
Proceedings of RoCHI 2023

 47

Hand Gestures Recognition Using a WearOS Smart Watch
and Deep Learning

Mihai Fleșer 1, 2

1 SC X2 Mobile Development SRL
37 King Ferdinand Street, 400027,

Cluj-Napoca, Romania,

2 Technical University of Cluj-Napoca
Cluj-Napoca, Romania

mihaifleser@gmail.com

Teodor Ștefănuț

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

teodor.stefanut@cs.utcluj.ro

ABSTRACT

Nowadays, smartwatches have become cheaper and more

affordable, meaning that people can integrate this

technology and use them in their everyday life. Fortunately,

the manufacturers enabled third party developers to build

their own applications in order to greatly improve people’s

life from everywhere. In this article we will discuss an

approach to detect specific arm gestures using WearOS

powered smart watches and a custom imported neural

network. The main objective is to evaluate the processing

capabilities of these new devices when working with neural

networks, which are known to produce substantial delays

between the moment when receiving the input and

producing the output. The initial dataset is composed of

three gestures described by the watch’s accelerometer and

gyroscope, while the final product is an application that

enables users to control a music player running on a paired

smartphone, using just their hand movement.

Author Keywords

WearOS; Movement Classification; Neural Network;

Wearable sensors; Deep Learning; Time-series signal

processing.

ACM Classification Keywords

Machine learning

DOI: 10.37789/rochi.2023.1.1.8

INTRODUCTION

We are aiming to enable people to do certain actions by

only using their wrist via the smartwatch they are wearing.

Since it’s very convenient to move your hand when wearing

a smartwatch, we considered that it would be very useful to

control some functions from the phone by just making

gestures with your hand.

The system should be able to perform multiple functions at

the same time. The most important feature it must achieve

is feeding live sensors data to the model and being able to

quickly get the output result, to be responsive and suitable

for the fast-paced world we live in.

Moreover, the application should be able to quicky and

reliably communicate its internal status via Bluetooth to

another application installed on the user’s phone.

Our motivation is the need to be able to control phone’s

functions from outside, by making use of the watch’s

sensors, especially the accelerometer and gyroscope. The

possible applications of gesture recognition can be applied

to many domains. Sign language recognition, Parkinson’s

syndrome or fitness exercises are just a few of them, and

developing applications available for common people can

greatly increase the overall life quality of users.

RELATED WORK

The current existing alternatives of movement detection

products running on WearOS are just the ones already

provided by the smartwatch’s operating system. These

solutions can detect basic hand gestures which are used to

wake up the watch when the user tilts his hand. However,

methods of detecting gestures were researched in the past,

with promising results.

In paper [1], the authors developed a pattern recognition

system for time-series signals. The scientists analyzed two

applications of human gesture recognition: human activity

recognition (HAR), and gesture recognition for limb

amputations. For the first application, they used raw sensor

input like gyroscope and accelerometers signals, while for

limb amputations they used surface electromyography

(sEMG). Four different deep learning models were used: a

one-dimension convolution neural network (1-D CNN), a

long-short term memory model (LSTM), a hybrid model

containing one convolutional and one neural network model

(C-RNN) and, a model containing three convolutional

layers and three recurrent neural layers. (3+3 C-RNN). The

resulted trained model can then be used on applications

ranging from entertainment interfaces to prosthetic arms.

In paper [2], the authors used the accelerometer and

gyroscope sensor values to train a deep learning model. The

recurrent neural network consists of multiple LSTM layers

which receive the data mapped as a time-series. These

layers are capable of learning long-term temporal

Proceedings of RoCHI 2023

 48

dependencies. The last layer is a softmax that calculates the

probabilities that some specific values belong to a specific

class.

Article [3] had similar objectives as our project. The scope

was to design a neural network that could be easily

integrated into an android project. Even if the authors used

a smartphone and not a smartwatch, a lot of good ideas and

inspiration came to us from their work. The project purpose

was to build a model capable of detecting tilt movements

done by holding a phone in the hand.

