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ABSTRACT 
The paper describes the integration of two major fields of 
research, namely tele-collaboration by augmented reality 
(AR) and affective computing (AC). Furthermore, 3 
different scenarios on tele-collaboration by virtual co-
location are proposed for experiments with AC-AR 
studies. A system architecture is presented as support for 
the development of AC-AR tele-collaboration applications 
enabling joint work of local workers and remote experts.  
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INTRODUCTION 
In modern work environments, even more complex 
technologies, protocols and scenarios are required not only 
to increase the productivity of workers, but also to fulfill 
basic work tasks. Often, typical work scenarios demand for 
mixed teams of workers that have different levels and 
types of expertise [56]. Either we talk about real work 
scenarios or just training/simulation sessions, 
inconsistency attributed to human factor or equipment 
typically rises serious problems further leading to the 
temporary inability to perform optimally the assigned 
tasks. Such problems may refer to situations when: 
• The documentation is not sufficient/complete, 
• The expertise is not ready on time/on the spot, 
• The complexity of the problem/solution restricts the 

transfer of knowledge between the local worker and a 
potential remote expert using standard means of 
communications (e.g. audio channels by mobile 
phones), 

• The activities are conducted under impeding affective 
conditions associated to stress, tiredness, anger, un-
vigilance, etc. 

The negative impact dimension related to the 
aforementioned situations increases exponentially for 
critical operations executed in specific work domains for 
which failure means the loss of equipment, property and 
even life. This applies especially to space missions, 
medical environments and to security-oriented operations 
(military, police, fire brigade, etc.). In this context, it 
becomes more important the urge to engineer systems that: 

• Enable seamless collaboration among team workers, 
• Automatically sense and adapt to the workers’ state. 

Current technology already permits access to partly or even 
completely understanding of behavior, intent and 
environment of a person, by automatic computer (software 
– SW) systems. As clearly indicated by Kanade and Hebert 
[23], the first-person vision (FPV) represents the most 
optimal way to sense the environment and the subject’s 
activities from a wearable sensor. As compared to the more 
traditional approach of placing stationary sensing devices 
typically used in surveillance domain, better results 
concerning the automatic assessment can be obtained with 
data taken from the subject’s environment, as sensed from 
his view point. From this perspective, the use of light 
weight and more powerful Head Mounted Device (HMD) 
having attached video cameras as well as other sensors, 
requires more attention, this having the potential to become 
a standard equipment in many work environments. 
Augmented Reality (AR) technology already proved to 
have a significant impact in various domains [5]. Due to 
the capability to enhance reality, to assist collaboration, to 
support spatial cues and to allow interaction between the 
virtual and augmented worlds, AR promises to 
successfully enhance novel types of interfaces for face-to-
face and remote collaboration [3]. 
Tightly related to AR, the concept of virtual co-location [7] 
implies the creation of spaces in which people and objects 
are either virtually or physically present: it allows people 
to engage in spatial remote collaboration. Virtual co-
location entails that people are virtually present at any 
place of the world and interact with others that are 
physically present in another location to solve complex 
problems as if being there in person. State of the art 
research approaches on collaboration by virtual co-location 
in AR have showed considerable success for learning, 
simulations and professional practice, in mining industry 
[1], (serious) gaming [7][8][15][40] architecture [19][26], 
crime-scene investigation [11][31], space [6], crisis 
management [28], design [39][19], engineering [22], 
maintenance [17], weather [37], coordination [34]. 
The paper presents a AC closed-loop adaptive tele-
collaboration AR system that is based on the DistributEd 
CoLlaborative AR Environment (DECLARE), a platform 
that supports virtual co-location of the local worker and the 
remote expert, and the transfer of knowledge by marker-
less of expert using a state-of-the-art robust SLAM 
technique [36]. 
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In order for a SW system to be adaptive with regard to the 
workers, first this must be able to sense the workers’ state. 
An essential characteristic of the workers’ state genuinely 
refers to emotions. Affective Computing (AC) is a 
technology that “relates to, arises from, or deliberately 
influences emotions” [32].  
Even though considerable research approaches have been 
proposed separately on AR and AC, up to date there is no 
solid base for a systematic integration of the AC into the 
AR-based tele-collaboration process. 
This paper describes an adaptive AC tele-collaboration AR 
system built on top of DECLARE platform and that 
follows the closed-loop AC system proposed by Wu et al. 
[41]. The system consists of three components namely the 
affect recognition component, the affect-modeling 
component and the affect control component. The affect 
recognition component performs the assessment of the 
user’s affect by analyzing different body signals such as 
facial expressions, emotion in speech, psychophysiological 
signals, etc. The second component, the affect modeling 
creates a relationship between the user’s affect and the 
features of the user’s environment. The third component, 
the affect control provides the means for adapting the 
environment in such a way to get the user to the target 
affect state. 
The automatic sensing, modeling and control components 
that regulate the system adaptation to the workers’ state 
consider the subject’s performance as the main criterion for 
the AR tele-collaboration experience. 
According to the Yerkes-Dodson Law, the subjects’ 
performance in mental tasks is dependent on the arousal in 
the form of non-monotonic function (Figure 1). 
Performance increases with arousal, given arousal is at low 
levels, reaches the peak at a given arousal level and 
decreases after that optimal level.  

