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ABSTRACT 
Nowadays, smartwatches have become cheaper and more 
affordable, meaning that people can integrate this 
technology and use them in their everyday life. Fortunately, 
the manufacturers enabled third party developers to build 
their own applications in order to greatly improve people’s 
life from everywhere. In this article we will discuss an 
approach to detect specific arm gestures using WearOS 
powered smart watches and a custom imported neural 
network. The main objective is to evaluate the processing 
capabilities of these new devices when working with neural 
networks, which are known to produce substantial delays 
between the moment when receiving the input and 
producing the output. The initial dataset is composed of 
three gestures described by the watch’s accelerometer and 
gyroscope, while the final product is an application that 
enables users to control a music player running on a paired 
smartphone, using just their hand movement. 
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INTRODUCTION 
We are aiming to enable people to do certain actions by 
only using their wrist via the smartwatch they are wearing. 
Since it’s very convenient to move your hand when wearing 
a smartwatch, we considered that it would be very useful to 
control some functions from the phone by just making 
gestures with your hand. 

The system should be able to perform multiple functions at 
the same time. The most important feature it must achieve 
is feeding live sensors data to the model and being able to 
quickly get the output result, to be responsive and suitable 
for the fast-paced world we live in. 

Moreover, the application should be able to quicky and 
reliably communicate its internal status via Bluetooth to 
another application installed on the user’s phone. 

Our motivation is the need to be able to control phone’s 
functions from outside, by making use of the watch’s 
sensors, especially the accelerometer and gyroscope. The 
possible applications of gesture recognition can be applied 
to many domains. Sign language recognition, Parkinson’s 
syndrome or fitness exercises are just a few of them, and 
developing applications available for common people can 
greatly increase the overall life quality of users. 

RELATED WORK 
The current existing alternatives of movement detection 
products running on WearOS are just the ones already 
provided by the smartwatch’s operating system. These 
solutions can detect basic hand gestures which are used to 
wake up the watch when the user tilts his hand.  However, 
methods of detecting gestures were researched in the past, 
with promising results. 

In paper [1], the authors developed a pattern recognition 
system for time-series signals. The scientists analyzed two 
applications of human gesture recognition: human activity 
recognition (HAR), and gesture recognition for limb 
amputations. For the first application, they used raw sensor 
input like gyroscope and accelerometers signals, while for 
limb amputations they used surface electromyography 
(sEMG). Four different deep learning models were used: a 
one-dimension convolution neural network (1-D CNN), a 
long-short term memory model (LSTM), a hybrid model 
containing one convolutional and one neural network model 
(C-RNN) and, a model containing three convolutional 
layers and three recurrent neural layers. (3+3 C-RNN). The 
resulted trained model can then be used on applications 
ranging from entertainment interfaces to prosthetic arms. 

In paper [2], the authors used the accelerometer and 
gyroscope sensor values to train a deep learning model. The 
recurrent neural network consists of multiple LSTM layers 
which receive the data mapped as a time-series. These 
layers are capable of learning long-term temporal 
dependencies. The last layer is a softmax that calculates the 
probabilities that some specific values belong to a specific 
class.  

Article [3] had similar objectives as our project. The scope 
was to design a neural network that could be easily 
integrated into an android project. Even if the authors used 
a smartphone and not a smartwatch, a lot of good ideas and 
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inspiration came to us from their work. The project purpose 
was to build a model capable of detecting tilt movements 
done by holding a phone in the hand.  

Other papers also presented similar approaches to the ones 
described above. In paper [4], using deep neural networks 
with body warn sensors describing the acceleration and 
rotation, they manage to extract various features further 
used in human activity recognition. 

Also, the authors of [5] used convolutional neural networks 
for recognizing the human activity with the help of body 
warn sensors. They also used the idea of sliding window to 
continuously detect new movements, managing to obtain an 
accuracy of 90%. 

All the approaches presented in these papers helped us 
shape a better idea on how to use Neural Networks together 
with WatchOS operating system to recognize specific hand 
gestures. As there is no publicly available dataset that can 
be used to train the network on recognizing the gestures we 
want to detect, we had to build it ourselves, on top of the 
whole detection system. 

PROBLEM DEFINITION AND ANALYSIS 
The main purpose of our endeavor was to discover a 
reliable method for combining WearOS devices with neural 
networks and create a real-time solution for recognizing 
specific user gestures. Although in the present there are 
quite a few devices from different manufacturers that are 
using WearOS, only few applications such as health 
monitoring and fitness tracking are targeting them. 

