
Hand Gestures Recognition Using a WearOS Smart Watch
and Deep Learning

Mihai Fleșer
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
mihaifleser@gmail.com

Teodor Ștefănuț
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
teodor.stefanut@cs.utcluj.ro

ABSTRACT
Nowadays, smartwatches have become cheaper and more
affordable, meaning that people can integrate this
technology and use them in their everyday life. Fortunately,
the manufacturers enabled third party developers to build
their own applications in order to greatly improve people’s
life from everywhere. In this article we will discuss an
approach to detect specific arm gestures using WearOS
powered smart watches and a custom imported neural
network. The main objective is to evaluate the processing
capabilities of these new devices when working with neural
networks, which are known to produce substantial delays
between the moment when receiving the input and
producing the output. The initial dataset is composed of
three gestures described by the watch’s accelerometer and
gyroscope, while the final product is an application that
enables users to control a music player running on a paired
smartphone, using just their hand movement.

Author Keywords
WearOS; Movement Classification; Neural Network;
Wearable sensors; Deep Learning; Time-series signal
processing.

ACM Classification Keywords
Machine learning

DOI: 10.37789/rochi.2023.1.1.8

INTRODUCTION
We are aiming to enable people to do certain actions by
only using their wrist via the smartwatch they are wearing.
Since it’s very convenient to move your hand when wearing
a smartwatch, we considered that it would be very useful to
control some functions from the phone by just making
gestures with your hand.

The system should be able to perform multiple functions at
the same time. The most important feature it must achieve
is feeding live sensors data to the model and being able to
quickly get the output result, to be responsive and suitable
for the fast-paced world we live in.

Moreover, the application should be able to quicky and
reliably communicate its internal status via Bluetooth to
another application installed on the user’s phone.

Our motivation is the need to be able to control phone’s
functions from outside, by making use of the watch’s
sensors, especially the accelerometer and gyroscope. The
possible applications of gesture recognition can be applied
to many domains. Sign language recognition, Parkinson’s
syndrome or fitness exercises are just a few of them, and
developing applications available for common people can
greatly increase the overall life quality of users.

RELATED WORK
The current existing alternatives of movement detection
products running on WearOS are just the ones already
provided by the smartwatch’s operating system. These
solutions can detect basic hand gestures which are used to
wake up the watch when the user tilts his hand. However,
methods of detecting gestures were researched in the past,
with promising results.

In paper [1], the authors developed a pattern recognition
system for time-series signals. The scientists analyzed two
applications of human gesture recognition: human activity
recognition (HAR), and gesture recognition for limb
amputations. For the first application, they used raw sensor
input like gyroscope and accelerometers signals, while for
limb amputations they used surface electromyography
(sEMG). Four different deep learning models were used: a
one-dimension convolution neural network (1-D CNN), a
long-short term memory model (LSTM), a hybrid model
containing one convolutional and one neural network model
(C-RNN) and, a model containing three convolutional
layers and three recurrent neural layers. (3+3 C-RNN). The
resulted trained model can then be used on applications
ranging from entertainment interfaces to prosthetic arms.

In paper [2], the authors used the accelerometer and
gyroscope sensor values to train a deep learning model. The
recurrent neural network consists of multiple LSTM layers
which receive the data mapped as a time-series. These
layers are capable of learning long-term temporal
dependencies. The last layer is a softmax that calculates the
probabilities that some specific values belong to a specific
class.

Article [3] had similar objectives as our project. The scope
was to design a neural network that could be easily
integrated into an android project. Even if the authors used
a smartphone and not a smartwatch, a lot of good ideas and

Proceedings of RoCHI 2023

47

inspiration came to us from their work. The project purpose
was to build a model capable of detecting tilt movements
done by holding a phone in the hand.

Other papers also presented similar approaches to the ones
described above. In paper [4], using deep neural networks
with body warn sensors describing the acceleration and
rotation, they manage to extract various features further
used in human activity recognition.

Also, the authors of [5] used convolutional neural networks
for recognizing the human activity with the help of body
warn sensors. They also used the idea of sliding window to
continuously detect new movements, managing to obtain an
accuracy of 90%.