 
Figure 1. The Hebbian version of the Yerkes Dodson Law 

(Wikipedia) 

This paper addresses the scenario analysis and the 
requirements of both theoretical and practical aspects that 
are necessary to design an AC-enabled tele-collaboration 
AR system for training and real work scenarios. 
The rest of the paper is organized as follows: next section 
describes the tele-collaboration AR scenario and the design 
of the three components of the closed-loop AC system. 
The next section presents the cases for testing the AC tele-
collaboration AR system. A further section details the 
design of DECLARE, a SW framework that facilitates easy 

development of AC-enabled tele-collaborative AR 
applications. Then, methodology for evaluation is 
discussed. Finally, conclusions and future work are 
presented. 

TELE-COLLABORATION IN AR SCENARIO 
The basic tele-collaboration AR scenario implies one local 
user and one remote expert collaborate by using an AR 
support system. Depending on the complexity of the 
collaborative work, variations to the basic scenario may 
include several local users or several remote experts. 
The local user wears a HMD for AR which is connected to 
a portable computer. Additional (AC) body sensors are 
used to automatically assess the state of the local user.  
The process of tele-collaboration in AR assumes both the 
local user and the remote expert are virtually co-located, 
both accessing the shared visual representation of the 
physical environment sensed through the video camera of 
the local worker’s HMD. In the AR system, the virtual co-
location is realized by transferring the view of the local 
user to the laptop computer of the remote user and by 
augmenting the shared view with inputs from the remote. 
In this way, the visualization on both sides is centered on 
the physical place of the local user.  
The user interfaces for both local and remote users are 
designed following the usability principles of Nielsen and 
Molich [27]. 
Given the shared live video stream, the remote provides 
just-in-time and just-in-place assistance, based on his 
direct observation of the local user’s activity. 
For the local worker, visual displays of the sensed physical 
world together with additional information are furnished as 
augmented visual content through the HMD view.  
Besides using the audio communication, the remote user 
can interact with the AR system running on his laptop 
computer to produce AR content which is shared with the 
local user. This is done in two ways, by adding augmented 
content and by altering representations of the sensed 
physical objects.  
In addition to visualizing the video stream from the first 
person vision on local user’s view, the remote user gets the 
3D map of the local’s physical environment. The insertion 
of AR content implies an authoring process to add virtual 
tags, attention-directing symbols including pointers, pop-
up balloon like on-screen text messages, image 
representations and video content, static and animated 
models of 2D and 3D objects. Altering the visual 
representation of existing physical parts has the role to 
increase the level of attention towards the physical 
elements which are relevant for the assigned task. 
Two scenarios are considered for AC-AR based tele-
collaboration, given the type of system interface for the 
remote user. 
Scenario 1 
The AR system for the remote expert runs on a laptop or 
desktop computer. The input is based on standard mouse 
and keyboard devices, and the output is projected directly 
on the computer display. The tele-collaboration in AR 
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control the workers’ affect and performance during the 
execution of specific team-oriented tasks, where local 
workers are remotely supported by remote experts. The AC 
system has 3 components, namely for the recognition of 
the affect state, the modeling and the control. The AC 
components are further discussed. 
Recognition of worker’s state  
A fundamental characteristic of the user’s state is the 
affect. A basic model in referencing the affective space 
(circumplex model of emotion of Russel [33]) relates to 
two dimensions, the valence and the arousal of the 
emotion. The valence represents the hedonic value: 
positive/negative and the arousal represents the intensity of 
the emotion. 
To characterize the worker’s state, an estimation of his/her 
affect is realized by considering the two dimensional 
model of emotions as the encoding scheme. The affect can 
then be estimated by processing body signals and 
extracting specific measures such as psychophysiological 
indicators, facial expressions, emotion in speech (prosody, 
semantics), body gestures, etc. 
Psychophysiological computing relies on direct 
measurements of the activity of the brain [21][41] and 
indirect measurements of the cardiorespiratory activity 
[29][30][41], the electro-dermal activity [29][30][35][41], 
respiration [29][30][41], pupillometry [30][41] or 
electromyography [35]. The cardiorespiratory activity may 
consider the heart rate – HR or the heart rate variability – 
HRV. The electro-dermal activity may consider the skin 
conductance or galvanic skin response – GSR. 