Our research’s objectives were the following: 

• Building a solid application architecture, following the
most up to date best practices and the most recent
technologies in this field.

• Achieving a reliable communication channel between the
smartwatch and the phone, while maintain a real time
flux of messages between the two of them.

• Recording and storing a complex and big database on the
physical device, even though the memory capabilities are
quite restrictive.

• Exporting this big data in a third python application, in
order to use it to train a fully custom neural network.

• Importing this new neural network into the application
and obtaining the output in almost real time.

The problem of having a custom neural network model 
running on a physical smartwatch is quite complex, because 
such a network requires significant computing power and 
resources. Our application demonstrates the fact that users 
can control different phone functions using gestures while 
wearing a smartwatch. 

For the project demonstration we built a mp3 music player, 
and the users will be able to control the music using just 
wrist gestures. However, the potential of this kind of 

detecting application is huge, as it can be applied to medical 
or industrial fields, depending on what use-cases are 
needed. The system is built to easily integrate new data, 
new gestures and new procedures that shall be needed for 
the corresponding field of activity. 

Product Perspective 
Our research is intended to be part of a bigger system that 
puts to good use the custom gestures detection capabilities 
of the model. The implementation must be easily 
customisable and the process of inserting new gesture and 
recording new data should be as convenient as possible. 
Even though the main watch application has been created 
using a stand-alone template, it is intended to be used in 
conjunction with a phone in order to communicate the 
corresponding detected action to the overall system. 
Therefore, the following block diagram can be used to 
describe the system overall behavior: 

Figure 1. System’s perspective 

The flow firstly begins with the primary actor, which is also 
an important stakeholder, mainly concerned with the overall 
well-being of the whole system. The diagram then follows 
the flow of data collected from the user and stored inside 
the smartwatch app. 

The next step is the actual way of saving this data inside the 
local systems database. This database consists of different 
tables stored locally on device. 

After that, the next step is processing this data in order to 
start training and validating the model. Then, the trained 
model is imported into the smartwatch application which, in 
turn, will start feeding the neural network with new data. 

In all this time, the system status is continuously 
communicated to the phone application via Bluetooth, that 
will send notifications to the users in order to let them know 
about all the system components and their state. 

DATA MODELLING 
The following chapter has the objective of analyzing the 
structure of the application data along with the procedures 
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used when collecting this data and preparing it for training 
the custom model. This is crucial part of the system, 
especially because an appropriate database was not publicly 
available at the time of writing this paper for training the 
neural network. We made the decision on recording three 
gestures, as different as possible, because of the following 
reasons: 

• It is easier for the neural network to differentiate between
one another, while also facilitating the learning of
common features from the gesture of the same type.

• Because we had to record this data manually, the number
of recordings will be quite reduced, so the neural model
must learn to distinguish the gestures using a modest
sized database.

The starting position is done by keeping the left hand, face 
up, in front of the user, near the belly. All the gestures 
should be done in approximately one second. After the 
starting position is achieved, the following gestures were 
recorded to be used in the model training: 

Up-down motion: This motion is intended to be done in a 
very simple way, as it just requires the user to raise his hand 
from the starting position to a point near the chin, then 
coming back. This movement is especially described by the 
variation of the acceleration on the Z axis. Thus, the 
accelerometer is the key sensor that will be taken into 
consideration when labeling this action. 

Figure 2. Up-down motion. 

Left-right motion: The second movement is the left and 
right motion. This is again a very simple gesture, and it can 
be described as moving your hand to the left 
approximatively 70 degrees, then coming back to the 
starting position. On contrast with the first movement, this 
action will engage the X and Y accelerometer axes, 
consequently making these values determinant in the 
gesture’s recognition. 

Figure 3. Left-right motion. 

Rotate-wrist motion: The third movement is the rotation 
of the wrist from the starting position about 60 degrees and 
the coming back. While the first two movements used the 
accelerometer extensively, this movement is intended to 
engage the gyroscope. 

Figure 4. Rotate-wrist motion. 

Data structure 
The sensors used to record the gestures are just two: the 
accelerometer and the gyroscope. The values recorded will 
consist of X, Y, Z accelerometer and gyroscope readings. 

Each gesture will be described by a collection of 
consecutive frames, where each frame will have all these 
values written above. 

A gesture will have the duration of 1 second, with a 
duration of 10 milliseconds between each data frame, up to 
a total of 100 frames. The gestures will be saved in the 
database organized in batches, where each batch represents 
a gesture of a certain type with 100 consecutive frames.  

