

81

Conversational Agent that Models a Historical Personality

Adrian Bogatu, Dorin Rotarescu, Traian Rebedea, Stefan Ruseti

University Politehnica of Bucharest

313 Splaiul Independentei,

Bucharest, Romania

Autonomous Systems

22 Tudor Vladimirescu,

Bucharest, Romania

bogatu.adrian@gmail.com, dorinrotarescu@yahoo.com, traian.rebedea@cs.pub.ro,

stefan.ruseti@cs.pub.ro

ABSTRACT

In this paper we discuss the current approaches in question

answering (QA) and their applicability in building a

conversational agent that models a historical figure that

gives informative and relevant answers to user questions

about the life of that personality. We analyze two main

methods: one in which we use an ontology to build our

knowledge base and one where we don't have a knowledge

base and we solve the answer sentence selection problem

for question answering. We observed that the first method

is better for answering more general questions and the

second method can deal with more specific and complex

lexically and syntactically questions. The implementation

of the conversational agent relies on the two combined

approaches, the second being a fallback option if the first

method is not able to provide an answer.

Author Keywords

Conversational agent; natural language processing;

information retrieval; question answering; ontologies;

answer sentence selection.

ACM Classification Keywords

H.3.4 Systems and Software: Question-answering (fact

retrieval) systems.

INTRODUCTION

More than 60 years ago, Alan Turing raised the question

―Can machines think?‖ in the book with the same name

[10] where he devised the ―Imitation Game‖ test, which is

similar to the now known Turing test. Since then, computer

scientists have tried to create programs that can interact

with humans and maintain a human-like conversation.

Cleverbot
1
 is one of the programs that accomplished that

and also obtained a score of being 59.3% human from the

jury of the competition, while humans achieved a 63.3%

―humanness‖ score. Cleverbot uses a database of saved

conversations updated constantly and replies with an

answer by matching the user input to previous phrases

found in the database.

Other conversational agents simulate the personality of a

certain person or typology of person and usually use rule-

based systems. An example is the bot ELIZA that tries to

match the user input to a rule and output the answer

associated with that rule [12]. Another example is Freudbot,

1
 Cleverbot, online at http://www.cleverbot.com/.

a chat-bot similar to ELIZA that tries to impersonate the

psychologist Sigmund Freud and talk about his theories and

biography in the first person [6]. A different category is

open domain question answering software systems like

IBM's Watson, which uses Natural Language Processing

(NLP), information retrieval, machine learning and other

techniques to provide an answer to a question [2].

This paper presents the current approach towards the

implementation of a conversational agent that models a

historical character using basic NLP concepts, information

retrieval methods and question answering techniques. The

conversational agent can be used in museums to guide and

inform visitors or in schools as an e-learning tool.

Building a conversational agent using NLP is not an easy

task, firstly because we do not always speak in a

grammatically correct fashion. Secondly, in a conversation,

the speaker assumes that the listener knows and understands

the details of the ongoing conversation. A big challenge is

to determine the context in which a question is posed and to

understand the meaning beyond the lexical structure of the

question.

From a programming point of view, the state-of-the-art

chat-bot relies on a set of files containing rules in the form

of question-answer pairs, usually defined in AIML [11] or

similar languages, which are constructed based on the way

the answer is expressed.

However, in order to build a robust conversational agent it

is expected that an input (question) to have multiple rules

that can be matched against the question and provide a

relevant answer. This implies that a large number of various

rule-answer pairs are needed. On the other hand, it is hard

to predict the interaction between rules when adding new

rules to an existing set.

In order to model a historical figure, we started from that

person's biography on Wikipedia and the associated

DBpedia
2
 page. Consequently, we can identify the way a

certain property is expressed starting from the properties

and their values from DBpedia correlated with the

Wikipedia text.