All the approaches presented in these papers helped us
shape a better idea on how to use Neural Networks together
with WatchOS operating system to recognize specific hand
gestures. As there is no publicly available dataset that can
be used to train the network on recognizing the gestures we
want to detect, we had to build it ourselves, on top of the
whole detection system.

PROBLEM DEFINITION AND ANALYSIS
The main purpose of our endeavor was to discover a
reliable method for combining WearOS devices with neural
networks and create a real-time solution for recognizing
specific user gestures. Although in the present there are
quite a few devices from different manufacturers that are
using WearOS, only few applications such as health
monitoring and fitness tracking are targeting them.

Our research’s objectives were the following:

• Building a solid application architecture, following the
most up to date best practices and the most recent
technologies in this field.

• Achieving a reliable communication channel between the
smartwatch and the phone, while maintain a real time
flux of messages between the two of them.

• Recording and storing a complex and big database on the
physical device, even though the memory capabilities are
quite restrictive.

• Exporting this big data in a third python application, in
order to use it to train a fully custom neural network.

• Importing this new neural network into the application
and obtaining the output in almost real time.

The problem of having a custom neural network model
running on a physical smartwatch is quite complex, because
such a network requires significant computing power and
resources. Our application demonstrates the fact that users
can control different phone functions using gestures while
wearing a smartwatch.

For the project demonstration we built a mp3 music player,
and the users will be able to control the music using just
wrist gestures. However, the potential of this kind of

detecting application is huge, as it can be applied to medical
or industrial fields, depending on what use-cases are
needed. The system is built to easily integrate new data,
new gestures and new procedures that shall be needed for
the corresponding field of activity.

Product Perspective
Our research is intended to be part of a bigger system that
puts to good use the custom gestures detection capabilities
of the model. The implementation must be easily
customisable and the process of inserting new gesture and
recording new data should be as convenient as possible.
Even though the main watch application has been created
using a stand-alone template, it is intended to be used in
conjunction with a phone in order to communicate the
corresponding detected action to the overall system.
Therefore, the following block diagram can be used to
describe the system overall behavior:

Figure 1. System’s perspective

The flow firstly begins with the primary actor, which is also
an important stakeholder, mainly concerned with the overall
well-being of the whole system. The diagram then follows
the flow of data collected from the user and stored inside
the smartwatch app.

The next step is the actual way of saving this data inside the
local systems database. This database consists of different
tables stored locally on device.

After that, the next step is processing this data in order to
start training and validating the model. Then, the trained
model is imported into the smartwatch application which, in
turn, will start feeding the neural network with new data.

In all this time, the system status is continuously
communicated to the phone application via Bluetooth, that
will send notifications to the users in order to let them know
about all the system components and their state.

DATA MODELLING
The following chapter has the objective of analyzing the
structure of the application data along with the procedures

Proceedings of RoCHI 2023

48

used when collecting this data and preparing it for training
the custom model. This is crucial part of the system,
especially because an appropriate database was not publicly
available at the time of writing this paper for training the
neural network. We made the decision on recording three
gestures, as different as possible, because of the following
reasons:

• It is easier for the neural network to differentiate between
one another, while also facilitating the learning of
common features from the gesture of the same type.

• Because we had to record this data manually, the number
of recordings will be quite reduced, so the neural model
must learn to distinguish the gestures using a modest
sized database.

The starting position is done by keeping the left hand, face
up, in front of the user, near the belly. All the gestures
should be done in approximately one second. After the
starting position is achieved, the following gestures were
recorded to be used in the model training:

Up-down motion: This motion is intended to be done in a
very simple way, as it just requires the user to raise his hand
from the starting position to a point near the chin, then
coming back. This movement is especially described by the
variation of the acceleration on the Z axis. Thus, the
accelerometer is the key sensor that will be taken into
consideration when labeling this action.

Figure 2. Up-down motion.

Left-right motion: The second movement is the left and
right motion. This is again a very simple gesture, and it can
be described as moving your hand to the left
approximatively 70 degrees, then coming back to the
starting position. On contrast with the first movement, this
action will engage the X and Y accelerometer axes,
consequently making these values determinant in the
gesture’s recognition.

