
 

121 

 

Real Time Visualization of Crowd Dynamics Scenarios 

Dan Razvan Ilies  

Technical University of Cluj-

Napoca 
Str. G. Baritiu 28, 400027, 

Cluj-Napoca, Romania 

danilies92@gmail.com 
 

Adrian Sabou  

Technical University of Cluj-

Napoca 
Str. G. Baritiu 28, 400027, 

Cluj-Napoca, Romania 

adrian.sabou@cs.utcluj.ro   
 

Dorian Gorgan  

Technical University of Cluj-

Napoca 
Str. G. Baritiu 28, 400027, 

Cluj-Napoca, Romania 

dorian.gorgan@cs.utcluj.ro   
 

 

ABSTRACT 

This paper presents an approach to real-time simulation of 

crowd dynamics on GPU enabled computing architectures. 

We discuss challenges with parallelization of agent-based 

models, implementing parallel simulation algorithms, 

visualization and interaction with the simulated scene and, 

most importantly, ensuring communication and 

synchronization between all these processes.  Our main 

objective is to provide interactive simulation of realistic 

models such as pedestrian dynamics, in which large crowds 

move and interact among themselves and with the 

environment.  Simulation parameters like scene complexity, 

scene composition, as well as the number of agents are 

varied in order to simulate different scenarios and to assess 

the impact on performance. 
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INTRODUCTION 

Applications in computer animation and simulation vary 

from simple scenarios like physically-based simulations, 

which focus on visual quality, perceived realism and 

computation efficiency, to complex scenarios which require 

an accurate reproduction of measured parameters. The latter 

are usually encountered in critical systems’ simulation, 

based on heavy numerical computation, with the aim of 

ensuring exact calibration with real-world conditions. Such 

examples can be encountered in Computational Fluid 

Dynamics, modelling turbulent flows or crashworthiness 

tests. All these applications require a huge amount of 

processing power and utilize powerful techniques borrowed 

from fields such as applied mathematics, numerical 

analysis, computational physics or mechanical engineering 

in order to satisfy the ever increasing expectancies that 

users have with regard to simulation systems. 

Over time, sequential computing devices such as the 

Central Processing Unit (CPU) have evolved significantly. 

At first, there was little change in algorithms and techniques 

from one version to another, the performance mostly being 

improved by raising the operating frequency. Once the 

thermal barrier was reached, the parallel era began. Thus 

CPUs evolved into powerful multicore architectures and 

this direction led to creating a new type of computing 

device, dedicated to massive parallel computation, the 

Graphics Processing Unit (GPU). This new computing 

direction brought forth the need for efficient parallel 

techniques and algorithms in order to fully utilize existing 

resources. 

GPUs were at first used to process massive parallel data 

involved in Computer Graphics and complex graphical 

algorithms, but, because of their massively data parallel 

architecture, they drew the attention of the High-

Performance Computing (HPC) community and researchers 

began using them for general purpose parallel computation. 

Thus the General Purpose Computation on the GPU 

(GPGPU) current began. However, programming GPUs for 

general purpose computation proved difficult to learn, so 

GPU vendors began making their devices more flexible and 

easier to program through interfaces such as CUDA and 

frameworks such as OpenCL. 

Among applications to benefit from GPU-based 

acceleration are discrete, particle-based or agent-based 

simulations, their inherently parallel nature making them 

perfectly suitable for GPU-based implementations. Thus, in 

the last decade, research work in this domain has produced 

new, highly efficient techniques for simulations, especially 

for the most time consuming parts. However, when adding 

the real-time attribute that such simulations usually require, 

along with the need to transform raw processed data into a 

form visually meaningful to the users, we end up with 

probably one of the most complex class of applications 

attempted to be implemented on such architectures. 

This paper presents an approach to real-time simulation of 

crowd dynamics on GPU enabled computing architectures. 