The paper is organized as follows: the next section

discusses some existing approaches on building a

2 DBpedia, online at dbpedia.org.

82

conversational agent, using either an ontology or a text

matching method in order to answer questions. The next

section describes the steps we took to create a knowledge

base and generate rules for our conversational agent. In the

end of the implementation section the results using

ontologies are presented. After that, the integration of the

answer sentence selection approach, as a fallback method

for the first approach, is analyzed. Finally, the conclusions

are presented.

RELATED WORK

Our project is inspired from conversational agents

implemented using ontologies as well as conversational

agents that do not use a knowledge base and rely only on

the question asked and a corpus from where the answer will

be extracted. Next we will present some background on

these two approaches.

Ontology approach

As defined in [5], an ontology is an explicit specification of

a conceptualization, where conceptualization is defined as

an abstract, simplified view of the world that we want to

represent.

The Intelligent Verilog Compiler Project [9] is a tutoring

system used for teaching the Verilog language. It is said to

be intelligent in two ways: ―it helps check the syntax and

the semantics of the learner's program and it finds a

technical or English definition, comparison or example

suitable to the error being reported in the context of the

piece of the code. It displays the information next to the

incorrect code and errors in order to 'scaffold' learning

without directly providing the answer‖ [9]. This method of

interaction is accomplished using an ontology of the

Verilog language.

Another dialog system where ontological resources are used

is one personifying the author Hans Christian Andersen.

The domains of discourse contain his fairy tales, his life and

the user [8]. It is stated that the reasons to use ontologies

are: faster development because of the shared ontology over

different conversation domains; the fact that the application

can be easily extended to support new domains of

conversation.

A technical approach on using ontologies for question

answering is described in [4] and given an implementation

in [3]. The authors thought of matching as an operation on

two graph-like structures that ―produces a mapping between

elements of the two graphs that correspond semantically to

each other‖ [4]. Starting from the said concept of matching,

the authors imagined the next step: semantic matching,

which also analyzes the meaning behind nodes in the two

graphs.

As described in [4], this approach has two main features:

 search for semantic correspondences by mapping

meanings (concepts), and not labels, as in syntactic

matching. As the rest of the paper makes clearer,

when mapping concepts, it is not sufficient to

consider the meanings of labels of the nodes, but

also the positions that the nodes have in the graph.

 use semantic similarity relations between elements

(concepts) instead of syntactic similarity relations.

In particular, we consider relations, which relate

the extensions of the concepts under consideration

(for instance, more/less general relations).

In the case of ontologies, this approach works if we can

construct an equivalent graph-like representation of a given

ontology.

Answer sentence selection approach

Answer sentence selection is the task of finding a sentence

from a set of candidate sentences that best answers a given

question.

The method we rely on the most is the one described in [1].

In [1], there are three main approaches analyzed, but we are

only interested in the first one: the approach that uses

algorithms that rely on ―sophisticated syntactic/semantic

processing‖ [1]. The authors present three main types of

extracting and using knowledge for the answer sentence

selection problem. The first one is to determine the type of

answer (also known as ―Qtarget‖) to a given question. For

example:

Question: What is the duration of the song ―Hey, Jude‖?

Qtarget: TEMPORAL-QUANTITY

or

Question: When were you (John Lennon) born?

Qtarget: DATE

After finding the type of answer needed, the set of possible

answers can be filtered according to the semantic type of

the question, and we can remove all the sentences that have

a type that does not match the found Qtarget.

The second type of knowledge contains the semantic

relations between constituents that appear in the question.

The correct answer should preserve these relations.

Example from [1]:

Question: Who killed Lee Harvey Oswald?

Text: Jack Ruby, who killed John F. Kennedy assassin Lee

Harvey Oswald.

The explanation is given in [1] immediately after the

example: ―Even if 'John F. Kennedy' is textually closer to

the question terms 'killed' and 'Lee Harvey Oswald', the

system will choose ―Jack Ruby‖ because its logical subject

relation to the verb matches that of the interrogative in the

question.‖

The third type of knowledge relies on the use of

paraphrases. Because the wording in a potentially correct

answer is not always similar with the one in the question,

immediate textual matching does not always work. The idea

is to generate alternate formulations of the question (but

preserve the meaning) in order to increase the matching

chances for a good answer.