Other papers also presented similar approaches to the ones

described above. In paper [4], using deep neural networks

with body warn sensors describing the acceleration and

rotation, they manage to extract various features further

used in human activity recognition.

Also, the authors of [5] used convolutional neural networks

for recognizing the human activity with the help of body

warn sensors. They also used the idea of sliding window to

continuously detect new movements, managing to obtain an

accuracy of 90%.

All the approaches presented in these papers helped us

shape a better idea on how to use Neural Networks together

with WatchOS operating system to recognize specific hand

gestures. As there is no publicly available dataset that can

be used to train the network on recognizing the gestures we

want to detect, we had to build it ourselves, on top of the

whole detection system.

PROBLEM DEFINITION AND ANALYSIS

The main purpose of our endeavor was to discover a

reliable method for combining WearOS devices with neural

networks and create a real-time solution for recognizing

specific user gestures. Although in the present there are

quite a few devices from different manufacturers that are

using WearOS, only few applications such as health

monitoring and fitness tracking are targeting them.

Our research’s objectives were the following:

• Building a solid application architecture, following the

most up to date best practices and the most recent

technologies in this field.

• Achieving a reliable communication channel between the

smartwatch and the phone, while maintain a real time

flux of messages between the two of them.

• Recording and storing a complex and big database on the

physical device, even though the memory capabilities are

quite restrictive.

• Exporting this big data in a third python application, in

order to use it to train a fully custom neural network.

• Importing this new neural network into the application

and obtaining the output in almost real time.

The problem of having a custom neural network model

running on a physical smartwatch is quite complex, because

such a network requires significant computing power and

resources. Our application demonstrates the fact that users

can control different phone functions using gestures while

wearing a smartwatch.

For the project demonstration we built a mp3 music player,

and the users will be able to control the music using just

wrist gestures. However, the potential of this kind of

detecting application is huge, as it can be applied to medical

or industrial fields, depending on what use-cases are

needed. The system is built to easily integrate new data,

new gestures and new procedures that shall be needed for

the corresponding field of activity.

Product Perspective

Our research is intended to be part of a bigger system that

puts to good use the custom gestures detection capabilities

of the model. The implementation must be easily

customisable and the process of inserting new gesture and

recording new data should be as convenient as possible.

Even though the main watch application has been created

using a stand-alone template, it is intended to be used in

conjunction with a phone in order to communicate the

corresponding detected action to the overall system.

Therefore, the following block diagram can be used to

describe the system overall behavior:

Figure 1. System’s perspective

The flow firstly begins with the primary actor, which is also

an important stakeholder, mainly concerned with the overall

well-being of the whole system. The diagram then follows

the flow of data collected from the user and stored inside

the smartwatch app.

The next step is the actual way of saving this data inside the

local systems database. This database consists of different

tables stored locally on device.

After that, the next step is processing this data in order to

start training and validating the model. Then, the trained

model is imported into the smartwatch application which, in

turn, will start feeding the neural network with new data.

Proceedings of RoCHI 2023

 49

In all this time, the system status is continuously

communicated to the phone application via Bluetooth, that

will send notifications to the users in order to let them know

about all the system components and their state.

DATA MODELLING

The following chapter has the objective of analyzing the

structure of the application data along with the procedures

used when collecting this data and preparing it for training

the custom model. This is crucial part of the system,

especially because an appropriate database was not publicly

available at the time of writing this paper for training the

neural network. We made the decision on recording three

gestures, as different as possible, because of the following

reasons:

• It is easier for the neural network to differentiate between

one another, while also facilitating the learning of

common features from the gesture of the same type.

• Because we had to record this data manually, the number

of recordings will be quite reduced, so the neural model

must learn to distinguish the gestures using a modest

sized database.

