

41

Analyzing Computer Game Strategies through Visual
Techniques

Mircea Catalin Catana, Dorian Gorgan

Computer Science Department, Technical University of Cluj-Napoca
Str. G. Baritiu 28, 400027, Cluj-Napoca, Romania

mircea.catalin.catana@gmail.com, dorian.gorgan@cs.utcluj.ro

ABSTRACT

The paper presents and analyzes an application that can

emulate different types of strategy games and provide

significant specifications as to how the strategy impacts the

outcome of the player experience. This application is meant

to be used as a tool both by game developers, which can use

it to calibrate their products and also by the game players,

who will want to use it as a means to improve their

strategies. The research explores the concept of strategy in

games and tries to define a metric for evaluating this

concept. Due to the complexity of videogames, the

computation of every outcome for every possible decision a

player can make is impossible, so the research proposes a

method of combining the human familiarity with the game

concept and the processing power of the computer to search

the wide solution space. The paper analyses a concrete

example by building a test bed for the tower defense type

games.

Author Keywords

Game Strategy; Visual Analytics; Visual Techniques;

Tower Defense Games.

ACM Classification Keywords

H.5.2 User Interfaces, I.3.7 Three-Dimensional Graphics

and Realism, I.6.8 Types of Simulation.

INTRODUCTION

Video Games have been around for a long time, dating to

the early 50’s as part of computer science research,

however it is not until the 90’s when computers began to

spread and be used by the general public that games have

started to flourish. Where in the early days of game

development a person could do most of the work by

himself, highly specialized teams are now working on

specific aspects of the game like: gameplay, user interface

(UI), game design, etc.

Along the road games started to be categorized by their

creators and players in types related to their content, play

style and view of their simulated environment. Some of

these categories include: 2D and 3D worlds, platformers,

puzzles, role playing games (RPGs), etc. Out of all these,

this paper focuses on games in which the player must

devise a strategy as the core part of the gameplay in order to

win the game. These are usually called strategy games and

can be either turn based or real time.

In turn based games, each player takes turns in a predefined

order to perform actions which have impact in the game

world. A classic example of a turn based game is chess in

which the white and black players move a piece per turn

until an end game situation is achieved.

In real time strategy (RTS) games [9] the players interact

with the world at the same time and practically “race” each

other to the end of the game. These types of games are

more challenging as players are not only forced to play a

better strategic game than their opponent but they also have

to make decisions fast in order to be quicker than the other

players.

Our research mainly deals with tower defense games as a

demonstration of the applicability of the visual analysis

techniques used, but future releases could cover a wider

array of game types. Tower defense games are a particular

type of strategy game in which the user plays against a

computer in single player mode. The player has to defend a

safe point by building different types of turrets that shoot at

the computer units. The computer’s objective is to reach the

player’s safe point with its units. The units follow a

predefined path from a spawn point to the player safe point

and are generally generated in waves of increasing

difficulty. The challenge and strategy lies in how the human

player decides to spend his resources in order to build

turrets which will defend his safe point. After each

computer unit kill, the human player is awarded a small

amount of resources which he will later be able to spend on

building more powerful turrets. The game allows for a

minimum number of computer units to reach the safe point

before the player loses the game. If however the player

manages to defeat all the enemy waves before that

threshold is reached he wins.

In creating games, one frequent problem is that developers

have to take great care and spend a lot of time balancing the

properties of their software so that the experience of the

player is enjoyable. This means tweaking all the variables

in a way such that the game is not extremely easy to play,

but also not very difficult or impossible. This process can

be a daunting task, but an absolutely necessary one if the

game is to be successful. Currently, there is no general

purpose software which can aid in this process. Some

gaming companies develop a small array of in-house tools

that help game designers in this regard, but these are small

42

tools that are usually custom built for each game

individually.

This paper proposes a method of addressing the previously

mentioned issues by building a software tool which is able

to simulate the conditions of a computer game, analyze the

way a strategy is carried out and provide insight into ways

of improving gameplay. This can be beneficial to both

developers by providing them with a tool that can aid the

process of calibrating the game difficulty levels and

professional gamers which can use the software to improve

the strategies they use in competitive games as well.

