre-trained models such as BERT to convert natural 
language queries into structured SQL commands effectively. 
Despite the said approaches' complexity, limitations and 
challenges persist, including handling complex queries 
comprising multiple clauses and joins, model generalisation 
across databases, language ambiguity and so on. 

SYSTEM DESIGN 
The application's primary purpose in discussion is to 
translate natural language into SQL queries through user 
inputs. The system is based on machine learning models 
either trained on the Spider dataset or pre-trained and ready 
to use through different Python libraries. 

The system is a command line-based application that 
requires the user's input, which is both uploading files and 
typing in text and outputs the query based on the initial 
circumstances. 

The main flow of the application is relatively simple: the user 
can upload their database structure based on which the files 
tables.json and dev.json are rerendered. Using RAT-SQL the 
user can generate SQL queries. RAT-SQL has a flaw: the 
predicates of the queries are replaced by the word 'terminal', 

which is fixed through RoBERTa Base SQuAD 2. Figure 1 
broadly describes the processes involved. 

Figure 1. System workflow 

RAT-SQL 
RAT-SQL is the core functionality of the system, the gate 
that allows the application to properly translate human-
generated text into SQL queries. 

RAT-SQL was originally based on Docker images, a 
technology that Google Colab does not allow. The best 
solution was manually creating the virtual environment, 
namely CUDA, line by line in Google Colab for RAT-SQL 
to work properly. Despite the Docker fashion of the project, 
the initial phase was solely creating the right dependencies 
between the libraries. 

There were some other issues along the way; namely, the 
Stanford NLP Server would always run out and errors at the 
level of RAT-SQL. The first issue was simple to overcome 
by simply changing the connection port. Updates at the sudo 
level of Google Colab covered the errors retrieved. 
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BERT was the decisive point in the training stage of RAT-
SQL, representing the project's continuous and integrative 
part. In other words, BERT was decided to be the technology 
to be further used during the project's development. The main 
point of using BERT was the attention module and the higher 
learning rate provided. 

The provided environment implications are mandatory for 
the smooth running of RAT-SQL, and its primary goal is the 
query generation at the user's input. 

User input 
As discussed, the RAT-SQL part represents the system's core 
functionality, which allows the natural language translation 
to SQL code. Since the user plays another vital role, we will 
look closely at their interaction with the application and the 
steps to orchestrate the communication. 

Figure 2. User input flow 

Since the SQL code generated is strongly bonded with the 
files related to the database structure, based on the user input, 
RAT-SQL has to be configured on newly generated files to 
only operate on the given set of data. 

After entering questions, the user is asked to name and 
upload a database structure to the system. Upon loading the 
SQL file, the following documents are created: 

• database_name.sqlite, schema.sql: The schema is
the given structure, while the sqlite file is the
translated schema in SQLite;

• tables.json: The tables of the database in a JSON
format;

• dev.json: The development file. It is essential for
RAT-SQL at any implementation stage.

The files dev.json and tables.json are mandatory for RAT-
SQL since they are the basis of the inferring process. 

Having both the user input, summarised in figure 2, and 
RAT-SQL implemented and running, based on a database 
structure referring to geography, we can ask the following 
question: "Show all details regarding cities from Romania." 
RAT-SQL generates the following SQL query based on the 
given input: "SELECT * FROM cities WHERE cities.country 
= 'terminal'". The schema further exemplifies the system's 
user input and RAT-SQL flow. 

RoBERTa Base SQuAD 2 
RoBERTa has been used in the text-to-SQL system to patch 
the terminal keyword into the appropriate query predicates. 
The following section will define the procedures considered 
to achieve the abovementioned goal using its question-
answering capabilities. 

As mentioned, RoBERTa is mainly used to find the replacing 
word for the terminal tokens. In this context, a workflow was 
created so that all terminals were found and replaced by the 
appropriate words. Both the question and the generated 
output from the previous section will be considered for better 
exemplification. 

The first step is the tokenisation and normalisation of the 
given query. By that, we would obtain a list of uncapitalised 
words that exclude non-primary punctuation marks. 

Secondly, the terminal words are to be found and indexed 
and upon seeing one, a pair of the token and the subject is 
taken. The subject is the first token that appears right after an 
SQL keyword. For instance, if considering the cities' query, 
the pair of subject-terminal would be ['cities.country = 
terminal']. 

Next, having the subject, we want to know the quantity of it. 
This, in most considered cases, is represented by the 
attribution sign. If any comparison signs were to be executed, 
the quantity would be proportional to it. "More than/after" 
would be attributed to > since it applies to number and date 
types. 

Having all the components of a question, we can populate the 
question structure that is based on the proceeding SQL 
keyword. RoBERTa is provided with the compounded 
question and the initial question asked by the user. RoBERTa 
answers it, and the response is further processed according 
to different nuances. 

Having the answers to the generated questions, there are four 
main points taken into consideration when further processing 
the answer retrieved, namely, the SQL specific keywords 
'LIMIT', 'LIKE' and 'BETWEEN' as well as handling the 
number conversion from string to integer or float, based on 
the given context. 