83

An example of reformulation of a question from [1]:

Question: How deep is Crater Lake?

Reformulation patterns:

 Crater Lake is <what distance> deep?

 depth of Crater Lake is <what distance>?

 Crater Lake has a depth of <what distance>?

 <what distance> deep Crater Lake?

 Crater Lake's depth is <what distance>?

OUR METHOD
ChatScript

ChatScript
3
 is a chat-bot engine, a tool that helps build

conversational agents that are based on rules. It uses a

scripting language to build these agents and process natural

language. ChatScript represents the state-of-the-art for

conversational agents and helped with the transition ―from

matching patterns of words to matching patterns of

meaning.‖ [13]

A chat-bot is modeled through a set of script files that

contain rules. A rule is formed from a pattern and a

response. The response represents the output that a

ChatScript bot will provide if the input matches the pattern.

For example:

u: (Where * you * born) In the capital.

u: (When * born) This century.

The elements in the parentheses constitute the pattern and

the sentence after the pattern represents the answer. The star

symbol is a wildcard that can match none, one or more

words.

In our case, the input is represented by the question asked

by the user, therefore we want to create the best patterns for

each possible answer we have retrieved from a person's

biographical text. Example for our generated rules:

u: (vb marry) I married Elsa Löwenthal on 2

June 1919 , after having had a relationship

with her since 1912 .

u: (vb die in in) I died in Princeton

Hospital early the next morning at the age

of 76 , having continued to work until near

the end .

In the examples above, in the parenthesis we find the part of

speech (in our examples, this is a verb) returned by

Stanford NLP and the lemma of the word from the

expression found by the algorithm.

Because our program needs to support a large number of

different historical figures, we needed to automate the

creation of ChatScript specific files. The method of

generating the scripts is described in the Pattern generation

subsection.

3
 ChatScript, online at http://chatscript.sourceforge.net/.

Stanford CoreNLP

Stanford CoreNLP [7]
4
 is a tool for analyzing and

processing text. It integrates some useful modules that we

used for Wikipedia articles. The part-of-speech tagger was

used to differentiate between verbs, nouns, adjectives etc.

The tokenizer was used to split paragraphs into sentences

and sentences into words, while the lemmatization tool was

employed to find the canonical form for a word. In the end,

the co-reference resolution system was used to link the

subject of sentences to the anaphoric proper name in the

context of a paragraph, if there exists such an anaphoric

element.

Methods
Expressing a Property

In order to understand what is trying to be expressed in a

sentence, we start from the DBpedia properties of a large

set of people. Subsequently, for every property, we try to

determine how that property is expressed in the Wikipedia

corpus. For the information extraction, we use Stanford

CoreNLP.

To find the manner in which a property is expressed, we

searched the value of that property in the sentences from

Wikipedia where the person which the article is about

appears in. Having the desired sentence identified, we

annotated it using Stanford CoreNLP and obtained a

syntactic parse tree. Analyzing this tree, we determined that

the root is the verb directly connected with the subject.

Having the parse tree, we considered that the best way to

express the property is the path from that property to the

root verb.

Applying this algorithm to a large set of people, we

managed to build a big, but extensible knowledge base by

introducing the most relevant output expressions in a

knowledge base.

Examples

In Table 1 we present some entries in our knowledge base,

where the property is extracted from DBpedia and the

lexicalization represents an enumeration of ways the given

property appears to be expressed in the Wikipedia articles.

DBpedia property Lexicalizations

birthDate born; born in

almaMater receive in; graduate as

award award; receive

college graduate from; attend

deathPlace die in

profession serve in; become

spouse marry; marry to

Table 1: Examples of how specific DBpedia properties are

most often expressed.

