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ABSTRACT 

Nowadays, smartwatches have become cheaper and more 

affordable, meaning that people can integrate this 

technology and use them in their everyday life. Fortunately, 

the manufacturers enabled third party developers to build 

their own applications in order to greatly improve people’s 

life from everywhere. In this article we will discuss an 

approach to detect specific arm gestures using WearOS 

powered smart watches and a custom imported neural 

network. The main objective is to evaluate the processing 

capabilities of these new devices when working with neural 

networks, which are known to produce substantial delays 

between the moment when receiving the input and 

producing the output. The initial dataset is composed of 

three gestures described by the watch’s accelerometer and 

gyroscope, while the final product is an application that 

enables users to control a music player running on a paired 

smartphone, using just their hand movement. 
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INTRODUCTION 

We are aiming to enable people to do certain actions by 

only using their wrist via the smartwatch they are wearing. 

Since it’s very convenient to move your hand when wearing 

a smartwatch, we considered that it would be very useful to 

control some functions from the phone by just making 

gestures with your hand. 

The system should be able to perform multiple functions at 

the same time. The most important feature it must achieve 

is feeding live sensors data to the model and being able to 

quickly get the output result, to be responsive and suitable 

for the fast-paced world we live in. 

Moreover, the application should be able to quicky and 

reliably communicate its internal status via Bluetooth to 

another application installed on the user’s phone. 

Our motivation is the need to be able to control phone’s 

functions from outside, by making use of the watch’s 

sensors, especially the accelerometer and gyroscope. The 

possible applications of gesture recognition can be applied 

to many domains. Sign language recognition, Parkinson’s 

syndrome or fitness exercises are just a few of them, and 

developing applications available for common people can 

greatly increase the overall life quality of users. 

RELATED WORK 

The current existing alternatives of movement detection 

products running on WearOS are just the ones already 

provided by the smartwatch’s operating system. These 

solutions can detect basic hand gestures which are used to 

wake up the watch when the user tilts his hand.  However, 

methods of detecting gestures were researched in the past, 

with promising results. 

In paper [1], the authors developed a pattern recognition 

system for time-series signals. The scientists analyzed two 

applications of human gesture recognition: human activity 

recognition (HAR), and gesture recognition for limb 

amputations. For the first application, they used raw sensor 

input like gyroscope and accelerometers signals, while for 

limb amputations they used surface electromyography 

(sEMG). Four different deep learning models were used: a 

one-dimension convolution neural network (1-D CNN), a 

long-short term memory model (LSTM), a hybrid model 

containing one convolutional and one neural network model 

(C-RNN) and, a model containing three convolutional 

layers and three recurrent neural layers. (3+3 C-RNN). The 

resulted trained model can then be used on applications 

ranging from entertainment interfaces to prosthetic arms. 

In paper [2], the authors used the accelerometer and 

gyroscope sensor values to train a deep learning model. The 

recurrent neural network consists of multiple LSTM layers 

which receive the data mapped as a time-series. These 

layers are capable of learning long-term temporal 
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dependencies. The last layer is a softmax that calculates the 

probabilities that some specific values belong to a specific 

class.  

Article [3] had similar objectives as our project. The scope 

was to design a neural network that could be easily 

integrated into an android project. Even if the authors used 

a smartphone and not a smartwatch, a lot of good ideas and 

inspiration came to us from their work. The project purpose 

was to build a model capable of detecting tilt movements 

done by holding a phone in the hand.  

Other papers also presented similar approaches to the ones 

described above. In paper [4], using deep neural networks 

with body warn sensors describing the acceleration and 

rotation, they manage to extract various features further 

used in human activity recognition. 

Also, the authors of [5] used convolutional neural networks 

for recognizing the human activity with the help of body 

warn sensors. They also used the idea of sliding window to 

continuously detect new movements, managing to obtain an 

accuracy of 90%. 

All the approaches presented in these papers helped us 

shape a better idea on how to use Neural Networks together 

with WatchOS operating system to recognize specific hand 

gestures. As there is no publicly available dataset that can 

be used to train the network on recognizing the gestures we 

want to detect, we had to build it ourselves, on top of the 

whole detection system. 

PROBLEM DEFINITION AND ANALYSIS 

The main purpose of our endeavor was to discover a 

reliable method for combining WearOS devices with neural 

networks and create a real-time solution for recognizing 

specific user gestures. Although in the present there are 

quite a few devices from different manufacturers that are 

using WearOS, only few applications such as health 

monitoring and fitness tracking are targeting them. 