We discuss challenges with parallelization of agent-based 

models, implementing parallel simulation algorithms, 

visualization and interaction with the simulated scene and, 

most importantly, ensuring communication and 

synchronization between all these processes.  Our main 
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objective is to provide real-time simulation of realistic 

models such as pedestrian dynamics, in which large crowds 

move and interact among themselves and with the 

environment.  Simulation parameters like scene complexity, 

scene composition, as well as the number of agents are 

varied in order to simulated different scenarios and to 

assess the impact on performance. The rest of the paper is 

organized as follows: the following section highlights on 

existing related works, the third section presents an 

overview of the model used for our simulations, section 

four focuses on techniques used for achieving interactivity 

and real-time visualization, while section five presents 

some experimental scenarios and performance 

measurements. 

RELATED WORKS 

The term of crowd dynamics refers to a system of behaviors 

and psychological processes that arise in a social group or 

between several such groups. Studying the dynamics of 

crowds can be useful for understanding behaviors in 

decision making, information diffusion or disease spreading 

in society, as well as in many other contexts. Such 

applications can be seen in domains such as: psychology, 

sociology, political sciences, business or education. 

The idea that macroscale behavior can be deduced from 

microscale interactions between individuals has become 

key concept in understanding human behavior in crowds. 

Examples of such collective behaviors have been 

represented in several ways, one of them being the social 

forces model. 

A social forces model sufficiently complex to allow for 

realistic computer-based simulations of human crowds has 

been introduced by Helbing and Molnar [3]. They claimed 

that pedestriam motion can be described in such a way as to 

be the result of social forces. These forces are not directly 

exerted only by the environment, but are rather a measure 

of the internal motivation of each individual that arrises in 

order to guide the individual towards certain actions or 

movements. 

After the initial introduction of this model, different 

improvements and variations started to emerge, since it was 

found that it could also be applied to a variety of domains 

other than pedestrian dynamics, like biology, for simulating 

the behavior of microscopic particles. Different variations 

of attraction and rejection forces lead to new models being 

created that described the behavior of large crowds of 

particles even better than the initial one and that would 

realistically reproduce several observed phenomena. Thus 

several important works emerged which present collective 

patterns, [8] [10] [6] and [4]. 

However, the assumptions that the above mentioned model 

relies on and the exact form of the presented social forces 

has never been measured or validated empirically, even if 

the functions describing the interaction between individuals 

could definitely influence the behavioral patterns that were 

the outcome of the simulations. This has been proved by a 

series of studies on different animal species [1]. The most 

accurate and correct studies were limited to calibrating the 

assumed parameters for the interaction forces in order to 

minimize the errors in predicting individual behaviors. 

Regarding simulating social models on high-performance 

architectures, Joselli et al. [5] present a case study in which 

they evaluate the performances of a simulation system with 

one CPU and two GPUs. The model that they use is an 

agent-based one, in which each individual has several 

properties and interact with their environment. They used a 

series of data structures and algorithms in order to 

accelerate the computation, most of them done in the GPU. 

Among the used techniques are spatial hashing, in which 

each agent is assigned a hash code based on its location in 

the simulated scene. The authors have chosen to split the 

scene among the two GPUs in such a way as to allow each 

one to process part of the scene and to synchronize common 

areas. Their experiments show a speedup up to 1.8 for a 

very large number of agents. However, the authors do not 

specifically discuss real-time visualization and techniques 

that might improve performance when interactivity is 

required. 

Sabou et al. [9] present an extension of particle models with 

regard to their initial purpose and propose a solution for 

simulating sociophysics models interactively using a 

particle-based visual approach. An existent agent-based 

“small-world” model is mapped on a particle-based grid 

and its evolution in time is simulated on a high-

performance graphics cluster in order to model technology 

adoption and consumer behavior. Several experimental 

scenarios validate the initial hypothesis that particle-based 

models can be extended beyond their original scope and 

evaluate the system’s performance and scalability. 

SIMULATING CROWD DYNAMICS 

As seen in the previous section, agent-based models contain 

individuals that interact in a given environment. The agents 

may be either distinct computer programs or distinct parts 

of the same program, with the purpose of representing 

social actors – persons, organizations or nations. These 

agents are programmed to react to the computing 

environment that they are placed in, a model of a real 

environment in which the agents would interact. 