4
 CoreNLP, online at http://nlp.stanford.edu/software/corenlp.shtml

84

Figure 1: Parse tree for the phrase “He received the 1921

Nobel Prize in Physics”

Figure 2: Parse tree for the phrase “Albert Einstein

was born in Ulm.”

In Figure 1 is shown the syntactic parse tree for the

sentence ―He received the 1921 Nobel Prize in Physics‖

without the corresponding syntactic elements. The DBpedia

property that connects ―Albert Einstein‖ and ―The Nobel

Prize‖ and for which we want to identify a lexicalization is

the ―award‖ property. These are the characteristics of the

search:

Subject: Albert Einstein

Object: Nobel Prize

Property: Award

Output: receive

In Figure 2 is presented a similar parse tree from which we

can extract the following information:

Subject: Albert Einstein

Object: Ulm

Property: BirthPlace

Output: born in

We can see that in the second example the found expression

of a property is the path from the verb to the value of the

DBpedia property (in this case ―BirthPlace‖) excluding its

value.

Pattern Generation

In order to generate ChatScript files for a specific person,

we fetch that person's Wikipedia page, split it into phrases

and keep only those that have the person as a subject. This

filtering was done using the Stanford Deterministic Co-

reference Resolution System. After extracting all the

phrases referring to the current historical figure, we select

only those that express a property from DBpedia matching

the expression against the knowledge base. We then create

a rule-answer entry to add to the ChatScript files. The rule

is represented as an expression of a property that appears

both in the analyzed sentence and the knowledge base. The

answer is the analyzed sentence from Wikipedia which is

converted to be expressed in the first person. The

conversion from the third person to the first person of the

sentence is accomplished with Stanford's Part-of-Speech

Tagger and CoreNLP. All these patterns are written in

ChatScript's file hierarchy. For a fast and easier way to find

the answer, we arranged ChatScript's files by the properties

of the person.

INTEGRATION OF ANSWER SENTENCE SELECTION
Because it is impossible to build an exhaustive rule-based

system, a secondary approach to this problem has to be

taken into consideration in order to give a good answer. In

addition, ChatScript has its own limitations coming from

the fact that it ignores a rule after it first matches it.

Therefore, a fallback option is needed in case the former

approach fails to provide an answer.

Considering the fact that the former approach gives better

answers the simpler and more common questions are asked,

we observe that either it fails to match questions that are

more complex or it has too many matches for a question

that uses a common verb (like ―to be‖ or ―to have‖) and the

results will be inaccurate or noisy. The solution to avoid

this is to try and find the answer directly from the source of

the previously described knowledge base with an ad hoc

approach considering every sentence from that respective

source.

Answer sentence selection
Following the goal of having to answer a question for a

certain historical figure, the set of possible answers is

reduced to a set of sentences from that person's biography.

This leaves us with the task of identifying a sentence from a

biography that has the highest probability of correctly

answering the question at hand.

Considering what was previously stated, that this approach

tries to find the answer to a more complex question, we can

assume that, at least for now, there is a great deal of

semantic information embedded in the form of the question

(lexically and semantically) so that the chances are a part of

the answer textually lies in the question. Therefore, what

we can do is actually search for the question (or paraphrases

of the initial question) in the reference text.

To get the best results out of this approach, we need to

follow a number of steps.

First, we need to remove unnecessary words, including stop

words, the interrogative words (what, when, where, who,

why and how) and irrelevant verbs (―to be‖, ―to have‖ and

85

other similar verbs as described above) in order to remain

only with meaningful words, i.e. the kernel of the question.

Second, we want to use the Stanford CoreNLP software to

lemmatize the question (i.e. to convert every word to its

appropriate canonical form) because, as described later on,

the corpus used for a historical figure will be lemmatized

too. This will help in the search step because words will

more likely match if they are in their base form.

Third, we try to find alternative ways of expressing the

input question and attempt to search for all these variants in

the biographical text. We do this by trying different

synonyms for the words in the question so that we can get

more results, even if the initial question is formulated in

such a way that it does not contain the exact words that

might appear in the sentence representing the correct

answer.