 
Figure 5. Physiological body sensors [45] using ARDUINO [44] 

In this research, the analysis of physiological body signals 
is run using e-Health Sensor (Figure 5) [45], a HW 
equipment which is supported by ARDUINO platform 
[44], and Cortrium sensors [55]. The following sensors are 
considered: 
• Position Sensor (Accelerometer) 
• Body Temperature Sensor 
• Blood Pressure Sensor (Sphygmomanometer) 
• Pulse and Oxygen in Blood Sensor (SPO2) 
• Airflow Sensor (Breathing) 
• Galvanic Skin Response Sensor (GSR - Sweating) 
• Electrocardiogram Sensor (ECG) 
• Electromyography Sensor (EMG) 

In addition, the estimation on the worker’s state makes use 
of automatic models for facial expression recognition [12] 
(Figure 6), non-contact heart rate detection [10] and point-
of-interest analysis, by using eye trackers. 

 
Figure 6. Automatic Multimodal Emotion Recognition prototype 

by facial expressions and emotion clues in speech [12] 

Figure 7 illustrates a snapshot of a SW system prototype 
that runs non-contact automatic heart rate detection, based 
on the analysis of the face skin color variability. More 
accurate estimations of the heart rate are further obtained 
by fusing this result with the indications by other 
physiological sensors. 

 
Figure 7. Non-contact automatic heart rate detection system 

prototype by face analysis [10] 

Figure 8 illustrates a snapshot of a system prototype for 
affect recognition which relies on data fusion models that 
analyze body gestures and physiological signals. In the 
figure, the local worker is a police officer who wears an 
optical-though HMD (META) and an AR mobile system 
assembled in a backpack.  

 
Figure 8. Police officer equipped with the experimental AC-AR 

kit (META HMD [48] and e-Health Sensor [45]) 

Modeling 
The affect modeling component holds a relationship 
between the characteristics of the tele-collaboration AR 
environment and the dynamics of worker’s affective state. 
Relevant data is collected during an experiment session in 
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security teams by providing local support for detection, 
recognition and reconstruction in a physical environment 
(Figure 10), and by facilitating the collaboration with 
remote experts.  
 

