
141

Movies Classification

Daniel Gavril

“Alexandru Ioan Cuza” University,

Faculty of Computer Science
General Berthelot, No. 16

daniel.gavril@info.uaic.ro

Adrian Iftene

“Alexandru Ioan Cuza” University,

Faculty of Computer Science
General Berthelot, No. 16

adiftene@info.uaic.ro

ABSTRACT

Every device that is released nowadays has the capability to

display videos. From small devices like smart phones to

bigger ones likes desktops or smart TVs, movies are

available at any time. Therefore, getting important, fast and

reliable data about movies at any time and everywhere is

very important when it comes to money. Computer users

like to get live experiences based on their interests, searches

or their personal profile and their needs include movies.

When people gather to someone’s place or a family unites

on holidays, finding a good movie to watch for that moment

becomes hard. There are different tastes in movies, persons

that like drama more than science-fiction or some that will

enjoy movies based on the director of that movie or

important actors. Using a good search engine that might

understand users desires based on recent searches or

interests might come in handy. Movies Classification

application runs on Windows operating systems and tries to

understand user perspective when he tries to find a movie

that might suit his tastes. The app updates live the

suggested movies based on the customizable profile that

every registered user must set.

Author Keywords

Movies Classification; Client-Server Architecture; User

Profiling.

ACM Classification Keywords

H5.2. Information interfaces and presentation; H3.3.

Information Search and Retrieval.

INTRODUCTION

In the last years, the main search engines use the history of

user activities in order to provide more accurate results.

Google
1
, Yahoo

2
, Bing

3
 are ones of the greatest companies

that during decades have worked on search engines that will

help users find related data for a given input. There are

some search engines for movies that show

recommendations based on their preferences. Even if the

main subject is movies, finding correlated data and

categorize it for each user, it is a difficult task. Currently,

there are around 80.000 TV movies, more than 1.500.000

actors and more than 389.000 directors registered to IMDb

1
 Google: https://www.google.ro/

2
 Yahoo: https://ro.search.yahoo.com/

3
 Bing: http://www.bing.com/?setlang=ro

database
4
 [2]. Jinni

5
, Taste Kid

6
 or Nanocrowd

7
 are some

web apps that allows you to get movie recommendations in

real time. For example, Jinni is a recommendation engine

that helps you find films based on your mood, time

available, setting, or reviews. Taste Kid is another example

of finding related data for a movie from other areas: music,

images, and books. [6]

In what follows, we present a desktop application that is

compatible with Windows operating system which offers

for authenticated users suggested films based on their

profile and searches from the “Internet movie database”.

The client application queries with a service hosted online

the IMDb database and then downloads and stores related

data for movies, directors, and actors in a local database in

records related to a user profile.

SYSTEM ARCHITECTURE

The architecture of the application is based on a client-

server architecture (see Figure 1). At the server level the

main components are based on a SQL database and on a

WCF [7] service. At the client level we used the WPF [8]

and related API’s used to get data from IMDb and

YouTube
8
.

Figure 1. Application Architecture.

Both client and service components use the API’s for IMDb

and a particular case of the application use the YouTube

Data API for trailers. The API’s for IMDb are: OmdbApi
9

used to search for movies and MyApiFilms
10

 used to find

more details (directors and actors with associated movies,

4
 IMDb: www.imdb.com

5
 Jinni: http://www.jinni.com/

6
 Taste Kid: http://www.tastekid.com/

7
 Nanocrowd: http://www.nanocrowd.com/

8
 YouTube: https://www.youtube.com/

9
 OmdbApi: http://www.omdbapi.com/

10
 MyApiFilms: http://www.myapifilms.com/

142

genres, plot, votes etc.) for a movie based on a unique

identifier (set by IMDb).

The client is structured following the MVVM [3] design

pattern recommended by Microsoft community for this type

of project. There are three main windows: “login”, “find

movies” and “profile”. The “login” window is used to

authenticate the user in the application. Therefore, the

service can register the actions related to every user in the

database. Also, the application has the functionality for new

users to register.

The “find movies” window (Figure 2) is divided in 4 parts:

the top part has a search section where the user can search

for new movies by title and year (optional). The bottom part

is divided in three: the left side is used to show the search

results, in the middle area is presented the details for the

selected movie and the right side is used for suggested

movies that the service recommends. There is a secondary

window that is opened on double click event on a movie

from search list or suggested movies list and give more

details about it including a trailer from YouTube.