Videogames are highly complex systems with a lot of

variables which means that we cannot simply compute

every possible outcome for all the sets of inputs and just

choose the best case. The method described in this paper

proposes to combine the computation power of a computer

with the analytical thinking and decision making

capabilities of a human being. The main goal of this

research is to develop a software application that can

analyze strategies used in tower defense games and provide

the user with visual guidance in developing a better strategy

for a specific game input.

If we are to analyze all the possible combinations a user can

choose to play during a game we have to think of the

variables of the game as an n-dimensional solution space.

Such a space where the axes have values like turret damage

and position on the grid is very hard to be interpreted and

visualized by a human being. A difficult task was to come

up with a visual representation that would provide a view of

this system from a perspective in which the user could

easily understand the parameters and the optimal values for

them. The paper proposes a visualization technique that

makes use of the projections on the axes of the n-

dimensional space.

The paper is structured as follows: Introduction section

provides an overview of computer games and introduces the

reader to the concept of strategy in games. This section also

provides the motivation behind building this software

product. Section 2 is a study of the work done by others

which provides a base for this research. It treats strategy in

video games and visualization techniques independently.

Next section covers the theoretical analysis of the solutions,

providing insight into the design of the application and the

technologies used during development. The solutions are

evaluated and validated by practical experiments. Last

section draws conclusions and future directions.

RELATED WORKS

Game engines are highly complex software systems that are

designed for the development of videogames. The concept

is relatively new as games before the mid 90’s were built

from ground up every time. Jason Gregory marks in his

“Game Engine Architecture” book [1] that the concept of

game engines started to form around games like id

Software’s Doom. The game provided a clear separation

between core functionality and specific game aspects like

custom assets or gameplay rules. By the late 90’s game

developers identified certain needs any game would have

regardless of its contents and started building software that

would manage these needs but that could also be reusable in

other projects. Some of these components include a

rendering engine, user input handling, a sound framework,

and so on. A separation between the layers handling game

logic and the lower layers handling the hardware and

general purpose systems started forming in all the games

since then. This eventually became known as the game

engine. It is worth noting though, that not even today’s

modern game engines can provide a clear separation

between them and the game.

An important point in the history of game engines was

introduced by game moding. The concept of a game mod or

modification was introduced with the rise of games like id

Software’s Quake Arena and Epic Games’ Unreal

Tournament. In these games the engines were made highly

customizable via scripting languages like Quake C. These

moding capabilities allowed anyone who owned a license to

build additional content for the original game or even build

a new game. Shortly a large community was built around

this concept and this facilitated the separation of the game

engines from the actual games.

Nowadays there are a high number of different game

engines that are licensed separately from any specific game.

These engines have reached a point where anyone can pick

them up and build any game they have in mind without

worrying about how to implement every system that a

videogame would need in order to run. There is enough free

software to cover most of the needs of a developer, so the

problem becomes more of choosing the right tool rather

than not having access to it. An example of such

commercially available game engines that are at our

disposal now include Epic Games’ Unreal Engine 4, which

has features that mainly target FPS games and Unity

Technologies’ Unity3D engine.

Game engines are usually made from a runtime component

and several tools that can work along it. The architecture is

built in layers where upper layers depend on lower ones but

not the other way around so as not to create circular

dependencies and to promote low coupling between the

systems.

One of the most important factors in whether someone

keeps playing a videogame is the challenge level of it. The

challenge level is directly linked to the engagement the user

experiences while playing. Fraser et al. [2] presents data

from an experiment in which they analyze how different

game factors affect a player’s performance in a game. Their

paper directly relates to some aspects of this work, as they

also build a test bed for a game with the goal of identifying

which game factors affect gameplay. In the same way, the

software application described in our paper can be used to

examine in more detail these factors and their impact.

43

Besides tweaking parameters to different levels of

difficulty, modern games are starting to use the data they

gather during a play session and combine it with artificial

intelligence (AI) to make the game difficulty level adapt in

time. Every game has a learning curve and even though

initially a low difficulty level might be suited to a certain

player, he could learn the game and its mechanics rather

quickly in which case a more difficult level should be ideal.

So, if there is no difficulty adapting mechanism installed,

the situation could rapidly converge to the initial problem.