Our research’s objectives were the following: 

• Building a solid application architecture, following the 

most up to date best practices and the most recent 

technologies in this field. 

• Achieving a reliable communication channel between the 

smartwatch and the phone, while maintain a real time 

flux of messages between the two of them. 

• Recording and storing a complex and big database on the 

physical device, even though the memory capabilities are 

quite restrictive. 

• Exporting this big data in a third python application, in 

order to use it to train a fully custom neural network. 

• Importing this new neural network into the application 

and obtaining the output in almost real time. 

The problem of having a custom neural network model 

running on a physical smartwatch is quite complex, because 

such a network requires significant computing power and 

resources. Our application demonstrates the fact that users 

can control different phone functions using gestures while 

wearing a smartwatch. 

For the project demonstration we built a mp3 music player, 

and the users will be able to control the music using just 

wrist gestures. However, the potential of this kind of 

detecting application is huge, as it can be applied to medical 

or industrial fields, depending on what use-cases are 

needed. The system is built to easily integrate new data, 

new gestures and new procedures that shall be needed for 

the corresponding field of activity. 

Product Perspective 

Our research is intended to be part of a bigger system that 

puts to good use the custom gestures detection capabilities 

of the model. The implementation must be easily 

customisable and the process of inserting new gesture and 

recording new data should be as convenient as possible. 

Even though the main watch application has been created 

using a stand-alone template, it is intended to be used in 

conjunction with a phone in order to communicate the 

corresponding detected action to the overall system. 

Therefore, the following block diagram can be used to 

describe the system overall behavior: 

 

Figure 1. System’s perspective 

The flow firstly begins with the primary actor, which is also 

an important stakeholder, mainly concerned with the overall 

well-being of the whole system. The diagram then follows 

the flow of data collected from the user and stored inside 

the smartwatch app. 

The next step is the actual way of saving this data inside the 

local systems database. This database consists of different 

tables stored locally on device. 

After that, the next step is processing this data in order to 

start training and validating the model. Then, the trained 

model is imported into the smartwatch application which, in 

turn, will start feeding the neural network with new data. 
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In all this time, the system status is continuously 

communicated to the phone application via Bluetooth, that 

will send notifications to the users in order to let them know 

about all the system components and their state. 

DATA MODELLING 

The following chapter has the objective of analyzing the 

structure of the application data along with the procedures 

used when collecting this data and preparing it for training 

the custom model. This is crucial part of the system, 

especially because an appropriate database was not publicly 

available at the time of writing this paper for training the 

neural network. We made the decision on recording three 

gestures, as different as possible, because of the following 

reasons: 

• It is easier for the neural network to differentiate between 

one another, while also facilitating the learning of 

common features from the gesture of the same type. 

• Because we had to record this data manually, the number 

of recordings will be quite reduced, so the neural model 

must learn to distinguish the gestures using a modest 

sized database. 

The starting position is done by keeping the left hand, face 

up, in front of the user, near the belly. All the gestures 

should be done in approximately one second. After the 

starting position is achieved, the following gestures were 

recorded to be used in the model training: 

Up-down motion: This motion is intended to be done in a 

very simple way, as it just requires the user to raise his hand 

from the starting position to a point near the chin, then 

coming back. This movement is especially described by the 

variation of the acceleration on the Z axis. Thus, the 

accelerometer is the key sensor that will be taken into 

consideration when labeling this action. 

 

Figure 2. Up-down motion. 

Left-right motion: The second movement is the left and 

right motion. This is again a very simple gesture, and it can 

be described as moving your hand to the left 

approximatively 70 degrees, then coming back to the 

starting position. On contrast with the first movement, this 

action will engage the X and Y accelerometer axes, 

consequently making these values determinant in the 

gesture’s recognition. 

 

Figure 3. Left-right motion. 

 

Rotate-wrist motion: The third movement is the rotation 

of the wrist from the starting position about 60 degrees and 

the coming back. While the first two movements used the 

accelerometer extensively, this movement is intended to 

engage the gyroscope. 

 

Figure 4. Rotate-wrist motion. 

Data structure 

The sensors used to record the gestures are just two: the 

accelerometer and the gyroscope. The values recorded will 

consist of X, Y, Z accelerometer and gyroscope readings. 

Each gesture will be described by a collection of 

consecutive frames, where each frame will have all these 

values written above. 

A gesture will have the duration of 1 second, with a 

duration of 10 milliseconds between each data frame, up to 

a total of 100 frames. The gestures will be saved in the 

database organized in batches, where each batch represents 

a gesture of a certain type with 100 consecutive frames.  