Each Batch will have a type corresponding to the label 
assigned for that gesture. Using these values, the data will 
be further processed and fed to the neural network.  

The data will be stored on the local device and will consist 
of two tables, the Batch and Measurement. The 
Measurement will store the sensor values. It will also have 
a reference to a particular gesture, in order to not lose track 
of the gesture’s measurements. 

The id of the gesture and the gesture’s type is stored in the 
Batch class. This is the class referenced by the 
Measurement. Each gesture is then mapped to a batch, and 
each batch will have 100 measurements corresponding to 
them. This diagram describes the relation between these 
entities: 
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Data collection procedure 
The data collection procedure is quite straightforward and 
simple. The user will have to firstly put the watch on their 
wrist. After that, they will be able to choose which kind of 
gesture they want to record. After choosing the type of 
gesture, the watch will start recording the data. 

In order to register only the gesture data, as much as 
possible, there is a movement intensity threshold that needs 
to be surpassed before the watch will start recording the 
gesture. This setup will prevent recording when the user 
touches the watch to select the gesture type or to initiate the 
recording. The limit is small, so as soon as a more 
prominent movement is detected, the watch will start saving 
the recording. 

Figure 5. Database Diagram 

However, the watch always listens to the sensors readings 
and keeps track of the last 15 values recorded. When the 
threshold is triggered, these readings will be automatically 
introduced in the start of the time series, in order to better 
monitor the beginning of each gesture. 

When the data for the gestures has been recorded the watch 
was placed on the left-hand. As the accelerometer and 
gyroscope axis are changing direction when wearing the 
device on the right hand, recorded data cannot be used to 
recognize gestures described with the right hand. We have 
collected a total of approximately 600 instances, 200 for 
each of the three gestures mentioned above. Each of them 
was done from the starting position, while sitting still on a 
chair. All the gestures were recorded on one of the authors. 

NEURAL NETWORK MODELLING 
This research focuses on using a supervised learning 
approach, because all the gestures are labeled beforehand, 
and the goal is to find common patterns in the data in order 
to be able to consistently classify gestures. To do this, have 
tried different configurations of neural networks and have 
chosen one that balances accuracy with processing speed. 

The deep learning models are defined by a collection of 
blocks named layers, which are interconnected and used to 
find common patterns between the input data. As presented 
in the book [6], the neural model is inspired by the way 
human brain functions. However, the easiest definition of a 

neuron in a neural network can be expressed as a function 
that maps the given input to the desired output. The neuron 
receives a set of input data, applies different weights, and 
tries to obtain the desired output. 

Neural networks are essentially functions approximators. 
This means that if we were given an arbitrary function, the 
neural networks can represent it, no matter how complex or 
arbitrary the function may be. The neural networks are also 
scalable and flexible, because we can stack more layers, 
provide different types of activation functions and we can 
tweak neurons parameters in order to fully suit our needs. 

The neural network used in this research is a feedforward 
neural network, also known as a multilayer perceptron [7]. 
This network consists of several dense layers with a 
variable number of neurons, where each neuron computes 
the weighted sum of the inputs and applies an activation 
function to produce the output.  

The sequential model built lets us stack layer after layer on 
top of each other. The first one is the input layer. Since the 
input data is an array of 100 elements, each of them having 
the acceleration and the rotation on X, Y, Z, the shape of 
the input data is (100, 6). Then, there are two dense layers 
with 20 and 5 neurons respectively. These neurons have the 
RELU activation function, detailed in [8]. In summary, this 
function ensures backpropagation and empowers the model 
to learn complex data patterns. As mentioned, we have 
tested with different number of neurons, but in the end this 
configuration gave the best results. The last two layers are 
the Flatten layer and another Dense layer. The flatten is 
used to make the input for the previous layer as a just one 
array in order to be fed to the last layer. The last layer has a 
softmax activation function, which outputs the probability 
of each specific class and is usually used in this kind of 
multi class problems. 

This neural network was implemented with the help of 
Keras framework. More information on this subject can be 
found in [9] and [6]. 

The model was further converted to a tflite file which was 
imported into the watch application. The watch then feeds 
sensor data to the model and expects its output. Then, it 
forwards the detected gesture to the phone application, 
which based on the interpretation associated with the 
gesture, will change/pause/resume the music. 