Figure 2. Find movies window.

The “profile” window (Figure 3) offers the possibility to

change preferences about movies, directors or actors. Also,

there is a small description about the application

functionalities.

Figure 3. Profile window.

The client interacts with the service in the following cases

and each one has its significance: the user clicks on a movie

from search list meaning that has some interest for that

movie, double click on the same movie means that user

starts to get interested in that movie and double click on a

suggested movie reflects user high interest on a particular

movie. The service may be hosted in IIS
11

 web server on a

11
 Internet Information Services: https://www.iis.net/

virtual machine or locally and has configured the

connection string to the database (locally or hosted in Azure

cloud
12

). The service starts two tasks (processes) which

checks every five seconds if there is any data to process

from their corresponding queue. Every user action is added

in the saving queue because the service stores every related

data for directors and actors. Therefore, there are some

restriction based on the unique id of the movies, directors

and actors and saving simultaneously might corrupt or fail

the saving process. After a successfully processing of the

data, the service sends the results to an updating queue

where the corresponding process updates for current user,

based on the action significance, the scores for each related

entity.

Using a duplex connection between client and service

(WCF feature), the service sends to the user a notification

that the updating process has finished and he must update

the suggested movies list.

CASE STUDIES
Case Study 1

In this section we will present different scenarios related to

user actions and how the scoring model works.

Let assume that it is the user’s first login. Therefore, there

are no movies related to him. For example, let’s assume he

starts to search for “The Hobbit” and no given year. The

OmdbApi returns 8 matches that contains the given text.

Figure 4. Single click selection.

From the list, the user single clicks “The Hobbit: The Battle

of five armies” (Figure 4). The action is sent to the server

and saves the movie with its details using MyApiFilms.

Also, the service saves related movies from the directors

and the main actors (with no details). For this pick, there

are saved 74 movies in the database and 15 main actors.

The service suggests only 1 movie because the single click

action is not very relevant to the system. A low score is

added for the movie, director and the 15 main actors.

Next, let’s assume that the user double clicks on the same

movie (Figure 5). The service will not download any data

because it was saved previously so it skips directly to the

scoring part. The double click action signifies that the user

is starting to get interested, therefore he might like movies

12
 Azure cloud: http://azure.microsoft.com/en-us/

143

related to the director(s) of this movie. A medium score is

added to director of selected movie, to actors of this movie

and to every movie of the director. The service suggests this

time 14 movies all related to Peter Jackson.

Figure 5. Double click window with no profile set.

Let’s assume that the user double clicks on a movie from

the suggestion list – “King Kong”. This actions suggests

that the user might like a movie and shows high interest.

Therefore, a high score will be added to director, to the

actors of this movie and to the director movies. The service

will download any related data - in the database are now

259 saved movies. The suggestion list doesn’t change by

number because “King Kong” has the same director as

“The Hobbit”. But now there are 29 main actors associated

with current user.

Every movie associated with its directors and actors will

determine a score based on the Weighting and Scoring

Model [5]. Every user has a profile where he must set “how

much” will influence the movie itself, the directors or the

actors the ranking of the suggestion list (Figure 2). The total

of the percentages must be 100. The following study was

structured based on the results from the previous one.

Case Study 2

With the current scores for movies, director and actors, if

the user sets the percentages of movie to 100 and the rest to

0, the directors and actors will not influence the scoring

(Figure 6). Therefore in the top of the list will be the

movies that were associated with the most significant action

(Top 3: “King Kong”, “The Hobbit: The battle of five

armies” and 2 other movies related to “The Hobbit”

trilogy).

Figure 6. Suggested Movies for Profile Value for Movie=100.

Changing the percentages of the movie to 50, the directors

to 50 and the actors to 0, the weight of the scores will be

split equally between the movie and the director (Figure 7).

This set up is useful when there are other directors

associated with the user.

Figure 7. Suggested Movies for Profile Values for Movie=50 and

for Directors=50.

Figure 8. Suggested Movies for Profile Values for Movie=50 and

for Directors=20 and for Actors=30.

Let’s include actors in the scoring model. If the user

changes the percentages of the director to 20 and the actors

to 30, the suggestion list will show on the top the movies

where actors appeared more in the search list (Figure 8).