The starting position is done by keeping the left hand, face

up, in front of the user, near the belly. All the gestures

should be done in approximately one second. After the

starting position is achieved, the following gestures were

recorded to be used in the model training:

Up-down motion: This motion is intended to be done in a

very simple way, as it just requires the user to raise his hand

from the starting position to a point near the chin, then

coming back. This movement is especially described by the

variation of the acceleration on the Z axis. Thus, the

accelerometer is the key sensor that will be taken into

consideration when labeling this action.

Figure 2. Up-down motion.

Left-right motion: The second movement is the left and

right motion. This is again a very simple gesture, and it can

be described as moving your hand to the left

approximatively 70 degrees, then coming back to the

starting position. On contrast with the first movement, this

action will engage the X and Y accelerometer axes,

consequently making these values determinant in the

gesture’s recognition.

Figure 3. Left-right motion.

Rotate-wrist motion: The third movement is the rotation

of the wrist from the starting position about 60 degrees and

the coming back. While the first two movements used the

accelerometer extensively, this movement is intended to

engage the gyroscope.

Figure 4. Rotate-wrist motion.

Data structure

The sensors used to record the gestures are just two: the

accelerometer and the gyroscope. The values recorded will

consist of X, Y, Z accelerometer and gyroscope readings.

Each gesture will be described by a collection of

consecutive frames, where each frame will have all these

values written above.

A gesture will have the duration of 1 second, with a

duration of 10 milliseconds between each data frame, up to

a total of 100 frames. The gestures will be saved in the

database organized in batches, where each batch represents

a gesture of a certain type with 100 consecutive frames.

Each Batch will have a type corresponding to the label

assigned for that gesture. Using these values, the data will

be further processed and fed to the neural network.

The data will be stored on the local device and will consist

of two tables, the Batch and Measurement. The

Measurement will store the sensor values. It will also have

a reference to a particular gesture, in order to not lose track

of the gesture’s measurements.

The id of the gesture and the gesture’s type is stored in the

Batch class. This is the class referenced by the

Measurement. Each gesture is then mapped to a batch, and

each batch will have 100 measurements corresponding to

them. This diagram describes the relation between these

entities:

Proceedings of RoCHI 2023

 50

Data collection procedure

The data collection procedure is quite straightforward and

simple. The user will have to firstly put the watch on their

wrist. After that, they will be able to choose which kind of

gesture they want to record. After choosing the type of

gesture, the watch will start recording the data.

In order to register only the gesture data, as much as

possible, there is a movement intensity threshold that needs

to be surpassed before the watch will start recording the

gesture. This setup will prevent recording when the user

touches the watch to select the gesture type or to initiate the

recording. The limit is small, so as soon as a more

prominent movement is detected, the watch will start saving

the recording.

Figure 5. Database Diagram

However, the watch always listens to the sensors readings

and keeps track of the last 15 values recorded. When the

threshold is triggered, these readings will be automatically

introduced in the start of the time series, in order to better

monitor the beginning of each gesture.

When the data for the gestures has been recorded the watch

was placed on the left-hand. As the accelerometer and

gyroscope axis are changing direction when wearing the

device on the right hand, recorded data cannot be used to

recognize gestures described with the right hand. We have

collected a total of approximately 600 instances, 200 for

each of the three gestures mentioned above. Each of them

was done from the starting position, while sitting still on a

chair. All the gestures were recorded on one of the authors.

NEURAL NETWORK MODELLING

This research focuses on using a supervised learning

approach, because all the gestures are labeled beforehand,

and the goal is to find common patterns in the data in order

to be able to consistently classify gestures. To do this, have

tried different configurations of neural networks and have

chosen one that balances accuracy with processing speed.

The deep learning models are defined by a collection of

blocks named layers, which are interconnected and used to

find common patterns between the input data. As presented

in the book [6], the neural model is inspired by the way

human brain functions. However, the easiest definition of a

neuron in a neural network can be expressed as a function

that maps the given input to the desired output. The neuron

receives a set of input data, applies different weights, and

tries to obtain the desired output.