In the early games, this need for increasing difficulty was

mainly hard-coded by the developers in the design of the

game levels. Each successive level would present a harder

puzzle to solve or just more of the same difficulty obstacles

to get pass by. This technique is still used today, but no

longer enough. The racing game Forza, for example, uses

the data gathered during online gameplay sessions to adapt

the single player AI driving style. This means that as you

climb higher in ranks during online play and get better, the

single player AI will also be close to your ranking and

driving performance. Moreover, if the player usually plays

online versus his friends, the AI style will start to mimic his

friend’s driving style, thus enabling a user to have a

connection with his friends even in offline mode.

Other games take an “in the middle” approach and

predefine a set of parameters which will be used as a

difficulty step during gameplay. If the player performs well

and is starting to overcome the current level with ease, the

difficulty level will be dynamically incremented to the next,

if the player has trouble overcoming the current setting it

will be dimmed down. Most games use this approach as

more often than not, the complexity of the game is too great

to build a fully adaptive AI system.

When discussing game difficulty and challenge in a strategy

game, the paper “Exploring Design Features for Enhancing

Players’ Challenge in Strategy Games” [3] found that there

are two important aspects one must consider: mental

workload and physical effort. It is important to look closely

and distinguish between these types of factors at the level of

the game type and start working on building the game

design around them. An action game for instance has great

demand on the perpetual-motor skills of the player, so

focusing the gameplay and building the game around this

rather than on puzzle solving is essential.

In the context of strategy games, mental workload is

directly linked with information availability. In short, the

more information a player is given about the state of the

game and the actions that are happening around him, the

less mental work he has to do. The study has found that not

only this is true, but also that mental workload tends to

decrease in the case there is extremely few information.

That is, players who are given too little information about

what’s going on tend to stop being challenged as they figure

they cannot accomplish anything with what they have at

their disposal. This is a very important piece of information

for game designers as it tells them game balancing is the

key factor for keeping players engaged.

Similarly with the case of mental workload, physical effort

follows a similar path. In strategy games, the physical effort

is measured in terms of the amount of resources a player

has available. So again, in order for a game to be

challenging, the amount of resources a game makes

available to a player must not be too high neither too low.

Based on this study we can infer that in the case of tower

defense games there is a strong relationship between the

data the player has about the next waves of enemies (mental

workload) and the resources available to spend on turrets

(physical effort). Thus striking the right balance in a

strategy for a tower defense game lies in the calibration of

these two factors.

VISUAL BASED GAME STRATEGY SOLUTION

Game Strategy Solution Overview

The research aims to develop and experiment the

techniques of Visual Analytics, through an application for

analyzing and developing strategies in videogames. The

software should be able to model a general type of game

and based on the game’s rules provide the user with

information about how to improve his strategy. The

application is meant to be used by players trying to get

better at a game and also by game designers that are trying

to calibrate the difficulty levels in the game they are

developing. The solution treats videogames as an n-

dimensional system in which each axis represents one of

the variables in the game. Each such variable will have a

value domain range defined by the game in question.

A set of equations describing the game rules and how these

variables affect the strategy in the game will be devised

based on a predefined metric. The metric will be built

specific to the game and it will consist of a function that

will score a set of fixed game parameters. Different

parameter values will be given different scores by the

metric function depending on how desirable each situation

is compared to the other. This scoring will be done for a

reduced set of values and the results will be displayed to the

user through visual techniques. Based on the user’s

expertise in the field and the human ability to quickly

analyze data, the user will chose a set of parameters from

the ones evaluated and the computer will restart the

computation for values in the vicinity of the chosen data.

This way the process will repeat itself and converge

towards an optimal solution. The stopping point of the

process is determined by the user which can choose to go

further until there is no visible change in the data, thus

signaling that the optimum has been reached or he may opt

to end the search earlier and have a partial solution

available in a few iterations.

For the particular case of Tower Defense games we will

analyze the following 3 aspects of implementation: building

44

a simulation of the game, developing the underlying

algorithms to analyze the strategy, and building a

visualization system that transforms the output of the

algorithms into visual data that is easily handled by a

human user.

Building the Game

In order to analyze the strategies used, we must first have a

working test-bed of the type of game we want to analyze.