Each Batch will have a type corresponding to the label 

assigned for that gesture. Using these values, the data will 

be further processed and fed to the neural network.  

The data will be stored on the local device and will consist 

of two tables, the Batch and Measurement. The 

Measurement will store the sensor values. It will also have 

a reference to a particular gesture, in order to not lose track 

of the gesture’s measurements. 

The id of the gesture and the gesture’s type is stored in the 

Batch class. This is the class referenced by the 

Measurement. Each gesture is then mapped to a batch, and 

each batch will have 100 measurements corresponding to 

them. This diagram describes the relation between these 

entities: 
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Data collection procedure 

The data collection procedure is quite straightforward and 

simple. The user will have to firstly put the watch on their 

wrist. After that, they will be able to choose which kind of 

gesture they want to record. After choosing the type of 

gesture, the watch will start recording the data. 

In order to register only the gesture data, as much as 

possible, there is a movement intensity threshold that needs 

to be surpassed before the watch will start recording the 

gesture. This setup will prevent recording when the user 

touches the watch to select the gesture type or to initiate the 

recording. The limit is small, so as soon as a more 

prominent movement is detected, the watch will start saving 

the recording. 

 

Figure 5. Database Diagram 

However, the watch always listens to the sensors readings 

and keeps track of the last 15 values recorded. When the 

threshold is triggered, these readings will be automatically 

introduced in the start of the time series, in order to better 

monitor the beginning of each gesture. 

When the data for the gestures has been recorded the watch 

was placed on the left-hand. As the accelerometer and 

gyroscope axis are changing direction when wearing the 

device on the right hand, recorded data cannot be used to 

recognize gestures described with the right hand. We have 

collected a total of approximately 600 instances, 200 for 

each of the three gestures mentioned above. Each of them 

was done from the starting position, while sitting still on a 

chair. All the gestures were recorded on one of the authors. 

NEURAL NETWORK MODELLING 

This research focuses on using a supervised learning 

approach, because all the gestures are labeled beforehand, 

and the goal is to find common patterns in the data in order 

to be able to consistently classify gestures. To do this, have 

tried different configurations of neural networks and have 

chosen one that balances accuracy with processing speed. 

The deep learning models are defined by a collection of 

blocks named layers, which are interconnected and used to 

find common patterns between the input data. As presented 

in the book [6], the neural model is inspired by the way 

human brain functions. However, the easiest definition of a 

neuron in a neural network can be expressed as a function 

that maps the given input to the desired output. The neuron 

receives a set of input data, applies different weights, and 

tries to obtain the desired output. 

Neural networks are essentially functions approximators. 

This means that if we were given an arbitrary function, the 

neural networks can represent it, no matter how complex or 

arbitrary the function may be. The neural networks are also 

scalable and flexible, because we can stack more layers, 

provide different types of activation functions and we can 

tweak neurons parameters in order to fully suit our needs. 

The neural network used in this research is a feedforward 

neural network, also known as a multilayer perceptron [7]. 

This network consists of several dense layers with a 

variable number of neurons, where each neuron computes 

the weighted sum of the inputs and applies an activation 

function to produce the output.  

The sequential model built lets us stack layer after layer on 

top of each other. The first one is the input layer. Since the 

input data is an array of 100 elements, each of them having 

the acceleration and the rotation on X, Y, Z, the shape of 

the input data is (100, 6). Then, there are two dense layers 

with 20 and 5 neurons respectively. These neurons have the 

RELU activation function, detailed in [8]. In summary, this 

function ensures backpropagation and empowers the model 

to learn complex data patterns. As mentioned, we have 

tested with different number of neurons, but in the end this 

configuration gave the best results. The last two layers are 

the Flatten layer and another Dense layer. The flatten is 

used to make the input for the previous layer as a just one 

array in order to be fed to the last layer. The last layer has a 

softmax activation function, which outputs the probability 

of each specific class and is usually used in this kind of 

multi class problems. 

This neural network was implemented with the help of 

Keras framework. More information on this subject can be 

found in [9] and [6]. 

The model was further converted to a tflite file which was 

imported into the watch application. The watch then feeds 

sensor data to the model and expects its output. Then, it 

forwards the detected gesture to the phone application, 

which based on the interpretation associated with the 

gesture, will change/pause/resume the music. 