One crucial aspect of agent-based modeling is that agents 

need to be able to interact, i.e. exchange information 

carrying messages and to behave accordingly with what 

they learn from these messages. The messages can be, for 

instance, specific dialogs between persons, but also indirect 

means of transferring information such as observing 

another agent or detecting the effects of another agent’s 

actions. The possibility to model such interactions is the 

main way in which agent-based modeling differs from other 

computational models. 
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Of course, keeping in mind that this is a visual simulation, 

the agents will have to be visually represented in one way 

or another. In our particular case, we have chosen a 

representation in a bi-dimensional virtual scene in which 

each entity is described by its X and Y coordinate. This way, 

users can observe in real-time the movement of agents and 

their interactions. 

We will now describe the construction of the simulated 

scenario and the different types of forces that act on agents. 

Defining the simulation scenario 

Besides the main actors of the simulation, which are the 

agents, in order to obtain a realistic model, we had to 

introduce several other elements. Thus, we will have: 

Scene boundaries 

It was decided that all simulations were to take place in a 

restricted environment which can be defined to the user’s 

best suiting. This way, the one that initiates the simulation 

has the possibility to choose the horizontal as well as the 

vertical limits that will constitute the boundaries of the 

simulated scene. Agent movement is restricted between 

these user defined limits, providing for a more controllable 

scenario and a better visualization experience. The 

boundaries will be drawn as simple straight walls through 

which agents cannot pass. 

Obstacles 

Besides the aforementioned boundaries, the interior of the 

scene will contain different obstacles that will influence the 

agents’ trajectories. The obstacles can have various shapes, 

ranging from simple walls to complex polygonal objects. 

Same as with boundaries, the users can control obstacle 

placement as they see fit, both their position and their 

shape. 

Social forces 

Each agent has a clearly defined objective during the 

simulation. Furthermore, during their movement towards 

their objective, there will be a series of interactions, both 

agent-agent and agent-other elements. The model for the 

forces that act upon agents and the equations of movement 

are the same originally proposed by Helbing and Molnar 

[3]. As they said, it is often believed that human behavior is 

chaotic or unpredictable, but, for relatively simple 

situations, certain behavior patterns can be created, among 

which, the social forces model. Due to the fact that 

pedestrians are already used to a multitude of situations, 

their reactions are most often automatic, based on their 

similar previous experiences. Thus, the velocity and the 

direction of each pedestrian could be represented as a 

vector quantity , which is the so called social force and 

which represents the effect of several other forces that the 

environment and other pedestrians generate. In what 

follows, we will briefly describe the types of forces that 

influence the pedestrians’ movement. 

Attraction forces towards the objective 

This is the main force that drives the agent towards its goal. 

Normally, agents will take the shortest route, which is a 

straight line, unless they encounter obstacles, in which case 

they will temporary modify their objective in order to avoid 

them. The formula that computes these forces is: 

                                       (1) 

where is the current speed,  is the desired speed and 

is the relaxation time (i.e. the delay in agent 

acceleration). 

Repulsion forces from obstacles 

On their way towards the objective, an agent ca encounter 

different types of obstacles. Normally, even in real life, 

pedestrians keep their distance to obstacles such as walls or 

other kind of objects, thus we require a formula to express a 

force of repulsion coming from obstacles. This formula is 

the following: 

                                        (2) 

where is the distance between the agent’s current 

position and the obstacle and  is a monotonic 

decreasing potential that scales the repulsion force with the 

distance between the agent and the obstacle. 

Repulsion forces from other agents 

Similar to the previous case, when a repulsion force is 

generated by the obstacles, repulsion forces are generated 

from other agents. When agents are in proximity, this 

repulsion force appears that is intended to keep agents from 

violating each other’s “personal space”. The repulsion 

depends on the distance between agents and their relative 

velocities. For great distances, this force is negligible, but 

as agents get closer, it will increase exponentially. The 

formula to compute these forces is: 

                                       (3) 

where  is a monotonic decreasing function with 

the same role as before and b is the small radius of the 

elliptic shaped personal space of the agent. 

Acceleration structure based on hash codes 

In order to speed-up the neighbor search when dealing with 

a large number of agents, we apply a spatial hashing 

technique. The simulated world is split into a grid of cells 

(Figure 1), each agent belonging to a single such cell at any 

given time. Thus, we have to establish a relation between 

the agent and the cell, based on the agent’s position. 