The easiest to get around is the keyword 'LIMIT'. Instead of 
creating a subject-quantity question, we can simply ask, upon 

Proceedings of RoCHI 2023

10



identifying this keyword, a standard question that allows the 
answer of limitation. 

The keyword 'LIKE' is handled based on context. As we all 
know, the main areas that LIKE can cover are the words that 
begin, contain or end in a set of letters or substrings. 
Considering the words in the context, such as "start", "have", 
"include", "end", etc. we can simply append the necessary 
percent signs accordingly. 

The keyword 'BETWEEN' covers two terminal tokens. The 
output is the same whether the answers are withdrawn from 
the first or the second. The best solution is to discard an 
answer and split the kept one into two separate ones. 

The number translation was based on the library 
word2number and regex. Word2number has the slight flaw 
of summing two consecutive numbers, such as "one two" 
would result in "3". Regardless of that, the library only keeps 
the number-related words, so answers such as "two large 
compartments" would be turned into "2". If the answer does 
not have number-related words, an error is thrown. When 
this case occurs, regex is used, and the numbers are translated 
into integers or, finally, float values. 

Figure 3. RoBERTa Base SQuAD 2 flow 

Having an equal number of terminal tokens and answers, we 
can now replace them one by one in the initial query, but we 
have to keep in mind whether or not it is a number or not 
since quotations are needed only for strings. 

Figure 3 describes the processes summarily. 

The Dataset 
Spider was used as the main source for training RAT-SQL. 
It is a large-scale, complex, cross-domain dataset excellent 
for natural language processing (NLP) models and 
approaches. 

As mentioned in the introductory section of the dataset, 
Spider consists of several files mandatory for training and 
evaluating machine learning models. As a prime step, we 
will look at its general structure and then at a more in-depth 
description of each file. 

Spider provides various files meant to be used in the creation 
of text-to-SQL models. The files cover the main flow for the 
training and evaluation stages. Right off the bat, the dataset 
has the following hierarchic structure: 

Figure 4. Spider dataset file architecture 

Each file has an upright importance and a unique structure , 
the hierarchal distribution of files being presented in figure 
4. Managing to create such a complex environment, the files
and their inner format, their fields to be more exact, are an
important topic to acknowledge:

• dev.json: A JSON file that contains a subset of the
Spider dataset delivered as an array specifically
designed for development and evaluation purposes;

• table.json: A JSON file that provides the structure
representation of the tables found in the Spider
dataset;

• train_others.json, train_spider.json: JSON files that
contain a subset of training data of the Spider
dataset;

• dev_gold.sql, train_gold.sql: SQL files that provide
the ideal output for the development and training
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stages conducted under the previously mentioned 
files; 

• database folder: A folder with the proper dataset as
folders containing a number of exactly two files:
schema.sql (the database structure) and
database_name.sqlite (the SQLite equivalent);

• README.txt, .DS_Store: Miscellaneous files.

EXPERIMENTAL RESULTS 
This section contains the results of testing the models 
mentioned in the implementation and design section. The 
outcomes and satisfaction will be covered, as well as the way 
the testing occurred for each machine learning model. 

RAT-SQL – BERT 
As mentioned above, due to the outstanding performance, the 
BERT version of RAT-SQL was used for the further 
investigations and usage. 
Regarding the satisfactory testing and the percentage of 
adequate results, two main approaches were applied in order 
to define them: 

• Manual testing: By entering inputs on a given data
structure;

• Against ChatGPT [13]: By comparing their outputs
based on the same data structure and context.

Manual testing and comparison represent the first, most 
important, and obvious way of testing anything. This means 
that different inputs were given, and the output queries were 
tested in an SQL environment in order to output the same 
components. 
The results did not disappoint since RAT-SQL managed to 
provide excellent results with an accuracy of 70% - 80%, as 
described in the evaluation stage of the model. The flaw that 
stood up the most is how RAT-SQL selects the fields based 
on the input. Unless specifically written, RAT-SQL will not 
choose the most appropriate displayable field. For instance, 
if the context does not ask for the name of the products, RAT-
SQL can decide to display the code, the production date, or 
any other field but the name. 

The next experimental testing was against the well-known 
ChatGPT. The experiment followed the outcome of both 
models when given a database structure and different 
requests on that particular dataset. Considering that ChatGPT 
is the reference point for our core component, RAT-SQL, the 
experiment follows the correct level of the OpenAI model. 
Considering that both the database and user-inputs were not 
changed to better suit any of the two models, the outcome 
yielded can be showcased using a table. The table below 
shows the similarities and differences between ChatGPT and 
RAT-SQL regarding the query structure and quality and the 
usage of names. The notes are provisory but crucial when 
comparing the two systems side-by-side. 

Topic RAT-SQL ChatGPT 
Similarities 

Query 
quality 

Both models provided a solid outcome. 
ChatGPT had a better performance. 