  

 
Figure 10. Automatic object detection – gun (top left), marker-

based AR bloodstain pattern reconstruction (top right) and 
automatic face recognition (down) 

 

A previous project with the Netherlands Forensic Institute 
proposed a novel mediated reality system for collaborative 
spatial analysis on location [11][31][43]. 
At the moment, a joint project with security institutions 
represented by the Dutch Police and the Netherlands 
Forensic Institute (NFI) investigates the potential of AR 
techniques to facilitate information exchange and 
situational awareness of teams in the security domain. 
Three different scenarios from the security domain have 
been elicited using an end-user oriented design approach. 
The 3 identified scenarios are: 
• Reconnaissance teams: A policeman, equipped with a 

head mounted device (HMD) investigates a safe house 
in which a witness needs to be safely accommodated. 
This policeman shares the local view as recorded from 
the HMD camera with a remote colleague. While the 
local policeman investigates the safe house, the remote 
agent has the task to highlight suspect objects in the 
house and point out possible emergency exits.  

• Forensic investigation: A forensic investigator arrives 
at a severe crime scene. Wearing an HMD, the 
investigator shares the local view with a remote 
colleague. The remote colleague has the task to point 
the local colleague to possible evidence, take pictures 
of evidence and support the preparation of 3D laser 
scans.  

• Domestic violence: A team of 2 policemen arrives at a 
scene of domestic violence. One of the policemen 
wears an HMD and shares the local view with a remote 
colleague. The remote colleague can provide 

instructions and information on the case, take pictures 
and highlight possible evidence. The local policeman 
wearing the HMD orally shares received information 
with the second local colleague. 

The user interface, created using Unity 3D game engine 
[54], was customized according to the requirements of 
each scenario and was adjusted to the role of each player. 
The user interface design follows the usability principles of 
Nielsen and Molich [27].  
The view of the local person is adapted to the used HMD 
(optical see-through META HMD, Figure 4b), and shows 
only virtual objects currently visible in the grey area 
illustrated in Figure 11 (right side). For the remote user, 
the interface displays the live video captured from the 
local’s HMD camera. Additionally, it shows an authoring 
menu with buttons for handling virtual 2D and 3D objects. 

 

Figure 11. Setup for conducting experiments on AC-based tele-
collaboration in AR for safety domain 

For instance, in the crime investigation scenario (Figure 
11), the remote person is able to place 3D objects (spheres, 
cubes, arrows), to write 3D text messages, to place laser 
stickers to mark physical areas to be scanned by the local 
investigator, and to take/load photos from the local scene. 
The transparent rectangular region in the middle of the 
screen (Figure 11, right displays) represents the view being 
shared by both remote and local investigators. 
Based on the scenarios, an experiment took place at a 
training location of SWAT teams, in which 11 policemen 
and inspectors from 4 operational units of 3 national Dutch 
security institutions participated. An usability study was 
conducted based on the experiment. 

AR Tower Game 
A collaborative game has been designed to approximate 
collaborative solving of shared complex problems and to 
explore the different perception of presence in AR 
scenarios [7][8]. The game requires players to share their 
expertise to collaboratively build a tower with differently 
colored physical blocks or virtual blocks in AR. In the 
game, the workers are replaced with team players 
collaboratively building a tower in AR. The game can be 
adjusted dynamically by tracking the affective state of the 
players using AC technology.  
The goal of the AR game is to jointly build a tower by 
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information as well as dynamic aspects related to the 
interaction between the local and the remote user. The 
modules run specific tasks related to network 
communication, data logging services, interaction 
management and the implementation of complex video 
processing algorithms.  

 
Figure 15. System diagram of DECLARE’s functional modules 

Local User 
For the local user, at the sensory level the input consists of 
the video stream collected from the video camera attached 
to the HMD of the user (“Camera” box). The raw data can 
be seen as the input to the First Person Vision module 
(“FPV” box). According to the work context, the FPV 
module proceeds with the automatic processing of the 
input video data using one of the available modules for 
detecting the physical markers for AR (“Marker Detection” 
box), for localizing and mapping the physical environment 
(“Localizing Mapping” box) or for detecting the user’s 
hands (“Hand Detection” box). Subsequent to the 
automatic processing of the input video data, the “FPV” 
module passes the results related to the 3D position and 
orientation of the AR marker, the 3D location and 
orientation of the trainee (by approximation from the 
position of her HMD) and the location and possibly 
appearance of the local users’ hands in the image. All the 
information is passed to the interaction management 
module (“Interaction Management” box). 
The robustness at the data communication level assumes 
that the system running on the local user’s side is still able 
to function even though the network connection with the 
remote system is interrupted. In such a situation, the local 
user can still visualize the video content of the stereo 
camera attached to his HMD and benefits from the 
information extracted automatically by the local data 
processing modules. 
The network communication failures denote a critical 
issue, especially for the case of real work contexts making 
use of wireless data networks. 
Remote user 
On the remote’s side, the input consists of the raw video 
stream provided by the local user’s system via the shared 
memory space, together with the high-level, semantic 