Figure 3. Left-right motion.

Rotate-wrist motion: The third movement is the rotation
of the wrist from the starting position about 60 degrees and
the coming back. While the first two movements used the
accelerometer extensively, this movement is intended to
engage the gyroscope.

Figure 4. Rotate-wrist motion.

Data structure
The sensors used to record the gestures are just two: the
accelerometer and the gyroscope. The values recorded will
consist of X, Y, Z accelerometer and gyroscope readings.

Each gesture will be described by a collection of
consecutive frames, where each frame will have all these
values written above.

A gesture will have the duration of 1 second, with a
duration of 10 milliseconds between each data frame, up to
a total of 100 frames. The gestures will be saved in the
database organized in batches, where each batch represents
a gesture of a certain type with 100 consecutive frames.

Each Batch will have a type corresponding to the label
assigned for that gesture. Using these values, the data will
be further processed and fed to the neural network.

The data will be stored on the local device and will consist
of two tables, the Batch and Measurement. The
Measurement will store the sensor values. It will also have
a reference to a particular gesture, in order to not lose track
of the gesture’s measurements.

The id of the gesture and the gesture’s type is stored in the
Batch class. This is the class referenced by the
Measurement. Each gesture is then mapped to a batch, and
each batch will have 100 measurements corresponding to
them. This diagram describes the relation between these
entities:

Proceedings of RoCHI 2023

49

Data collection procedure
The data collection procedure is quite straightforward and
simple. The user will have to firstly put the watch on their
wrist. After that, they will be able to choose which kind of
gesture they want to record. After choosing the type of
gesture, the watch will start recording the data.

In order to register only the gesture data, as much as
possible, there is a movement intensity threshold that needs
to be surpassed before the watch will start recording the
gesture. This setup will prevent recording when the user
touches the watch to select the gesture type or to initiate the
recording. The limit is small, so as soon as a more
prominent movement is detected, the watch will start saving
the recording.

Figure 5. Database Diagram

However, the watch always listens to the sensors readings
and keeps track of the last 15 values recorded. When the
threshold is triggered, these readings will be automatically
introduced in the start of the time series, in order to better
monitor the beginning of each gesture.

When the data for the gestures has been recorded the watch
was placed on the left-hand. As the accelerometer and
gyroscope axis are changing direction when wearing the
device on the right hand, recorded data cannot be used to
recognize gestures described with the right hand. We have
collected a total of approximately 600 instances, 200 for
each of the three gestures mentioned above. Each of them
was done from the starting position, while sitting still on a
chair. All the gestures were recorded on one of the authors.

NEURAL NETWORK MODELLING
This research focuses on using a supervised learning
approach, because all the gestures are labeled beforehand,
and the goal is to find common patterns in the data in order
to be able to consistently classify gestures. To do this, have
tried different configurations of neural networks and have
chosen one that balances accuracy with processing speed.

The deep learning models are defined by a collection of
blocks named layers, which are interconnected and used to
find common patterns between the input data. As presented
in the book [6], the neural model is inspired by the way
human brain functions. However, the easiest definition of a

neuron in a neural network can be expressed as a function
that maps the given input to the desired output. The neuron
receives a set of input data, applies different weights, and
tries to obtain the desired output.

Neural networks are essentially functions approximators.
This means that if we were given an arbitrary function, the
neural networks can represent it, no matter how complex or
arbitrary the function may be. The neural networks are also
scalable and flexible, because we can stack more layers,
provide different types of activation functions and we can
tweak neurons parameters in order to fully suit our needs.

The neural network used in this research is a feedforward
neural network, also known as a multilayer perceptron [7].
This network consists of several dense layers with a
variable number of neurons, where each neuron computes
the weighted sum of the inputs and applies an activation
function to produce the output.