APPLICATION DESIGN AND IMPLEMENTATION 

Android Platform 

Android is an operating system developed by Google for 

mobile devices such as smartphones and tablets. It is based 

on a modified version of the Linux kernel. The most 

important components of any Android application are the 

activities [10].  Unlike desktop applications, which usually 

have the entry point the main() method, an Android 

application have a special main activity which is used as the 

first screen. Usually, every activity implements a screen, so 
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an application consists of many other activities that transmit 

information between them and let the user navigate between 

several screens in order accomplish his task. Every activity 

has a lifecycle associated with it, which describes the way 

that activity performs in certain moments in time, 

depending on the user’s action. 

WearOS Platform 

WearOS is an operating system for smart watches, 

developed and maintained by Google. Many manufacturers 

have produced compatible watches, just like in the case 

with Android phones. They were made in order to benefit 

of call answering, notification managing, vital signs 

monitoring or fitness tracking.  

The Android platform and the WearOS platform share a lot 

of common features and lifecycle aspects. The application 

model is also composed of activities and fragments, both 

having the same behavior between the two platforms. 

However, since the display is considerably smaller and the 

resources are quite limited, the platform developers 

encourage prioritizing the usage of activities rather than 

fragments. Moreover, there are also some other principles 

and advice that should be taken into consideration when 

developing an application for the smartwatch platform [11]. 

The Android and WearOS applications are built using 

native technologies, frameworks and Kotlin as the main 

programming language. The software architectural pattern 

used is Model–View–ViewModel, also known as MVVM 

(see Figure 6). 

 

 

Figure 6. MVVM 

In MVVM, each component has its own separate 

responsibilities: 

The Model is used to encapsulate the application data and 

provide methods to access, edit or delete it. This model 

describes directly the base entities used through the 

application, together with the data access objects which can 

make operations on these entities. The Model does not have 

any knowledge of the View or the ViewModel, being 

completely independent. 

The View is responsible with the layouts that are used to 

display the User-Interface. The framework used to draw the 

UI elements on the screen is Jetpack Compose, the latest 

method of describing UI components promoted by Google. 

The view is used to provide user input to the ViewModel, 

while receiving data from the ViewModel and presenting it 

to the user. 

The ViewModel is the intermediary layer between the two 

presented above. It manipulates the data provided by the 

Model and forwards it to the View for display. It also 

handles the user input given by the View and updates the 

Model accordingly to the user needs. 

Data transfer 

There are three main aspects regarding the flow of data. 

The first problem is exporting the database containing all 

the recorded sensors values from the watch and use it for 

training the neural network. The second relates to importing 

the trained neural network into the watch and building a 

compatible model file for this. The third aspect focuses on 

the data transfer between the watch and the phone, in order 

to properly communicate the detected gestures. 

As in this stage we have focused more on the second and 

third points, we have chosen to manually transfer the data 

from the watch to the environment for training the neural 

network. The data has been exported from the device in 

CSV files, using the database inspector from Android 

Studio. 

For integrating the trained neural network model inside the 

application, we have converted the built Keras model into a 

TensorFlow Lite model, because this format is compatible 

with Kotlin mobile applications. TesorFlow Lite is the 

lightweight version of the TensorFlow framework 

specifically developed for devices with limited resources, 

like mobile phones. For the conversion we have followed 

the online documentation describing how can a Keras 

model be transformed into a TF Lite model [12]. The author 

of [13] also presented a method of building a neural 

network and the steps required in integrating this model in 

an Android application. After successfully converting the 

model, the tflite file has been imported into the android 

project, taking inspiration from the method presented in 

[14]. The file was added to the assets folder of the 

application and could be used with the help of the 

TensorFlow Lite framework. 

For establishing the Bluetooth communication channel, I 

used the Message Client API [15] provided by Android 

Wear. This works by sending one-way messages between 

devices. Each connected device in the Bluetooth network is 

referred as a node, the API sending messages to those 

nodes.  

For finding where to send the message, each node in the 

network must advertise itself. This is known as capability 

advertising. The nodes capabilities are represented by an 

array of strings in the application manifest. For sending a 

message, an application must find the correct node with his 

corresponding capability. After identifying the required 

node, the current application will be able to send messages. 

In order to receive messages, the other application must 

have a listener associated that waits for messages to be 

detected. When a message is received, the application will 

be able to further process its information. 