Neural networks are essentially functions approximators.

This means that if we were given an arbitrary function, the

neural networks can represent it, no matter how complex or

arbitrary the function may be. The neural networks are also

scalable and flexible, because we can stack more layers,

provide different types of activation functions and we can

tweak neurons parameters in order to fully suit our needs.

The neural network used in this research is a feedforward

neural network, also known as a multilayer perceptron [7].

This network consists of several dense layers with a

variable number of neurons, where each neuron computes

the weighted sum of the inputs and applies an activation

function to produce the output.

The sequential model built lets us stack layer after layer on

top of each other. The first one is the input layer. Since the

input data is an array of 100 elements, each of them having

the acceleration and the rotation on X, Y, Z, the shape of

the input data is (100, 6). Then, there are two dense layers

with 20 and 5 neurons respectively. These neurons have the

RELU activation function, detailed in [8]. In summary, this

function ensures backpropagation and empowers the model

to learn complex data patterns. As mentioned, we have

tested with different number of neurons, but in the end this

configuration gave the best results. The last two layers are

the Flatten layer and another Dense layer. The flatten is

used to make the input for the previous layer as a just one

array in order to be fed to the last layer. The last layer has a

softmax activation function, which outputs the probability

of each specific class and is usually used in this kind of

multi class problems.

This neural network was implemented with the help of

Keras framework. More information on this subject can be

found in [9] and [6].

The model was further converted to a tflite file which was

imported into the watch application. The watch then feeds

sensor data to the model and expects its output. Then, it

forwards the detected gesture to the phone application,

which based on the interpretation associated with the

gesture, will change/pause/resume the music.

APPLICATION DESIGN AND IMPLEMENTATION

Android Platform

Android is an operating system developed by Google for

mobile devices such as smartphones and tablets. It is based

on a modified version of the Linux kernel. The most

important components of any Android application are the

activities [10]. Unlike desktop applications, which usually

have the entry point the main() method, an Android

application have a special main activity which is used as the

first screen. Usually, every activity implements a screen, so

Proceedings of RoCHI 2023

 51

an application consists of many other activities that transmit

information between them and let the user navigate between

several screens in order accomplish his task. Every activity

has a lifecycle associated with it, which describes the way

that activity performs in certain moments in time,

depending on the user’s action.

WearOS Platform

WearOS is an operating system for smart watches,

developed and maintained by Google. Many manufacturers

have produced compatible watches, just like in the case

with Android phones. They were made in order to benefit

of call answering, notification managing, vital signs

monitoring or fitness tracking.

The Android platform and the WearOS platform share a lot

of common features and lifecycle aspects. The application

model is also composed of activities and fragments, both

having the same behavior between the two platforms.

However, since the display is considerably smaller and the

resources are quite limited, the platform developers

encourage prioritizing the usage of activities rather than

fragments. Moreover, there are also some other principles

and advice that should be taken into consideration when

developing an application for the smartwatch platform [11].

The Android and WearOS applications are built using

native technologies, frameworks and Kotlin as the main

programming language. The software architectural pattern

used is Model–View–ViewModel, also known as MVVM

(see Figure 6).

Figure 6. MVVM

In MVVM, each component has its own separate

responsibilities:

The Model is used to encapsulate the application data and

provide methods to access, edit or delete it. This model

describes directly the base entities used through the

application, together with the data access objects which can

make operations on these entities. The Model does not have

any knowledge of the View or the ViewModel, being

completely independent.

The View is responsible with the layouts that are used to

display the User-Interface. The framework used to draw the

UI elements on the screen is Jetpack Compose, the latest

method of describing UI components promoted by Google.

The view is used to provide user input to the ViewModel,

while receiving data from the ViewModel and presenting it

to the user.

The ViewModel is the intermediary layer between the two

presented above. It manipulates the data provided by the

Model and forwards it to the View for display. It also

handles the user input given by the View and updates the

Model accordingly to the user needs.