Since we want to use the application to support as many

tower defense games as possible it is better to build a

configurable base game ourselves than to try and make a

tool which could integrate will all existing software. The

implementation of the application is done using the

Unity3D engine which allows for easy and quick

prototyping of a game (Figure 1). The whole system is

stripped to the very basics of tower defense games and is

made to be able to model the entities of the game from a

configuration file. This ensures that if we have the

specification for the game, the system will be able to build a

fully functional simulation of it that will come integrated

directly with the analysis tools.

Game Evaluation Metrics

Before we start building the algorithms we must first

analyze the tower defense specification and determine the

metrics for evaluation. The following aspects have been

identified as having the most significance in a tower

defense strategy:

 Player health at the end of the game

 Resources left unspent

 Difference between total damage dealt and total enemy

hit-points

 Total game time

Player health at the end because it directly translates into

how many computer enemy units have managed to pass the

built towers, thus having more hit-points at the end means a

better strategy has been used. Resources left unspent

influence the value of the strategy because if you can

manage to achieve the same end result spending less

resources, it means the strategy used has higher efficiency.

The difference in enemy total hit-points and the damage

dealt is a subtle way of fine tuning the efficiency of the

strategy. Dealing more damage than necessary to the

enemies translates into resources that could have been

saved on that extra damage.

Finally, total game time is a straightforward unit of

efficiency measurement, with the strategy that finishes

earlier having the greater score. It is to be noted though,

that total game time should be computed only by the sum of

the time in which waves of enemies are active and not add

the time in which the user is thinking about the strategy as

this not affects its value. Thus the final efficiency of the

strategy may be calculated as:

Efficiency = a*PlayerHealth + b*ResourcesUnspent +
c*(TotalDamage – TotalEnemyHealth) + d*TotalTime

In order to be able to compute the efficiency then we must

know all the above information, but in tower defense games

enemies come in waves and you only have information

about the waves you have already passed and the current

Figure 1. Game graphical user interface.

45

one. This means that developing a strategy for the game is

not possible from the beginning and that at least a play-

through must be completed before we can do so.

Developing the Algorithms

The application then provides a method that will not only

help the player get to the end of the game and learn the

information about the waves as quickly as possible but in

the process also learn enough information so that in the end

a well-rounded strategy for the whole game can be

computed. Thus the paper proposes 2 algorithms:

 Local Optimum – This algorithm will treat only the

current wave of enemies with the resources at the

player’s disposal at that time. It will thus create a turret

that has the optimal configuration in order to pass the

current wave of enemies.

 Global Strategy – This algorithm will be run at the end of

the game, once the information about all the waves is

known. It will combine the local optimums developed

along the way and generate a strategy considering the

whole picture of the game.

To develop the equations for the algorithms we firstly need

to know what is the n-dimensional problem space in the

tower defense type of game. The following entities are what

we must consider, they are split into fixed and variable to

indicate that they are given by the specification of the game

(fixed), or that they can be influenced by the player’s

decisions (variable):

The Local Optimum algorithm will try to balance the turret

parameters in such a way that the turret cost is minimum,

but the turret can also eliminate all the enemies in the

current wave. The Range and Position parameters are

strongly tied to the Game_World, and the perfect

combination of these parameters ensures that the turret can

fire for the longest amount of time possible on the enemies.

The Range, Damage and Firing_Speed are tied to the

Enemy component as they determine the total output

damage the turret can achieve in the time the enemies are in

the turret’s range. The system probes a restrained domain of

values for all of the parameters and displays the results to

the user using the visual techniques described below.

Building the visualization tool

Up until now we established the metrics and a series of

algorithms that can score a combination of the game

parameters for a local case. The problem now is to build a

Figure 2. Turret Parameter Graphs.

Fixed:

Game_World {
 Map,
 Path
}
Enemy {
 Health,
 Speed,
 Damage
}

Variable:

Turret {
 Position,
 Range,
 Damage,
 Firing_Speed
}

46

visualization tool that the human user can interact with, and

from which he can guide the further search iterations of the

algorithm.