Next, the top paragraphs from the Wikipedia article are

filtered based on the textual matching score between the

question and the respective paragraph given by Apache

Lucene
5
, a specialized text indexing and searching tool.

Then, we apply the same algorithm at the level of sentences

instead of paragraphs. In short, to get the best answer the

corpus is divided in separate paragraphs and a small set of

paragraphs where the answer sentence might be part of are

selected. Next, we attempt to find an even smaller set, made

of sentences that are the best candidates to answer the

question.

After we have a set of sentences that passed the lexical

filtering, we want to eliminate those in which the subject of

the sentence does not match the subject of the question.

This mechanism is similar to maintaining the semantic

relations as described in [1], and presented above in the

Related Work section. To achieve that, we want to use

Stanford CoreNLP, and in particular the Stanford

Deterministic Co-reference Resolution System, to

determine who is the subject of a given sentence.

After the syntactic filtering we are left only with the

semantic filtering. This means we want to filter out all the

sentences that do not have the type as the one expected by

the question. For example, questions starting with ―When‖

expect an answer sentence that contains a numerical value.

Finally, we choose the first sentence in order of the

previously gathered relevance scores. Using the

aforementioned approach, we manage to answer more

complex questions.

Algorithm

1. fetch the question for a historical figure

2. fetch the biography text for that person

3. split the text into paragraphs

4. lemmatize the question and all the paragraphs

5
 Apache Lucene, online at https://lucene.apache.org/.

5. find a set of top paragraphs against which the

lemmatized question matches

6. reduce this set to a set of sentences from these

paragraphs against which the lemmatized question

match

7. eliminate the sentences that do not refer to the subject

of the question

8. filter out the sentences that don't respect the expected

answer type

9. return the best answer found

RESULTS

Knowledge base approach

Because a conversational agent is an interactive system,

verifying and validating it is not an easy task, therefore the

only way of testing the chat-bot was by asking questions

and analyzing the returned results. Most of the test

questions were conceived by the development team. The

first time a historical person is chosen to interact with, we

generate all the rules (questions and answers) that can be

extracted from the knowledge base which are written in

ChatScript format. After this step, each time this historical

person is selected, we use the already generated data from

the ChatScript. Because of this the response time is less

than 1 ms.

So far, the conversational agent provides answers to simple

questions that express properties from DBpedia. Some

examples follow below.

Examples for Albert Einstein bot
Q: Where were you born?

A: I was born in Ulm, in the Kingdom of Wurttemberg in

the German Empire on 14 March 1879.

Q: When did you die?

A: I died in Princeton Hospital early the next morning at the

age of 76, having continued to work until near the end.

Q: What award did you receive?

A: I received numerous awards and honors, including the

Nobel Prize in Physics.

Q: What schools did you attend as a child?

A: I attended a Catholic elementary school from the age of

5 for three years.

Q: Who were you married with?

A: I married Elsa Löwenthal on 2 June 1919, after having

had a relationship with her since 1912.

Personality Different answer

John F. Kennedy 146

Abraham Lincoln 141

Ronald Regan 131

Adolf Hitler 129

George W. Bush 125

Table 2: The number of different answers given by the

bot.

86

A way of validating this method is done through the

number of different answers we can provide, which are

presented in Table 2.

Answer sentence selection method

The testing of the answer selection methods was done for a

set of 5 personalities and about 20 questions for each

personality, some of them general, others more specific.

What was observed during the testing is that, in the

majority of cases, a correct answer was somewhere in the

top 10 sentences outputted by the lexical pipeline.

Personality P@1 P@2 P@3

John Lennon 40% 60% 80%

Albert Einstein 30% 60% 80%

Napoleon 30% 40% 40%

Charlie Chaplin 42% 57% 57%

Adolf Hitler 50% 83% 83%

Table 3: The percentage of correct answers for various

personalities in case of the first (P@1), the first two

answers (P@2) and the first three answers (P@3).