The sequential model built lets us stack layer after layer on
top of each other. The first one is the input layer. Since the
input data is an array of 100 elements, each of them having
the acceleration and the rotation on X, Y, Z, the shape of
the input data is (100, 6). Then, there are two dense layers
with 20 and 5 neurons respectively. These neurons have the
RELU activation function, detailed in [8]. In summary, this
function ensures backpropagation and empowers the model
to learn complex data patterns. As mentioned, we have
tested with different number of neurons, but in the end this
configuration gave the best results. The last two layers are
the Flatten layer and another Dense layer. The flatten is
used to make the input for the previous layer as a just one
array in order to be fed to the last layer. The last layer has a
softmax activation function, which outputs the probability
of each specific class and is usually used in this kind of
multi class problems.

This neural network was implemented with the help of
Keras framework. More information on this subject can be
found in [9] and [6].

The model was further converted to a tflite file which was
imported into the watch application. The watch then feeds
sensor data to the model and expects its output. Then, it
forwards the detected gesture to the phone application,
which based on the interpretation associated with the
gesture, will change/pause/resume the music.

APPLICATION DESIGN AND IMPLEMENTATION

Android Platform
Android is an operating system developed by Google for
mobile devices such as smartphones and tablets. It is based
on a modified version of the Linux kernel. The most
important components of any Android application are the
activities [10]. Unlike desktop applications, which usually
have the entry point the main() method, an Android
application have a special main activity which is used as the
first screen. Usually, every activity implements a screen, so

Proceedings of RoCHI 2023

50

an application consists of many other activities that transmit
information between them and let the user navigate between
several screens in order accomplish his task. Every activity
has a lifecycle associated with it, which describes the way
that activity performs in certain moments in time,
depending on the user’s action.

WearOS Platform
WearOS is an operating system for smart watches,
developed and maintained by Google. Many manufacturers
have produced compatible watches, just like in the case
with Android phones. They were made in order to benefit
of call answering, notification managing, vital signs
monitoring or fitness tracking.

The Android platform and the WearOS platform share a lot
of common features and lifecycle aspects. The application
model is also composed of activities and fragments, both
having the same behavior between the two platforms.

However, since the display is considerably smaller and the
resources are quite limited, the platform developers
encourage prioritizing the usage of activities rather than
fragments. Moreover, there are also some other principles
and advice that should be taken into consideration when
developing an application for the smartwatch platform [11].

The Android and WearOS applications are built using
native technologies, frameworks and Kotlin as the main
programming language. The software architectural pattern
used is Model–View–ViewModel, also known as MVVM
(see Figure 6).

Figure 6. MVVM

In MVVM, each component has its own separate
responsibilities:

The Model is used to encapsulate the application data and
provide methods to access, edit or delete it. This model
describes directly the base entities used through the
application, together with the data access objects which can
make operations on these entities. The Model does not have
any knowledge of the View or the ViewModel, being
completely independent.

The View is responsible with the layouts that are used to
display the User-Interface. The framework used to draw the
UI elements on the screen is Jetpack Compose, the latest
method of describing UI components promoted by Google.
The view is used to provide user input to the ViewModel,
while receiving data from the ViewModel and presenting it
to the user.

The ViewModel is the intermediary layer between the two
presented above. It manipulates the data provided by the
Model and forwards it to the View for display. It also
handles the user input given by the View and updates the
Model accordingly to the user needs.

Data transfer
There are three main aspects regarding the flow of data.
The first problem is exporting the database containing all
the recorded sensors values from the watch and use it for
training the neural network. The second relates to importing
the trained neural network into the watch and building a
compatible model file for this. The third aspect focuses on
the data transfer between the watch and the phone, in order
to properly communicate the detected gestures.

As in this stage we have focused more on the second and
third points, we have chosen to manually transfer the data
from the watch to the environment for training the neural
network. The data has been exported from the device in
CSV files, using the database inspector from Android
Studio.

For integrating the trained neural network model inside the
application, we have converted the built Keras model into a
TensorFlow Lite model, because this format is compatible
with Kotlin mobile applications. TesorFlow Lite is the
lightweight version of the TensorFlow framework
specifically developed for devices with limited resources,
like mobile phones. For the conversion we have followed
the online documentation describing how can a Keras
model be transformed into a TF Lite model [12]. The author
of [13] also presented a method of building a neural
network and the steps required in integrating this model in
an Android application. After successfully converting the
model, the tflite file has been imported into the android
project, taking inspiration from the method presented in
[14]. The file was added to the assets folder of the
application and could be used with the help of the
TensorFlow Lite framework.