Data transfer

There are three main aspects regarding the flow of data.

The first problem is exporting the database containing all

the recorded sensors values from the watch and use it for

training the neural network. The second relates to importing

the trained neural network into the watch and building a

compatible model file for this. The third aspect focuses on

the data transfer between the watch and the phone, in order

to properly communicate the detected gestures.

As in this stage we have focused more on the second and

third points, we have chosen to manually transfer the data

from the watch to the environment for training the neural

network. The data has been exported from the device in

CSV files, using the database inspector from Android

Studio.

For integrating the trained neural network model inside the

application, we have converted the built Keras model into a

TensorFlow Lite model, because this format is compatible

with Kotlin mobile applications. TesorFlow Lite is the

lightweight version of the TensorFlow framework

specifically developed for devices with limited resources,

like mobile phones. For the conversion we have followed

the online documentation describing how can a Keras

model be transformed into a TF Lite model [12]. The author

of [13] also presented a method of building a neural

network and the steps required in integrating this model in

an Android application. After successfully converting the

model, the tflite file has been imported into the android

project, taking inspiration from the method presented in

[14]. The file was added to the assets folder of the

application and could be used with the help of the

TensorFlow Lite framework.

For establishing the Bluetooth communication channel, I

used the Message Client API [15] provided by Android

Wear. This works by sending one-way messages between

devices. Each connected device in the Bluetooth network is

referred as a node, the API sending messages to those

nodes.

For finding where to send the message, each node in the

network must advertise itself. This is known as capability

advertising. The nodes capabilities are represented by an

array of strings in the application manifest. For sending a

message, an application must find the correct node with his

corresponding capability. After identifying the required

node, the current application will be able to send messages.

In order to receive messages, the other application must

have a listener associated that waits for messages to be

detected. When a message is received, the application will

be able to further process its information.

Proceedings of RoCHI 2023

 52

TESTING AND VALIDATION

Model Performance on Training Data

The training was done in 10 epochs, the following graph

describing its accuracy:

As we can see, the results are good, the model achieving an

accuracy of 100%. This accuracy is achieved both on the

training data and the validation data. As expected, the

validation accuracy follows the training accuracy, meaning

the model didn’t suffer of overfitting. However, we need to

keep in mind that this accuracy does not tell us all about the

model. This is calculated with the highest value of

probability, meaning that if we would have, for example,

the accuracy [0.25, 0.35, 0.40] and the correct label is the

third, then this result will be taken as a good result, even

though the model is only 40% sure that the gesture is the

third one.

Figure 7. Model Accuracy

Another good metric that measures this error is the loss

graph:

Figure 8. Model Loss

This loss is calculated with the negative logarithm of the

predicted value, penalizing the instances with low

probability. As we can see, the model loss decreases with

the epoch, and almost reaches 0 at the end of the 10th epoch.

Model Performance in Real World

In the following phase, we have done some tests in real

world. For the first test, we have empirically verified the

probability threshold where the model begins to have

problems in recognizing gestures. For that, 20 gestures of

each type have been performed for each of the specific

threshold values, and the result recorded. In the following

graph the Y axis is the overall accuracy, while on the X axis

are the threshold values which have been tested. At each

step, any gesture which had a probability value under that

given threshold will be label as “Unrecognized Gesture”.

Figure 9. Threshold Accuracy

After this testing, we have decided to set the threshold at

0.80. We consider this to be better than just taking the

gesture classified by the neural network with the highest

probability, because it can better filter out the random

movements that does not actually fit in any of the validated

gestures. Our main aim here has been to find a balance

point between the risk of not recognizing a valid gesture

and the one of considering any user movement as one of the

validated gestures.

The next test performed was focused on testing the

performance of the neural network on a different user than

the one who recorded the training data. In our case, all the

training data was taken from one person, so it’s interesting

in seeing the model performance on someone else.