APPLICATION DESIGN AND IMPLEMENTATION 

Android Platform 
Android is an operating system developed by Google for 
mobile devices such as smartphones and tablets. It is based 
on a modified version of the Linux kernel. The most 
important components of any Android application are the 
activities [10].  Unlike desktop applications, which usually 
have the entry point the main() method, an Android 
application have a special main activity which is used as the 
first screen. Usually, every activity implements a screen, so 
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an application consists of many other activities that transmit 
information between them and let the user navigate between 
several screens in order accomplish his task. Every activity 
has a lifecycle associated with it, which describes the way 
that activity performs in certain moments in time, 
depending on the user’s action. 

WearOS Platform 
WearOS is an operating system for smart watches, 
developed and maintained by Google. Many manufacturers 
have produced compatible watches, just like in the case 
with Android phones. They were made in order to benefit 
of call answering, notification managing, vital signs 
monitoring or fitness tracking.  

The Android platform and the WearOS platform share a lot 
of common features and lifecycle aspects. The application 
model is also composed of activities and fragments, both 
having the same behavior between the two platforms. 

However, since the display is considerably smaller and the 
resources are quite limited, the platform developers 
encourage prioritizing the usage of activities rather than 
fragments. Moreover, there are also some other principles 
and advice that should be taken into consideration when 
developing an application for the smartwatch platform [11]. 

The Android and WearOS applications are built using 
native technologies, frameworks and Kotlin as the main 
programming language. The software architectural pattern 
used is Model–View–ViewModel, also known as MVVM 
(see Figure 6). 

Figure 6. MVVM 

In MVVM, each component has its own separate 
responsibilities: 

The Model is used to encapsulate the application data and 
provide methods to access, edit or delete it. This model 
describes directly the base entities used through the 
application, together with the data access objects which can 
make operations on these entities. The Model does not have 
any knowledge of the View or the ViewModel, being 
completely independent. 

The View is responsible with the layouts that are used to 
display the User-Interface. The framework used to draw the 
UI elements on the screen is Jetpack Compose, the latest 
method of describing UI components promoted by Google. 
The view is used to provide user input to the ViewModel, 
while receiving data from the ViewModel and presenting it 
to the user. 

The ViewModel is the intermediary layer between the two 
presented above. It manipulates the data provided by the 
Model and forwards it to the View for display. It also 
handles the user input given by the View and updates the 
Model accordingly to the user needs. 

Data transfer 
There are three main aspects regarding the flow of data. 
The first problem is exporting the database containing all 
the recorded sensors values from the watch and use it for 
training the neural network. The second relates to importing 
the trained neural network into the watch and building a 
compatible model file for this. The third aspect focuses on 
the data transfer between the watch and the phone, in order 
to properly communicate the detected gestures. 

As in this stage we have focused more on the second and 
third points, we have chosen to manually transfer the data 
from the watch to the environment for training the neural 
network. The data has been exported from the device in 
CSV files, using the database inspector from Android 
Studio. 

For integrating the trained neural network model inside the 
application, we have converted the built Keras model into a 
TensorFlow Lite model, because this format is compatible 
with Kotlin mobile applications. TesorFlow Lite is the 
lightweight version of the TensorFlow framework 
specifically developed for devices with limited resources, 
like mobile phones. For the conversion we have followed 
the online documentation describing how can a Keras 
model be transformed into a TF Lite model [12]. The author 
of [13] also presented a method of building a neural 
network and the steps required in integrating this model in 
an Android application. After successfully converting the 
model, the tflite file has been imported into the android 
project, taking inspiration from the method presented in 
[14]. The file was added to the assets folder of the 
application and could be used with the help of the 
TensorFlow Lite framework. 

For establishing the Bluetooth communication channel, I 
used the Message Client API [15] provided by Android 
Wear. This works by sending one-way messages between 
devices. Each connected device in the Bluetooth network is 
referred as a node, the API sending messages to those 
nodes.  

For finding where to send the message, each node in the 
network must advertise itself. This is known as capability 
advertising. The nodes capabilities are represented by an 
array of strings in the application manifest. For sending a 
message, an application must find the correct node with his 
corresponding capability. After identifying the required 
node, the current application will be able to send messages. 
In order to receive messages, the other application must 
have a listener associated that waits for messages to be 
detected. When a message is received, the application will 
be able to further process its information. 
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TESTING AND VALIDATION 

Model Performance on Training Data 
The training was done in 10 epochs, the following graph 
describing its accuracy: 

As we can see, the results are good, the model achieving an 
accuracy of 100%. This accuracy is achieved both on the 
training data and the validation data. As expected, the 
validation accuracy follows the training accuracy, meaning 
the model didn’t suffer of overfitting. However, we need to 
keep in mind that this accuracy does not tell us all about the 
model. This is calculated with the highest value of 
probability, meaning that if we would have, for example, 
the accuracy [0.25, 0.35, 0.40] and the correct label is the 
third, then this result will be taken as a good result, even 
though the model is only 40% sure that the gesture is the 
third one. 