From the tests done, it is noticeable that all the answers

took less than 700 ms. Here we present several examples

from a discussion with the conversational agent using the

answer sentence selection method. The chat-bot

impersonates John Lennon:

Q: What was your debut album?

A: My emotional debut solo album, John Lennon/Plastic

Ono Band (1970), was received with high praise.

Q: Who shot you?

A: At around 10:50 pm on 8 December 1980, as me and

Ono returned to their New York apartment in the Dakota,

Mark David Chapman shot me in the back four times at the

entrance to the building.

CONCLUSIONS

This paper presented the two methods used together to

implement a conversational agent that models a historical

figure: the first method of generating ChatScript files using

ontologies extracted from DBpedia and the fallback method

using answer sentence selection with textual matching. The

advantage of implementing a chat-bot that answers trivia

questions from the perspective of a historical personality is

that for each person, there is a small amount of information

to be processed. In addition, the questions are easy to

predict, unlike questions in a general purpose open-domain

question answering system.

ACKNOWLEDGMENTS

This work has been partly funded by the Sectorial

Operational Programme Human Resources Development

2007-2013 of the Romanian Ministry of European Funds

through the Financial Agreements

POSDRU/159/1.5/S/132397 and by POSDRU/155420 –

PROSCIENCE.

REFERENCES

1. A. Echihabi, U. Hermjakob, E. Hovy, D. Marcu, E.

Melz, and D. Ravichandran, ―How to Select an Answer

String?,‖ Adv. open domain Quest. answering, pp.

383–406, 2006.

2. D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D.

Gondek, A. A. Kalyanpur, A. Lally, J. W. Murdock, E.

Nyberg, J. Prager, N. Schlaefer, and C. Welty,

―Building Watson: An Overview of the DeepQA

Project,‖ AI Magazine, vol. 31, no. 3. pp. 59–79, 2010.

3. F. Giunchiglia, M. Yatskevich, and P. Shvaiko,

―Semantic matching: Algorithms and implementation,‖

J. Data Semant., 2007.

4. F. Giunchiglia and P. Shvaiko, ―Semantic

Matching,‖ Knowl. Eng. Rev. J., vol. 18, no. 3, pp.

265–280, 2004.

5. T. R. Gruber, ―A translation approach to portable

ontology specifications,‖ Knowl. Acquis., vol. 5, no. 2,

pp. 199–220, 1993.

6. B. Heller, M. Procter, and D. Mah, ―Freudbot: An

investigation of chatbot technology in distance

education,‖ Proc. World Conf. Educ. Multimedia,

Hypermedia Telecommun., pp. 3913–3918, 2005.

7. C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.

J. Bethard and David McClosky, ―The Stanford

CoreNLP Natural Language Processing Toolkit‖, ACL

2014, 2014.

8. M. Mehta and A. Corradini, ―Developing a

Conversational Agent Using Ontologies,‖ HCI’07

Proc. 12th Int. Conf. Human-computer Interact. Intell.

multimodal Interact. Environ., pp. 154–164, 2007.

9. K. Taylor and S. Moore, ―Adding question

answering to an e-tutor for programming languages,‖

in Applications and Innovations in Intelligent Systems

XIV, 2007, pp. 193–206.

10. A. Turing, ―Computing machinery and

intelligence,‖ Mind, vol. 59, no. 236, pp. 433–460,

1950.

11. R. Wallace, ―The elements of AIML style,‖ Alice

AI Found., 2003.

12. J. Weizenbaum, ―ELIZA — A Computer Program

For the Study of Natural Language Communication

Between Man And Machine,‖ Commun. ACM, vol. 9,

no. 1, pp. 36–45, 1966.

13. B. Wilcox, ―Beyond Façade: Pattern Matching for

Natural Language Applications ‖, Telltale Games,

2011.