information related to the position of AR markers, user’s 
hands and user’s location and orientation in the physical 
world.  
The transfer of the combined low-level video data (from 
the HMD camera of the local user) together with high level 
semantic information of the local user’s interaction 
represents the synchronization mechanism which enables 
the virtual co-location process. The system for the remote 
makes use of a user interface which is adapted for the 
regular computer screen as output device and the mouse 
and keyboard as input devices (Figure 2). The second 
possibility for the remote user is to use an HMD for VR 
(Figure 3). 
The output for the user interface on the system for the 
remote user is handled through the GUI interface module 
(“GUInterface Unity3D” module) and an AR/VR module 
(“AR/VR Viewer” box). The input is handled by a 
mouse/keyboard module (“Mouse/Keyboard” box). The 
GUI for the remote user supports an authoring tool 
(“Authoring Tool” box) that has functionality for adding 
and removing augmented content on the AR view which is 
shared between local and remote users. Similar to the case 
of the AR system for the local user, the AR system for the 
remote user integrates an interaction management module 
(“Interaction Management” box). This module receives as 
input both low-level video data and high-level semantic 
data from the AR system of the local (via the shared 
memory space). Additional inputs to the module are the 
remote’s interaction events received from the authoring 
tool and static task-oriented descriptions. Based on these 
inputs, the interaction management module generates the 
output to the AR/VR module which, in turn formats the 
output according to the hardware devices used for 
visualization (standard computer screen or VR HMD).  

EVALUATION METHODOLOGY 
A series of experiments were already conducted on 
studying the usability of the tele-collaboration AR systems 
specially designed to support remote and local workers in 
the above-described scenarios. These systems were 
developed using DECLARE framework. 
A new goal is to study the efficiency of the tele-
collaboration systems which integrate affective computing 
(AC) technology. The study may explore the usability of 
the tele-collaboration systems in two conditions, with and 
without AC support.  
The evaluation considers both subjective and objective 
measurements from the data collected during specific 
experiments with regard to the system usability and 
performance of the tasks to be accomplished by the 
virtually-collocated team. 
Questionnaires, semi-structured interview and the expert 
analysis on the video recordings of the participants during 
experiments, are appropriate instruments providing 
valuable subjective indicators. As objective measurements, 
the analysis may take into account system logs from the 
participant’s interaction with the user interface, and results 
from automatic assessment of body behavior (face, hand 
and body gestures; AC measurements). 
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The questionnaires may consider the measurement of AC-
AR system usability by using the Post-Study System 
Usability Questionnaire (PSSUQ) [25] and the System 
Usability Scale (SUS) [4]. In addition, the questionnaires 
may include the NASA Task Load Index (TLX) [20], the 
AR presence questionnaire of Gandy et al. [18] and the 
situational awareness questionnaire of Endsley [16]. The 
questions relate to the assessment of the usability, 
workload, interaction, interface, tactile experience, moving 
in the environment and the measurement of situational 
awareness.  

CONCLUSIONS AND FUTURE WORK 
The paper presented an approach to integrate two 
technologies, namely affective computing and tele-
collaboration in augmented reality. A system architecture 
is proposed as support for the development of AC-AR tele-
collaboration applications enabling joint work of local 
workers and remote experts. Furthermore, 3 different 
scenarios were described for which several studies have 
been already conducted on tele-collaboration by virtual co-
location. As future work, the AC-AR system prototypes 
will be evaluated based on the scenarios described. 
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