Figure 7. Model Accuracy 

Another good metric that measures this error is the loss 
graph: 

Figure 8. Model Loss 

This loss is calculated with the negative logarithm of the 
predicted value, penalizing the instances with low 

probability. As we can see, the model loss decreases with 
the epoch, and almost reaches 0 at the end of the 10th epoch. 

Model Performance in Real World 
In the following phase, we have done some tests in real 
world. For the first test, we have empirically verified the 
probability threshold where the model begins to have 
problems in recognizing gestures. For that, 20 gestures of 
each type have been performed for each of the specific 
threshold values, and the result recorded. In the following 
graph the Y axis is the overall accuracy, while on the X axis 
are the threshold values which have been tested. At each 
step, any gesture which had a probability value under that 
given threshold will be label as “Unrecognized Gesture”. 

Figure 9. Threshold Accuracy 

After this testing, we have decided to set the threshold at 
0.80. We consider this to be better than just taking the 
gesture classified by the neural network with the highest 
probability, because it can better filter out the random 
movements that does not actually fit in any of the validated 
gestures. Our main aim here has been to find a balance 
point between the risk of not recognizing a valid gesture 
and the one of considering any user movement as one of the 
validated gestures. 

The next test performed was focused on testing the 
performance of the neural network on a different user than 
the one who recorded the training data. In our case, all the 
training data was taken from one person, so it’s interesting 
in seeing the model performance on someone else.  
Consequently, we had another user do 100 gestures of each 
type from the sitting position. In Table 1 you can see the 
achieved results in terms of percent of the correctly 
recognized gestures: 

Up-Down Left -Right Rotation Overall 

74 82 86 80,6 

Table 1. Other person accuracy 

As expected, the accuracy drops, but the model is still 
capable of giving the correct result in most cases. 

For the last test, we have verified the model performance 
when moving. As all the training and testing data has been 
recorded while sitting, we wanted to see how the 
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application behaves when the sensors are influenced by 
everyday movement. For this test, the same user who 
recorded the training data has performed 100 gestures of 
each type while walking. This were the results: 

Up-Down Left -Right Rotation Overall 

74 89 88 83,6 

Table 2. Accuracy while walking 

In conclusion, the custom trained model used with a 
probability threshold of 80% for gesture recognition 
confidence, manages to correctly identify the gestures made 
by a new user with an accuracy of 80,6%, and to recognize 
the gestures while walking with an accuracy of 83,6%. 

It’s also worth mentioning that the output is given almost 
instantly, and in less than half a second the message is sent 
to the phone, which means that the application is overall 
responsive enough to not produce any kind of confusion. 

CONCLUSION 
The idea of detecting and interpreting wrist gestures is not 
new, but there are only a few papers that research this kind 
of interaction, and we think that there are a lot of 
opportunities in this field that wait to be discovered. Having 
an application that can be easily integrated and used on 
common affordable devices will accelerate the research 
done on this subject, without needing any other special 
equipment or knowledge. 

The work presented in this article demonstrates an approach 
on using neural networks together with WearOS powered 
devices, to recognize specific hand-made gestures. We have 
highlighted all the necessary steps required to create such a 
functionality from scratch: (1) record data for training, (2) 
transfer the data to the training environment, (3) integrate 
the neural network into the watch application, and (4) use 
the output of the network in a real-life scenario. In our 
view, the proposed solution can be easily extended with 
new gestures and adapted to many other different use 
scenarios. 

According to the limited testing that we have performed so 
far, proposed approach proves to be resilient to context 
changes. The 80% accuracy when a new person interacts 
with the system or when the user is performing different 
simultaneous movements is not an overwhelming result but 
gives us a good indication on the improvement capabilities. 
Having a larger and more variate dataset for training will, 
most likely, improve these results significantly. 

Next, we will focus on recording data from a larger number 
of users, train the neural network and re-evaluate the 
performance while recording not only the percentage of 
correctly identified gestures but also the false positives 
generated by usual user activity.  
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