It is very hard for people to reason about n-dimensional

problem spaces especially when n > 3 and when the axes

do not necessarily represent position. In order to make the

user’s experience easier we draw inspiration from 3D

modeling software where you can see the 3-dimensional

space not only from the perspective view but you can also

chose to view from 2D viewports that display only 2 of the

3 dimensions at once.

In a similar fashion we choose to represent our problem

space through a series of 2D projections where each axis

represents the values for one of the turret’s parameters

(Figure 2). In addition to this representation each of our 2D

viewports comes with a slider which is assigned to the

domain of a 3
rd

 parameter. By using this slider, the user can

see how changes in the slider’s parameter values affect the

efficiency of the parameters displayed on the axes.

In order to further provide a better and faster understanding

of the data, the points displayed in the 2D viewport are

color coded with regards to the impact they have on the

strategy’s efficiency. Points which have a greater score are

displayed in bright green and points on the graph which

have a bad score are represented with red. In this way, the

user can quickly scan the 2D space and find concentration

points of green color indicating that is an area of

convergence for the optimum parameter values.

As position is represented by the x and y coordinates on the

grid map, it is not wise to separate these two parameters

when displaying them in the viewports. The total number of

possible combinations with 2 parameters on the axes and

one on the slider for our model of tower defenses is 30, but

most of them represent data that is not useful for the user as

he cannot quickly reason about it. The identified useful

viewports from which the user can choose the path of

convergence are: a position viewport with the turret’s x and

y on the axes and the range parameter on the slider; and 3

viewports that cycle through combinations of turret

damage, firing-speed and range on the axes and slider. With

these 4 viewports, the user can view the turret parameters

from different perspectives and using the coloring scheme

can choose the best combination in order to create the local

optimum turret.

Local Optimization and Global Strategy

By using the visual analysis tool at each stage (wave) of the

game, the user ensures that he will reach the end of the

game and have all the necessary information to construct a

global strategy. We say global strategy and not global

optimum because we want the game designers to have the

possibility of generating strategies of different difficulties

in order to aid the calibration of the difficulty levels in their

games. This global strategy is driven from the choices made

at the wave level, where the algorithm points out the

optimal choices for that particular state, but the user has the

possibility of choosing any values for the turret parameters

he wants and proceed further with his selection. Thus the

choosing all optimal locals will generate a “hard” difficulty

setting while making not optimal choices will generate a

lower difficulty setting.

 Once the end of the game is reached, the application

considers each local optimum as the threshold the strategy

must pass for each stage. Also knowing the information

about all the waves means that the algorithm can search for

combinations of turrets that can achieve the thresholds of

future waves at earlier stages. This reduces the necessity to

build a turret at each wave and just pumps the parameters of

the turret from the earlier stages to handle the later ones if

this can be covered by the budget limitations. By analyzing

the possible combinations to achieve all of the thresholds,

the system can output a global strategy specification

indicating to the user when to build a new turret and what

its specifications should be.

The important factor in the whole process is that the global

strategy bases its decisions on the local choices of the user.

This allows users to create not only the best global strategy

but also mediocre or weak strategies based on the local

decisions and this is how game designers can calibrate their

game difficulty levels, while player’s will opt for the best

local options to generate the best possible strategy.

Results

The finished application allows users to simulate in a test

bed environment any kind of software which follows the

standard tower defense game model. The modeling of

specific game entities is done via the application’s

configuration file. Once the game is simulated, the

application can be used as both a videogame providing

entertainment value to the user, but also as a development

or improvement tool.

Testing has been done on a personal tower defense project.

The main reason behind this is that we didn’t have access to

all the data from a popular tower defense game in time or

the game for which we had the data also contained a special

feature which was out of the scope of this project which

couldn’t be modeled. The specification of our tower

defense game however fits perfectly as it follows the basic

model of such a game. It uses a grid like tile-map where the

available tiles could be part of the path from the spawn

location to the player’s safe point or free spaces on which

turrets can be built. The game also featured 2 types of

turrets and multiple types of enemies.

We organized 2 types of tests in order to get results from

both the perspective of a player improving on his strategy

and from a developer trying to calibrate his game

standpoint.