The basic idea is to firstly determine the position of an 

agent in the scene and secondly we must search for the cell 

that contains that position. To speedup calculations, each 

agent is assigned a hash code, computed using the 

following formula: 
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 (4) 

where  

 

 

and p1, p2 and p3 are large prime numbers. 

The role of this formula is to assign a code to each agent 

based on its position in the scene. The purpose of these 

codes is to use them to obtain an agent-cell association, 

which explains why the code computation depends on the 

size of the cells dividing the simulation space. Code 

computation for each agent must occur at each simulation 

step since agents modify their positions as long as their 

objective was not reached. Moreover, to be able to associate 

agents and cells, the latter need to have an assigned code, 

computed using the same formula. Since cells do not 

modify their positions, their codes can be precomputed. 

Thus, after computing the aforementioned codes, each 

agent will be assigned the hash code of the cell that it 

belongs to, making it easy to quickly determine the 

neighbors for each agent during the simulation process. In 

order to guarantee a unique code for each cell, the prime 

numbers must be much larger than the total number of cells. 

Code computing is done using the specified formula for 

better performance and computing speed. 

REAL-TIME SIMULATION AND VISUALIZATION 

Accelerating computation using the GPU 

GPUs are electronic components specially designed to 

execute a huge number of operations in parallel. Their 

initial purpose was to create raster images in a framebuffer 

to present through a display device, but they have recently 

started to be used more and more for applications and 

systems designed to offer a huge degree of parallelism. 

GPU-accelerated computing is a technique that uses a GPU 

together with a CPU to accelerate scientific, analytic or 

engineering applications. This path was opened by NVIDIA 

in 2007 and a level was reached in which GPUs power 

entire data centers, especially power efficient ones serving 

Universities and small and medium enterprises [7]. GPUs 

accelerate a wide range of applications, from applications in 

the auto industry to mobile phone apps, drones or robots, 

offering superior performances. 

The way this acceleration works is by taking over the 

intense workloads from the CPU and running them in the 

GPU, while the rest of tasks continue running in the CPU. 

In our case, the main and most complex entities are the 

agents. Most computation is done around them, the rest of 

the scene being mainly static. Thus, fast processing of 

agents would lead to better overall simulation performance. 

Seeing as all agents require the same set of operations at 

one time, processing them on the GPU is the best choice. 

Each agent will be processed by a different GPU thread and 

necessary data will be transmitted between host and device. 

After deciding on all elements required for host-device 

communication, the simulation can be attempted. We must 

firstly configure all simulations and visualization 

parameters and after that we can start an infinite loop. This 

simulation loop contains two main phases: the computation 

phase and the visualization phase. 

The computation phase is done in a distinct function which 

is called from inside the infinite loop and contains a series 

of commands to be executed, either in the CPU or on the 

GPU. Computing new agents’ positions is done in three 

distinct steps: 

1. The first kernel computes the hash codes for all 

agents using their positions in the scene. 

 

2. The second step consists of computing the hash 

structures that allow for fast discovery of all agents 

inside of a specified cell, using the second kernel.  

 

This way, we get two data structures with the same 

dimension as the number of cells, the first one 

indicating which is the first agent inside a certain 

cell and the second one indicating what is the last 

agent in that cell, with regard to a data structure in 

which agents are ordered by their hash code. 

 

3. The third step is the actual computing of forces, 

new positions and velocities for all agents, using 

the third kernel. 

Once computation is finalized, the scene must be prepared 

for rendering. 

 

Figure 1. Example grid for 16 cells and 10 agents [2]. 
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Rendering is done as a two-step process. The first step 

involves rendering all elements in the scene besides the 

agents (scene boundaries, obstacles, grid of cells, etc.). The 

second step involves rendering the agents themselves. As 

the number of agents becomes sufficiently large, the 

computing process is no longer the only issue that has an 

impact on performance, the sheer size of the crowd 

imposing penalties upon the rate at which visual 

information is rendered. Seeing as the positions of all 

agents are computed on the device and stored into OpenCL 

buffers, they would normally have to be copied back and 

forth between host and device in order to render them, 

generating a large number of memory transfers. The 

solution is to combine the GPU computing and the GPU 

rendering by using an interoperability mode between 

OpenCL and OpenGL. 