“King Kong” is now on rank 4, top 3 is occupied by the

Hobbit trilogy because in all 3 movies appeared the same

main actors. Therefore, they “weight” more in the scoring

process.

144

EVALUATION

The process of downloading and saving a movie has the

longest execution because a request to MyApiFilms

includes a very large amount of data to work with.

Moreover, the service must not save twice the same movie,

director or actor because of the IMDb id’s uniqueness

constraint.

Let’s assume that the database is empty and a user searches

for “Dark Knight” and selects “The Dark Knight Rises”

from 2012. The click action is sent to service and starts to

work with the given data: the request to MyApiFilms took

10.179 seconds, saving all data to database took 14.259

seconds with a total of 24.474 seconds. In the database are

saved: 230 movies, 15 actors, 1 director, with 571 relations

between movies and actors and 9 relations between movies

and directors. The process of setting the scores between

user and movies, director and actors for single click action

took 1.168 seconds, but for double click action took 1.562

seconds. Searching again for the same movie the process of

saving the movie takes 0.011 seconds, updating the score

costs 0.254 seconds for single click and 1.005 for double

click.

Testing the application for 10 movies the average score for

API to respond is 11.233 seconds, saving to database costs

11.732 seconds, updating the score for single click 1.255

seconds and for double click 1.520 seconds. Moreover,

there are saved in the database 233 movies, 1.1 directors, 15

actors, 444 relations between movies and actors and 13.3

relations between movies and directors.

MyApiFilms gives for some movies actors that are not the

main cast. This error can’t be controlled by the application,

therefore the solution might be to contact the developer of

the API to look for a solution or correct the request.

Being limited by each API to 2000 request per day, saving

the movies to the database save some requests. Also,

accessing the data from the database with WCF is faster and

easier than downloading and processing it every time.

The WCF service can be hosted in a Web App and can

expose the structure of the SOAP messages. Therefore,

integrating the service in a different client (Web client) is

very easy with .NET technologies.

Deploying the WCF service to Azure cloud is not possible

because of the Callback Contract that the service expose.

The load balancer can’t keep a duplex connection more

than 1 minute. Therefore, a different approach for the

server-client communication is needed in this case.

Using Entity Framework [1] for mapping the database

increases fast and easy development if new features or

models will be added. Moreover, Entity has a feature called

lazy loading which means that any related data is loaded

when the given query requests it.

A custom web scrapper for IMDb will improve the saving

process and will offer the chance to download specific

details based on user preferences.

CONCLUSION

“Movies Classification” is a desktop application easy to

maintain and use, with fast results and live experiences for

each user. We decided to create a desktop application,

because it can be faster than the web application which

depends on the browser’s processing power or other

elements that requires web control.

For the future we intend to reduce more the duration of the

execution for the main methods from the application. Also,

we intend to search another solutions to validate

information provided now by IMDb, which are not always

correct.

ACKNOWLEDGMENTS

The research presented in this paper was funded by the

project MUCKE (Multimedia and User Credibility

Knowledge Extraction), number 2, CHIST-ERA/

01.10.2012.

REFERENCES

1. Entity Framework: https://msdn.microsoft.com/en-

us/data/ef.aspx

2. Internet movie database stats:

http://www.imdb.com/stats

3. Model-View-View Model:

https://en.wikipedia.org/wiki/Model_View_ViewModel

4. MyApiFilms: http://www.myapifilms.com/

5. The Weighting and Scoring method:

http://www.dfpni.gov.uk/eag-the-weighting-and-

scoring-method

6. Top 10 movies recommendation engines:

http://www.cnet.com/news/top-10-movie-

recommendation-engines/

7. Windows Communication Foundation:

https://msdn.microsoft.com/en-

us/library/dd456779(v=vs.110).aspx

8. Windows Presentation Foundation:

https://msdn.microsoft.com/en-

us/library/aa970268(v=vs.110).asp

https://msdn.microsoft.com/en-us/data/ef.aspx
https://msdn.microsoft.com/en-us/data/ef.aspx
https://en.wikipedia.org/wiki/Model_View_ViewModel
http://www.dfpni.gov.uk/eag-the-weighting-and-scoring-method
http://www.dfpni.gov.uk/eag-the-weighting-and-scoring-method
http://www.cnet.com/news/top-10-movie-recommendation-engines/
http://www.cnet.com/news/top-10-movie-recommendation-engines/