In the test regarding a player’s strategy we first let the user

play through our tower defense game as he would normally

47

do without having access to our analysis software. The end

result of this stage was that he was able to beat the game

but made some seemingly bad decisions along the way

maybe spending more resources that he should have. He

also lost a great deal of his life barely making it to the end

of the game.

In the next stage we simulated the same tower defense

game in the strategy analysis tool and let the player have

another go at it. This time, by using the visualization tools

for the turret parameters provided by the software, the

player managed to defeat the game quicker and with no

health loss.

Finally, after the player beats the game with our software,

we let the program generate the strategy based on his

decisions and played again through the original game

following the instructions given in the generated text file.

We took the data from all three runs and measured the

differences in terms of strategy efficiency based on the

metric defined earlier. The data showed a big difference

between the first run where the player didn’t use the

software and the second run where he could analyze the

impact his decisions had on the game. The difference

between the second run and the one where we followed the

software generated strategy is not so great, but small

improvements were spotted leading us to believe that in the

case of other games which are harder than our example the

extra computations may pay off.

In the second test scenario we assumed the role of a

developer trying to configure difficulty levels for his game.

We wanted to generate both an easy and hard level for a

configuration of four enemy waves. The test started by

configuring the existing level design in the test bed. After

that in order to generate the hard difficulty we made the

best decisions in turret parameters at each stage and wrote

down how well the computer units did at each stage. After

the end of this stage we compensated for the difference in

the unit’s current configuration and the damage output the

ideal turrets could achieve. We ran the test another time and

analyzed how well the turrets did against the new waves of

enemies. After a small number of iterations we achieved a

wave composition that could be fully destroyed only if the

player made the best decisions in turret parameters and

considered this the hard difficulty setting. Further, starting

from this setting we ran some more iterations dimming

down the specifications on the enemy wave compositions.

This allows the user to make turret choices that are not ideal

but still survive to the end of the game. With these

configurations we achieved the easy difficulty setting.

Both test scenarios proved to be eventually successful

which means that the tool can indeed be used for the

described purposes. The second test however took more

iterations than expected to achieve the desirable difficulty

level so further improvement on this aspect should be done.

UNITY GAME ENGINE BASED DEVELOPMENT

Building a videogame or related software from scratch is a

long and difficult process which requires a lot of pre-

development for the tools and low level software to support

it. The game engine chosen for this project is Unity3D

because it is a mature software package and has a very

active community providing great support [6] and tutorials

[7]. Unity also supports coding in C# which is a high-level

object oriented programming (OOP) language. This makes

it easy to generate your own functionality and modify via

scripting pre-existing assets.

Unity deals with objects as entities with a transform

component to which multiple other components can be

added. The transform specifies the object’s location in 3D

space, its rotation and scale. Unity treats everything as a

component allowing for great modularity and plug and play

behavior. Everything from mesh renderers to materials to

code scripts are added to objects as components.

CONCLUSIONS

Visual Analysis based Strategy Development

To generate the strategy for the configured game you must

first beat all the waves using the normal game mode. Once

you finish finding out the individual strategy for each wave

you will be presented with a game won screen which has a

button labeled “Generate Strategy”. If you ask for

generating the strategy the system will start displaying a

loading bar and begin computation of the strategy based on

the choices you have made during normal gameplay. When

the loading bar completes a message saying “The strategy

has been generated!” will appear. From this point you may

choose to close the application and open the text file

strategy.txt found in the root directory of the application.

The file will contain step by step instructions on how to

execute the generated strategy for the tower defense

configuration entered in the config.txt file. The strategy text

file contains a clear specification of every parameter for

every turret needed to execute the tactic and timing

instructions as to when you may be able to build each turret.

For each wave information about the total budget a player

has at his disposal is presented in order to provide a

checking mechanism while implementing the strategy. The

steps presented in the file may be applied to any tower

defense game which fits the configuration specification.

This means it is applicable to both another run in the test

bed application but also to released games.

Specific Future Development

The important thing to keep in mind is that the current state

of the software and algorithms do not produce a global

optimum solution for any tower defense game even if the

user chooses only optimums for each of the waves of the

game. The global strategy algorithm provides just a small

optimization for the choices the player makes at each local

stage in order to put locals into the global context. This is

by no means the ideal solution. Future improvements of the

48

tool may include algorithms for devising a true optimal

strategy and this could be done similarly as the local

optimums through a visualization tool that will help the

user search for it in the problem space.