Consequently, we had another user do 100 gestures of each

type from the sitting position. In Table 1 you can see the

achieved results in terms of percent of the correctly

recognized gestures:

Up-Down Left -Right Rotation Overall

74 82 86 80,6

Table 1. Other person accuracy

As expected, the accuracy drops, but the model is still

capable of giving the correct result in most cases.

For the last test, we have verified the model performance

when moving. As all the training and testing data has been

recorded while sitting, we wanted to see how the

Proceedings of RoCHI 2023

 53

application behaves when the sensors are influenced by

everyday movement. For this test, the same user who

recorded the training data has performed 100 gestures of

each type while walking. This were the results:

Up-Down Left -Right Rotation Overall

74 89 88 83,6

Table 2. Accuracy while walking

In conclusion, the custom trained model used with a

probability threshold of 80% for gesture recognition

confidence, manages to correctly identify the gestures made

by a new user with an accuracy of 80,6%, and to recognize

the gestures while walking with an accuracy of 83,6%.

It’s also worth mentioning that the output is given almost

instantly, and in less than half a second the message is sent

to the phone, which means that the application is overall

responsive enough to not produce any kind of confusion.

CONCLUSION

The idea of detecting and interpreting wrist gestures is not

new, but there are only a few papers that research this kind

of interaction, and we think that there are a lot of

opportunities in this field that wait to be discovered. Having

an application that can be easily integrated and used on

common affordable devices will accelerate the research

done on this subject, without needing any other special

equipment or knowledge.

The work presented in this article demonstrates an approach

on using neural networks together with WearOS powered

devices, to recognize specific hand-made gestures. We have

highlighted all the necessary steps required to create such a

functionality from scratch: (1) record data for training, (2)

transfer the data to the training environment, (3) integrate

the neural network into the watch application, and (4) use

the output of the network in a real-life scenario. In our

view, the proposed solution can be easily extended with

new gestures and adapted to many other different use

scenarios.

According to the limited testing that we have performed so

far, proposed approach proves to be resilient to context

changes. The 80% accuracy when a new person interacts

with the system or when the user is performing different

simultaneous movements is not an overwhelming result but

gives us a good indication on the improvement capabilities.

Having a larger and more variate dataset for training will,

most likely, improve these results significantly.

Next, we will focus on recording data from a larger number

of users, train the neural network and re-evaluate the

performance while recording not only the percentage of

correctly identified gestures but also the false positives

generated by usual user activity.

ACKNOWLEDGMENT

This research has been partially supported by the

CLOUDUT Project, cofunded by the European Fund of

Regional Development through the Competitiveness

Operational Programme 2014-2020, contract no. 235/2020.

REFERENCES

1. Xie Baao; Li Baihua; Harland Andy, „Movement and

gesture recognition using deep learning and wearable-

sensor technology,” în International Conference on

Artificial Intelligence and Pattern Recognition 2018

2. Carfì Alessandro; Motolese Carola; Bruno Barbara;

Mastrogiovanni Fulvio, Online Human Gesture

Recognition using Recurrent Neural Networks and

Wearable Sensors, 2018.

3. R. Yanchyshyn, Motion Gesture Detection Using

Tensorflow on Android,

https://lembergsolutions.com/blog/motion-gesture-

detection-using-tensorflow-android.

4. Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng,

Lisha Hu, „Deep Learning for Sensor-based Activity

Recognition: A Survey,” 2017.

5. Fernando Moya Rueda, René Grzeszick, Gernot A.

Fink, Sascha Feldhorst, Michael Ten Hompel,

„Convolutional Neural Networks for Human Activity

Recognition Using Body-Worn Sensors,” Sensor-Based

Activity Recognition and Interaction, 2018.

6. J. Loy, Neural Network Projects with Python: The

ultimate guide to using Python to explore the true power

of neural networks through six projects, Packt

Publishing Ltd, 2019.