Combining computation and visualization 

In order to be able to utilize the GPU for both GPGPU 

computation and as a traditional rendering pipeline, we 

must avoid unnecessary memory transfers while switching 

between operating modes, since the general purpose 

computation and the rendering process basically use the 

same data, namely particle positions.  

This calls for an interoperability solution between OpenCL 

and OpenGL that can be achieved through a special data 

structure called a Vertex Buffer Object (VBO) and which 

allows for OpenGL data manipulation by OpenCL, without 

the need to transfer data back and forth (Figure 2). The 

VBO is an extension for OpenGL intended to improve 

performance by providing benefits of vertex arrays and 

display lists while avoiding downsides of their 

implementation. VBOs allow vertex array data storage in 

high-performance graphics memory on the server side and 

efficient data transfer. Using VBOs, the number of function 

calls and redundant usage of shared vertices can be reduced. 

TEST SCENARIOS 

In this section we present in detail certain test scenarios that 

were executed to validate and evaluate our solution. The 

experiments were carried out by varying different elements 

in the scene such as the number of agents, the number and 

size of obstacles or simply by creating some special 

scenarios. 

 

 

Besides the proper functioning of our application, we 

wanted to emphasize the differences in performance that 

appear when executing just on the CPU executing on hybrid 

CPU/GPU architectures, the differences being quite 

notable. In order to be able to run these tests, we 

implemented a version of our application that runs entirely 

on the CPU, this way avoiding all the GPU configuration 

overhead. 

Testing with regard to the number of agents 

The first type of test and one of the most important for 

noticing the differences in performance was done by 

increasing the number of agents in the scene. 

The number of agents has the greatest impact on application 

performance, because agents are the main actors and all 

processing is done around them. 

Except for computation for splitting the scene in a grid of 

cells and computation strictly regarding the scene, which 

are quite few, all other computation is done in order to 

compute forces, velocities and new positions of each agent. 

Thus, a huge impact on overall performance was to be 

expected.  

In order to best emphasize the performance gain obtained 

on GPUs, besides observing the simulated scenario and the 

evolution of the simulation, we ran the simulation both on 

the CPU and on the GPU and compare the results. The first 

test consists of a simple simulation scenario with few 

agents placed on the right side (Figure 3). We computed the 

time required for all agents to migrate to the left side of the 

scene. 

After several successive runs using both application 

versions, a significant increase in processing time is noticed 

on the CPU-based one. Table 1 shows the computed 

execution times. 

 

Figure 2-OpenGL/OpenCL interoperability. 

. 

 

Figure 3 - Experiment 1 

. 
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Number 

of agents 

CPU 

execution 

time 

CPU+GPU execution 

time 

10 3 s 5 s 

100 6 s 5 s 

250 8 s 6 s 

500 14 s 7 s 

750 43 s 8 s 

1000 63 s 9 s 

Table 1 - Execution times 

These test easily prove the performance gain obtained by 

parallelizing the application. We will also compare 

performance results between the two versions of the 

application in subsequent tests. 

Testing with regard to scene partitioning 

When dividing the scene into a grid of cells in order to 

speed up the neighbor searching procedure, the number of 

cells (and thus their size) can vary, depending on scene 

complexity and size, or number of processed agents. There 

is no general formula to determine the optimum number of 

cells, thus we shall try to determine them empirically. 

When using smaller cell sizes (Figure 4) we obtain the 

advantage of processing only a small part of the scene when 

computing agent interactions. Due to the fact that a smaller 

region surrounding each agent is taken into account, the 

number of neighboring agents is relatively small, thus 

generating less computation. Since computation for each 

agent is handled by a single GPU thread, this should count 

pretty much. 

On the other hand, when using a larger cell size (Figure 5), 

even if the neighborhood is larger, the data structures 

holding hash info is considerably smaller. Thus, searching 

 

 

for neighboring cells as well as neighboring agents is faster, 

which should account for a performance gain, even if the 

number of neighbors for each agent is larger than in the 

previous case. 