Query 
structure 

Both RAT-SQL and ChatGPT had a very 
similar approach to computing the query. 

Differences 

Qualified 
column 
names 

 It will provide 
non-crucial 
SELECT items 
unless specifically 
asked 

It will return the 
best suited fields 
based on the 
input. 

Table aliases 
 It will most likely 
not use aliases for 
tables when 
generating queries. 

It will most likely 
use the initial 
letter(s) of the 
name of the 
tables. 

Readability 
 Due to not using 
aliases, the user can 
navigate faster 
through the query. 

Having aliases, it 
becomes difficult 
to understand 
longer queries. 

Table 1. RAT-SQL vs ChatGPT 

In other words, both outcomes are usable and work perfectly 
well. The sole notable difference that stands between the two 
is the style preference. 

RoBERTa Base SQuAD 2 
RoBERTa was used as a base model to revert the 
incompleteness of the generated output of RAT-SQL, 
namely, replacing the 'terminal' keywords to the appropriate 
subject for that particular query. 

The main form of testing here was solely the manual one, 
which implied that the algorithm that englobed RoBERTa 
over some queries provided by the GOLD files. These were 
compared and evaluated one by one to sketch out any outliers 
there was. 

As RoBERTa is a question-and-answer model, the results 
depend heavily on both the question addressed and the 
context given. Having that in mind, we can already see some 
flaws in that using a QnA model when replacing certain parts 
of a query can lead to inconsistencies and wrong answers due 
to the subjective side of it. 

The most predictable errors can be overseen regarding 
extensive queries with repetitive subjects. A sample context 
would be to name the nations of which the official languages 
are English and French. The associated query contains 
repeated subjects regarding nationality etiquette; thus, 
RoBERTa is overwhelmed and replies with the same answer. 

On top of that, for the dataset above, there is also an attribute 
that says whether or not a language is official, having the 
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values 'T', for true, and 'F', for false. This leads us in another 
unknown direction: the lack of knowledge regarding the 
datatypes and annotations from the dataset. The RoBERTa 
structure is built so that it only has access to the question 
asked and the query generated by RAT-SQL. No additional 
information is provided since that is the only input RoBERTa 
requires to function. 

Last, regardless of how well the query and context are built, 
there is always room for subjective randomness. Subjective 
randomness refers to events, or in our case, events that 
cannot be predicted due to the nature of the model. A slightly 
different word in inputs can lead to totally different 
outcomes. The table below shows the context, RoBERTa 
generated answers and the preprocessed outcome of each 
concerning the cylinder subject. 

Context RoBERTa (QnA) Resulting 
query 

What is the 
maximum miles 
per gallon of the 
car with 8 
cylinders or 
produced before 
1980 ? 

Q 
cylinders is 
what?/ How 
much? 

select 
max(mpg) 
from cars_data 
where 
cylinders  = 
'miles per 
gallon' 

A miles per 
gallon 

What is the 
maximum mpg of 
the cars that had 8 
cylinders or that 
were produced 
before 1980 ? 

Q 
cylinders is 
what?/ How 
much? 

select 
max(mpg) 
from cars_data 
where 
cylinders  = 8 A 8 

Table 2. RoBERTa Base SQuAD 2 – flaws 

As we can see, the context has a slightly changed structure, 
while the base query remains the same. By far, this is the 
most vulnerable point of RoBERTa. We cannot define 
specific rules for any other context since that would require 
an in-depth evaluation and testing process. In most cases, 
RoBERTa excels in replacing and enforcing the correct 
predicate to its appropriate place. 

CONCLUSIONS 
This paper presented the flow of an application with the 
functionality of natural language to SQL translations at its 
core, along with its design, dataset, and results. The system 
can be used via the command line by those who want to 
understand better or generate queries based on a given 
context. 

The HCI aspect revolves around the accessibility approach 
with regard to the level of experience of the users. This type 
of system shall be comprised in such a manner that non-
experienced users should have access to the structured 
dataset. In other words, the system should facilitate any type 
of users, regardless of their background. 

The experiments revealed that RAT-SQL requires better 
accuracy using the BERT approach, while RoBERTa can 
have some issues in slightly different contexts, namely, 
subjective randomness. But, having more than decent 
outcomes, we can justify the coexistence of multiple purpose 
models in the same system. 

The project's current state outlines the usability of different 
models coexisting within the same environment, namely, the 
text-to-SQL translation. Despite this successful 
collaboration, there are still some limitations that persist: the 
complexity of both the user and database are a direct factor 
that may lead to erroneous outputs, the vocabulary used 
cannot be limited, thus the surging numbers of error that may 
occur and, finally, the word replacement that suffers from the 
query abstraction and context ambiguity.  

As for the foreseeable future, we are going to try to patch as 
much as possible the aforementioned drawbacks by 
expanding the training dataset or using several different 
datasets [14, 15] and improving the query analysis for word 
replacement.  
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