7. Tamouridou, A.A.; Pantazi, X.E.; Alexandridis, T.;

Lagopodi, A.; Kontouris, G.; Moshou, D. Spectral

Identification of Disease in Weeds Using Multilayer

Perceptron with Automatic Relevance Determination.

Sensors 2018, 18, 2770.

8. P. Baheti, Activation Functions in Neural Networks,

https://www.v7labs.com/blog/neural-networks-

activation-

functions#:~:text=An%20Activation%20Function%20d

ecides%20whether,prediction%20using%20simpler%20

mathematical%20operations.

9. Vasilev Ivan; Slater Daniel; Spacagna Gianmario;

Roelants Peter; Zocca Valentino, Python Deep

Learning: Exploring deep learning techniques and neural

network architectures with Pytorch, Keras, and

TensorFlow, Packt Publishing Ltd, 2019.

10. Google, Introduction to activities,

https://developer.android.com/guide/components/activiti

es/intro-activities.

11. Renju Liu, Renju Liu, „Understanding the

Characteristics of Android Wear OS,” Purdue ECE,

2016.

https://lembergsolutions.com/blog/motion-gesture-detection-using-tensorflow-android
https://lembergsolutions.com/blog/motion-gesture-detection-using-tensorflow-android
https://www.v7labs.com/blog/neural-networks-activation-functions#:~:text=An%20Activation%20Function%20decides%20whether,prediction%20using%20simpler%20mathematical%20operations
https://www.v7labs.com/blog/neural-networks-activation-functions#:~:text=An%20Activation%20Function%20decides%20whether,prediction%20using%20simpler%20mathematical%20operations
https://www.v7labs.com/blog/neural-networks-activation-functions#:~:text=An%20Activation%20Function%20decides%20whether,prediction%20using%20simpler%20mathematical%20operations
https://www.v7labs.com/blog/neural-networks-activation-functions#:~:text=An%20Activation%20Function%20decides%20whether,prediction%20using%20simpler%20mathematical%20operations
https://www.v7labs.com/blog/neural-networks-activation-functions#:~:text=An%20Activation%20Function%20decides%20whether,prediction%20using%20simpler%20mathematical%20operations
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities

Proceedings of RoCHI 2023

 54

12. TensorFLow, TFLiteConverter,

https://www.tensorflow.org/api_docs/python/tf/lite/TFLi

teConverter.

13. A. Shukla, Train ML Model and Build Android

Application Using TensorFlow Lite & Keras,

https://medium.com/geekculture/train-ml-model-and-

build-android-application-using-tensorflow-lite-keras-

6bf23d07309a.

14. V. Valouch, From Keras to Android with TensorFlow

Lite, https://medium.com/@vvalouch/from-keras-to-

android-with-tensorflow-lite-7581368aa23e

15. Google, Message Client,

https://developers.google.com/android/reference/com/go

ogle/android/gms/wearable/MessageClient.

https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverter
https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverter
https://medium.com/geekculture/train-ml-model-and-build-android-application-using-tensorflow-lite-keras-6bf23d07309a
https://medium.com/geekculture/train-ml-model-and-build-android-application-using-tensorflow-lite-keras-6bf23d07309a
https://medium.com/geekculture/train-ml-model-and-build-android-application-using-tensorflow-lite-keras-6bf23d07309a
https://medium.com/@vvalouch/from-keras-to-android-with-tensorflow-lite-7581368aa23e
https://medium.com/@vvalouch/from-keras-to-android-with-tensorflow-lite-7581368aa23e

	Hand Gestures Recognition Using a WearOS Smart Watch and Deep Learning
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	PROBLEM DEFINITION AND ANALYSIS
	Product Perspective

	DATA MODELLING
	Data structure
	Data collection procedure

	NEural network modelling
	application design and implementation
	Android Platform
	WearOS Platform
	Data transfer

	testing and validation
	Model Performance on Training Data
	Model Performance in Real World

	Conclusion
	ACKNOWLEDGMENT
	REFERENCES