Experiments showed that the best performance results are 

obtained for a balanced partitioning of the scene, which 

means that the relative dimension of the cells with regard to 

the scene should be chosen in a way as to ensure that the 

entire scene is covered by approx. 50-100 cells. Even if for 

a small number of agents the differences are not obvious, 

for large number of agents, this will impact on execution 

times. 

Testing with regard to agents’ trajectories 

The third types of tests were carried out in order to validate 

the correctness of the implemented model and of 

interactions between simulation elements. This was carried 

out by generating the agents in several ways and varying 

their objectives. 

 

Figure 4 - Experiment 2 - Small cell size 

. 

 

Figure 5 - Experiment 2 - Large cell size 

. 

 

Figure 6 - Experiment 3-1 - Random agent generation 

. 
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Figure 7 - Experiment 3-2 - Clustered agents 

 

 

Figure 8 - Experiment 3-3 - Agents forced through a small 

opening 

 

For the first test, we generated all agents at random 

positions in the scene with random objectives (Figure 6). 

Although the movement in the scene was chaotic, no 

interaction problems were detected. 

For the second test, the agents were programed to cluster in 

the middle of the scene (Figure 7) in order to test their 

behavior in a crowded environment, but without 

supplementary difficulties posed by obstacles, with many 

agent-agent interactions. The simulation was once again 

without problems, although a small decrease in 

performance was noticed when all agents were in close 

proximity. 

For the third test, all agents were forced through a tight 

opening (Figure 8). This test extends the previous one, but 

 

this time with difficulties posed by obstacles. The agents’ 

behavior was consistent with the previous test. 

It is worth mentioning that all three tests were carried out 

on both the CPU and the GPU version of the application 

and the results were consistent with performance 

measurements in the first experiment, namely the 

simulation time for the CPU version increases considerably 

with the number of agents, while for the GPU version, the 

increase in execution time is considerably smaller. 

Testing with regard to scene complexity 

Last but not least, we followed the impact that the scene  

 

Figure 9 - Experiment 4 - Scenario 1 

 

 

Figure 10 - Experiment 4 - Scenario 2 

 

 

Figure 11 - Experiment 4 - Scenario 3 
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complexity has on overall simulation performance. Several 

scenarios were generated, ranging from simple ones, with 1 

or 2 obstacles (Figure 9) to complex ones containing a 

much larger number of obstacles of different shapes (Figure 

10, Figure 11). All agents were generated in the same 

positions for all scenarios in order to observe just the 

influence of scene complexity. 

Results show that even if the scene is far more complex, 

there is an insignificant increase in simulation times when 

compared to differences in times for the previous 

experiments, when we were varying the number of agents. 

CONCLUSIONS 

Agent-based models are one of the best methods for 

realistic simulations of a complex environment or system 

which are usually non-linear and for which no simple and 

intuitive solutions exist that can offer precise results. Even 

so, the complex computation during the simulation remains 

an issue, due to the fact that the complexity of the studied 

system leads to heavy calculations in order to obtain results 

close to the real world. 

Simulation techniques based on GPUs are an excellent 

solution to these problems, due to their parallel architecture, 

capable of executing hundreds and thousands of difficult 

operations at once. Test results showed that there is a 

considerable improvement in performance when using at 

least a GPU for simulations. However, as the complexity of 

the studied systems increases, a single GPU ceases to be 

sufficient, thus requiring more powerful architectures such 

as GPU clusters in order to carry out these simulations. 

This paper presented key concepts for designing a real-time 

crowd dynamics simulation and visualization system that 

works in a hybrid CPU/GPU architecture, as well as having 

the potential to be extended for multiple GPU equipped 

nodes. 

The simulation system that was presented proved the 

advantages that such a hybrid CPU/GPU architecture can 

have over traditional CPU-based architectures. Test results 

show significant improvements in all simulated scenarios, 

with the most significant one occurring when the number of 

agents was large. This is good news, since, with these 

simulations, the main entities are the ones that matter and 

that are wished to be present in a large number. This 

confirms that the approach presented is a promising one for 

interactive simulation of large crowds. Future development 

plans include porting the application to a GPU cluster in 

order to accelerate the computation process even further 

and to allow the user to interact in real-time with the 

simulated scenario. 
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