Missing currently from the tower defense strategy analysis

application is a dedicated user interface to modify the

configuration file for the game. This makes it that each time

you want to test bed a new tower defense specification you

must enter its details manually in the configuration file and

also make sure you respect the format of the file. From own

experience this is an easy way to introduce bad data in the

game and spend large amounts of time figuring out what

went wrong. A special load and save mechanism would also

improve the user experience as it would allow storing and

sharing of different game configurations at a time.

Another feature that would come as a great improvement on

the gameplay and usage of the software is the ability to

replay the last wave. Often, mostly when trying to figure

out difficulty levels for the game, the user would want to

test different turret configurations. In the current setup the

player would have to reach the same wave he wants to

analyze from the beginning of the game if he wants to test

out another configuration. This means reproducing the

exact steps that led to that wave. A simple replay wave

button would load the game state from the beginning of the

previous wave. To support this feature a copy of the game

state would have to be saved at the beginning of each wave,

and a mechanism for restoring that game configuration

when the user asks for replay wave, must be developed.

Finally, for the specific improvements the ability to interact

with the global strategy algorithms would benefit any type

of user greatly. Currently, the system runs the strategy

analysis algorithm behind the scenes and generates what it

considers the optimal approach based on the gameplay.

However, the computer must go through a lot of data and a

visualization scheme similar to the one for local optimums

would also let the user guide in the search for global

strategies. Another advantage into developing this branch of

the application is the fact that a user might be able to

generate multiple global strategies based on the previous

gameplay.

Currently, the system choses one strategy which is based on

calculations, but by performing this task the computer

actually generates multiple feasible strategies that are

simply dumped. Having access to all the generated

strategies the computer develops may help game designers

in the process of creating varied game experiences. This

feature could be implemented by creating a secondary

visualization module for the set of global strategy

algorithms.

General Future Development

One direction the project may take includes the expansion

of the application to provide its users with reverse

engineering tools for game designers. This feature is more

suitable for the development of games than for the normal

player. It implies that by using the strategy profiling

algorithms implemented in the software, a user could

generate through the tool a specification for the design of a

level in the game.

Another direction for further development is the creation of

adaptive AI systems that use the strategy analysis module to

change the way the computer plays the game based on

decisions made by the human player. For example, on a

hard difficulty setting in a game, the AI system could

analyze what the player is doing through the strategy

analysis module and adapt its units to be stronger or on the

limit of the player’s build. This way the computer can

always change the way the game works offering strong

gameplay and great chance for game replay-ability as the

experience is never the same.

ACKNOWLEDGMENTS

The research has been carried out in the Computer Graphics

and Interactive Systems Laboratory of the Computer

Science Department, in the Technical University of Cluj-

Napoca.

REFERENCES

1. Gregory Jason, Game Engine Architecture, CRC Press

2014, ISBN: 978-1-4665-6001-7.

2. Fraser James, Michael Katchabaw, and Robert E.

Mercer, A methodological approach to identifying and

quantifying video game difficulty factors,

Entertainment Computing 5.4 (2014): 441-449.

3. Hsu Shang Hwa, Ming-Hui Wen, and Muh-Cherng

Wu, Exploring design features for enhancing players'

challenge in strategy games, CyberPsychology &

Behavior 10.3 (2007): 393-397.

4. Alexander Justin T., John Sear, and Andreas

Oikonomou, An investigation of the effects of game

difficulty on player enjoyment, Entertainment

Computing4.1 (2013): 53-62.

5. Aponte Maria-Virginia, Guillaume Levieux, and

Stephane Natkin, Measuring the level of difficulty in

single player video games, Entertainment

Computing2.4 (2011): 205-213

6. Unity3D User Manual, [Online]:

http://docs.unity3d.com/Manual/index.html

7. Unity3D Tutorials, [Online]:

http://unity3d.com/learn/tutorials/modules

8. Uneal Engine official website, [Online]:

https://www.unrealengine.com

9. RTS Games, [Online]:

https://en.wikipedia.org/wiki/Real-time_strategy