For establishing the Bluetooth communication channel, I
used the Message Client API [15] provided by Android
Wear. This works by sending one-way messages between
devices. Each connected device in the Bluetooth network is
referred as a node, the API sending messages to those
nodes.

For finding where to send the message, each node in the
network must advertise itself. This is known as capability
advertising. The nodes capabilities are represented by an
array of strings in the application manifest. For sending a
message, an application must find the correct node with his
corresponding capability. After identifying the required
node, the current application will be able to send messages.
In order to receive messages, the other application must
have a listener associated that waits for messages to be
detected. When a message is received, the application will
be able to further process its information.

Proceedings of RoCHI 2023

51

TESTING AND VALIDATION

Model Performance on Training Data
The training was done in 10 epochs, the following graph
describing its accuracy:

As we can see, the results are good, the model achieving an
accuracy of 100%. This accuracy is achieved both on the
training data and the validation data. As expected, the
validation accuracy follows the training accuracy, meaning
the model didn’t suffer of overfitting. However, we need to
keep in mind that this accuracy does not tell us all about the
model. This is calculated with the highest value of
probability, meaning that if we would have, for example,
the accuracy [0.25, 0.35, 0.40] and the correct label is the
third, then this result will be taken as a good result, even
though the model is only 40% sure that the gesture is the
third one.

Figure 7. Model Accuracy

Another good metric that measures this error is the loss
graph:

Figure 8. Model Loss

This loss is calculated with the negative logarithm of the
predicted value, penalizing the instances with low

probability. As we can see, the model loss decreases with
the epoch, and almost reaches 0 at the end of the 10th epoch.

Model Performance in Real World
In the following phase, we have done some tests in real
world. For the first test, we have empirically verified the
probability threshold where the model begins to have
problems in recognizing gestures. For that, 20 gestures of
each type have been performed for each of the specific
threshold values, and the result recorded. In the following
graph the Y axis is the overall accuracy, while on the X axis
are the threshold values which have been tested. At each
step, any gesture which had a probability value under that
given threshold will be label as “Unrecognized Gesture”.

Figure 9. Threshold Accuracy

After this testing, we have decided to set the threshold at
0.80. We consider this to be better than just taking the
gesture classified by the neural network with the highest
probability, because it can better filter out the random
movements that does not actually fit in any of the validated
gestures. Our main aim here has been to find a balance
point between the risk of not recognizing a valid gesture
and the one of considering any user movement as one of the
validated gestures.

The next test performed was focused on testing the
performance of the neural network on a different user than
the one who recorded the training data. In our case, all the
training data was taken from one person, so it’s interesting
in seeing the model performance on someone else.
Consequently, we had another user do 100 gestures of each
type from the sitting position. In Table 1 you can see the
achieved results in terms of percent of the correctly
recognized gestures:

Up-Down Left -Right Rotation Overall

74 82 86 80,6

Table 1. Other person accuracy

As expected, the accuracy drops, but the model is still
capable of giving the correct result in most cases.

For the last test, we have verified the model performance
when moving. As all the training and testing data has been
recorded while sitting, we wanted to see how the

Proceedings of RoCHI 2023

52

application behaves when the sensors are influenced by
everyday movement. For this test, the same user who
recorded the training data has performed 100 gestures of
each type while walking. This were the results:

Up-Down Left -Right Rotation Overall

74 89 88 83,6

Table 2. Accuracy while walking

In conclusion, the custom trained model used with a
probability threshold of 80% for gesture recognition
confidence, manages to correctly identify the gestures made
by a new user with an accuracy of 80,6%, and to recognize
the gestures while walking with an accuracy of 83,6%.

It’s also worth mentioning that the output is given almost
instantly, and in less than half a second the message is sent
to the phone, which means that the application is overall
responsive enough to not produce any kind of confusion.

CONCLUSION
The idea of detecting and interpreting wrist gestures is not
new, but there are only a few papers that research this kind
of interaction, and we think that there are a lot of
opportunities in this field that wait to be discovered. Having
an application that can be easily integrated and used on
common affordable devices will accelerate the research
done on this subject, without needing any other special
equipment or knowledge.