Proceedings of RoCHI 2023 

 52 

TESTING AND VALIDATION 

Model Performance on Training Data 

The training was done in 10 epochs, the following graph 

describing its accuracy: 

As we can see, the results are good, the model achieving an 

accuracy of 100%. This accuracy is achieved both on the 

training data and the validation data. As expected, the 

validation accuracy follows the training accuracy, meaning 

the model didn’t suffer of overfitting. However, we need to 

keep in mind that this accuracy does not tell us all about the 

model. This is calculated with the highest value of 

probability, meaning that if we would have, for example, 

the accuracy [0.25, 0.35, 0.40] and the correct label is the 

third, then this result will be taken as a good result, even 

though the model is only 40% sure that the gesture is the 

third one. 

 

Figure 7. Model Accuracy 

Another good metric that measures this error is the loss 

graph: 

 

Figure 8. Model Loss 

This loss is calculated with the negative logarithm of the 

predicted value, penalizing the instances with low 

probability. As we can see, the model loss decreases with 

the epoch, and almost reaches 0 at the end of the 10th epoch. 

Model Performance in Real World 

In the following phase, we have done some tests in real 

world. For the first test, we have empirically verified the 

probability threshold where the model begins to have 

problems in recognizing gestures. For that, 20 gestures of 

each type have been performed for each of the specific 

threshold values, and the result recorded. In the following 

graph the Y axis is the overall accuracy, while on the X axis 

are the threshold values which have been tested. At each 

step, any gesture which had a probability value under that 

given threshold will be label as “Unrecognized Gesture”. 

 

Figure 9. Threshold Accuracy 

After this testing, we have decided to set the threshold at 

0.80. We consider this to be better than just taking the 

gesture classified by the neural network with the highest 

probability, because it can better filter out the random 

movements that does not actually fit in any of the validated 

gestures. Our main aim here has been to find a balance 

point between the risk of not recognizing a valid gesture 

and the one of considering any user movement as one of the 

validated gestures. 

The next test performed was focused on testing the 

performance of the neural network on a different user than 

the one who recorded the training data. In our case, all the 

training data was taken from one person, so it’s interesting 

in seeing the model performance on someone else.  

Consequently, we had another user do 100 gestures of each 

type from the sitting position. In Table 1 you can see the 

achieved results in terms of percent of the correctly 

recognized gestures: 

Up-Down Left -Right Rotation Overall 

74 82 86 80,6 

Table 1. Other person accuracy 

As expected, the accuracy drops, but the model is still 

capable of giving the correct result in most cases. 

For the last test, we have verified the model performance 

when moving. As all the training and testing data has been 

recorded while sitting, we wanted to see how the 
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application behaves when the sensors are influenced by 

everyday movement. For this test, the same user who 

recorded the training data has performed 100 gestures of 

each type while walking. This were the results: 

Up-Down Left -Right Rotation Overall 

74 89 88 83,6 

Table 2. Accuracy while walking 

 

In conclusion, the custom trained model used with a 

probability threshold of 80% for gesture recognition 

confidence, manages to correctly identify the gestures made 

by a new user with an accuracy of 80,6%, and to recognize 

the gestures while walking with an accuracy of 83,6%. 

It’s also worth mentioning that the output is given almost 

instantly, and in less than half a second the message is sent 

to the phone, which means that the application is overall 

responsive enough to not produce any kind of confusion. 

CONCLUSION 

The idea of detecting and interpreting wrist gestures is not 

new, but there are only a few papers that research this kind 

of interaction, and we think that there are a lot of 

opportunities in this field that wait to be discovered. Having 

an application that can be easily integrated and used on 

common affordable devices will accelerate the research 

done on this subject, without needing any other special 

equipment or knowledge. 

The work presented in this article demonstrates an approach 

on using neural networks together with WearOS powered 

devices, to recognize specific hand-made gestures. We have 

highlighted all the necessary steps required to create such a 

functionality from scratch: (1) record data for training, (2) 

transfer the data to the training environment, (3) integrate 

the neural network into the watch application, and (4) use 

the output of the network in a real-life scenario. In our 

view, the proposed solution can be easily extended with 

new gestures and adapted to many other different use 

scenarios. 

According to the limited testing that we have performed so 

far, proposed approach proves to be resilient to context 

changes. The 80% accuracy when a new person interacts 

with the system or when the user is performing different 

simultaneous movements is not an overwhelming result but 

gives us a good indication on the improvement capabilities. 

Having a larger and more variate dataset for training will, 

most likely, improve these results significantly. 

Next, we will focus on recording data from a larger number 

of users, train the neural network and re-evaluate the 

performance while recording not only the percentage of 

correctly identified gestures but also the false positives 

generated by usual user activity.  
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