The work presented in this article demonstrates an approach
on using neural networks together with WearOS powered
devices, to recognize specific hand-made gestures. We have
highlighted all the necessary steps required to create such a
functionality from scratch: (1) record data for training, (2)
transfer the data to the training environment, (3) integrate
the neural network into the watch application, and (4) use
the output of the network in a real-life scenario. In our
view, the proposed solution can be easily extended with
new gestures and adapted to many other different use
scenarios.

According to the limited testing that we have performed so
far, proposed approach proves to be resilient to context
changes. The 80% accuracy when a new person interacts
with the system or when the user is performing different
simultaneous movements is not an overwhelming result but
gives us a good indication on the improvement capabilities.
Having a larger and more variate dataset for training will,
most likely, improve these results significantly.

Next, we will focus on recording data from a larger number
of users, train the neural network and re-evaluate the
performance while recording not only the percentage of
correctly identified gestures but also the false positives
generated by usual user activity.

REFERENCES
1. Xie Baao; Li Baihua; Harland Andy, „Movement and

gesture recognition using deep learning and wearable-
sensor technology,” în International Conference on
Artificial Intelligence and Pattern Recognition 2018

2. Carfì Alessandro; Motolese Carola; Bruno Barbara;
Mastrogiovanni Fulvio, Online Human Gesture
Recognition using Recurrent Neural Networks and
Wearable Sensors, 2018.

3. R. Yanchyshyn, Motion Gesture Detection Using
Tensorflow on Android,
https://lembergsolutions.com/blog/motion-gesture-
detection-using-tensorflow-android.

4. Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng,
Lisha Hu, „Deep Learning for Sensor-based Activity
Recognition: A Survey,” 2017.

5. Fernando Moya Rueda, René Grzeszick, Gernot A.
Fink, Sascha Feldhorst, Michael Ten Hompel,
„Convolutional Neural Networks for Human Activity
Recognition Using Body-Worn Sensors,” Sensor-Based
Activity Recognition and Interaction, 2018.

6. J. Loy, Neural Network Projects with Python: The
ultimate guide to using Python to explore the true power
of neural networks through six projects, Packt
Publishing Ltd, 2019.

7. Tamouridou, A.A.; Pantazi, X.E.; Alexandridis, T.;
Lagopodi, A.; Kontouris, G.; Moshou, D. Spectral
Identification of Disease in Weeds Using Multilayer
Perceptron with Automatic Relevance Determination.
Sensors 2018, 18, 2770.

8. P. Baheti, Activation Functions in Neural Networks,
https://www.v7labs.com/blog/neural-networks-
activation-
functions#:~:text=An%20Activation%20Function%20d
ecides%20whether,prediction%20using%20simpler%20
mathematical%20operations.

9. Vasilev Ivan; Slater Daniel; Spacagna Gianmario;
Roelants Peter; Zocca Valentino, Python Deep
Learning: Exploring deep learning techniques and neural
network architectures with Pytorch, Keras, and
TensorFlow, Packt Publishing Ltd, 2019.

10. Google, Introduction to activities,
https://developer.android.com/guide/components/activiti
es/intro-activities.

11. Renju Liu, Renju Liu, „Understanding the
Characteristics of Android Wear OS,” Purdue ECE,
2016.

12. TensorFLow, TFLiteConverter,
https://www.tensorflow.org/api_docs/python/tf/lite/TFLi
teConverter.

13. A. Shukla, Train ML Model and Build Android
Application Using TensorFlow Lite & Keras,
https://medium.com/geekculture/train-ml-model-and-

Proceedings of RoCHI 2023

53

build-android-application-using-tensorflow-lite-keras-
6bf23d07309a.

14. V. Valouch, From Keras to Android with TensorFlow
Lite, https://medium.com/@vvalouch/from-keras-to-
android-with-tensorflow-lite-7581368aa23e

15. Google, Message Client,
https://developers.google.com/android/reference/com/go
ogle/android/gms/wearable/MessageClient.

Proceedings of RoCHI 2023

54

