

121

Real Time Visualization of Crowd Dynamics Scenarios

Dan Razvan Ilies

Technical University of Cluj-

Napoca
Str. G. Baritiu 28, 400027,

Cluj-Napoca, Romania

danilies92@gmail.com

Adrian Sabou

Technical University of Cluj-

Napoca
Str. G. Baritiu 28, 400027,

Cluj-Napoca, Romania

adrian.sabou@cs.utcluj.ro

Dorian Gorgan

Technical University of Cluj-

Napoca
Str. G. Baritiu 28, 400027,

Cluj-Napoca, Romania

dorian.gorgan@cs.utcluj.ro

ABSTRACT

This paper presents an approach to real-time simulation of

crowd dynamics on GPU enabled computing architectures.

We discuss challenges with parallelization of agent-based

models, implementing parallel simulation algorithms,

visualization and interaction with the simulated scene and,

most importantly, ensuring communication and

synchronization between all these processes. Our main

objective is to provide interactive simulation of realistic

models such as pedestrian dynamics, in which large crowds

move and interact among themselves and with the

environment. Simulation parameters like scene complexity,

scene composition, as well as the number of agents are

varied in order to simulate different scenarios and to assess

the impact on performance.

Author Keywords

Visualization; Crowd dynamics; Interactive simulation;

Social forces; Social models; Graphics Processing Unit.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

General Terms

Algorithms; Human factors.

INTRODUCTION

Applications in computer animation and simulation vary

from simple scenarios like physically-based simulations,

which focus on visual quality, perceived realism and

computation efficiency, to complex scenarios which require

an accurate reproduction of measured parameters. The latter

are usually encountered in critical systems’ simulation,

based on heavy numerical computation, with the aim of

ensuring exact calibration with real-world conditions. Such

examples can be encountered in Computational Fluid

Dynamics, modelling turbulent flows or crashworthiness

tests. All these applications require a huge amount of

processing power and utilize powerful techniques borrowed

from fields such as applied mathematics, numerical

analysis, computational physics or mechanical engineering

in order to satisfy the ever increasing expectancies that

users have with regard to simulation systems.

Over time, sequential computing devices such as the

Central Processing Unit (CPU) have evolved significantly.

At first, there was little change in algorithms and techniques

from one version to another, the performance mostly being

improved by raising the operating frequency. Once the

thermal barrier was reached, the parallel era began. Thus

CPUs evolved into powerful multicore architectures and

this direction led to creating a new type of computing

device, dedicated to massive parallel computation, the

Graphics Processing Unit (GPU). This new computing

direction brought forth the need for efficient parallel

techniques and algorithms in order to fully utilize existing

resources.

GPUs were at first used to process massive parallel data

involved in Computer Graphics and complex graphical

algorithms, but, because of their massively data parallel

architecture, they drew the attention of the High-

Performance Computing (HPC) community and researchers

began using them for general purpose parallel computation.

Thus the General Purpose Computation on the GPU

(GPGPU) current began. However, programming GPUs for

general purpose computation proved difficult to learn, so

GPU vendors began making their devices more flexible and

easier to program through interfaces such as CUDA and

frameworks such as OpenCL.

Among applications to benefit from GPU-based

acceleration are discrete, particle-based or agent-based

simulations, their inherently parallel nature making them

perfectly suitable for GPU-based implementations. Thus, in

the last decade, research work in this domain has produced

new, highly efficient techniques for simulations, especially

for the most time consuming parts. However, when adding

the real-time attribute that such simulations usually require,

along with the need to transform raw processed data into a

form visually meaningful to the users, we end up with

probably one of the most complex class of applications

attempted to be implemented on such architectures.

This paper presents an approach to real-time simulation of

crowd dynamics on GPU enabled computing architectures.

We discuss challenges with parallelization of agent-based

models, implementing parallel simulation algorithms,

visualization and interaction with the simulated scene and,

most importantly, ensuring communication and

synchronization between all these processes. Our main

122

objective is to provide real-time simulation of realistic

models such as pedestrian dynamics, in which large crowds

move and interact among themselves and with the

environment. Simulation parameters like scene complexity,

scene composition, as well as the number of agents are

varied in order to simulated different scenarios and to

assess the impact on performance. The rest of the paper is

organized as follows: the following section highlights on

existing related works, the third section presents an

overview of the model used for our simulations, section

four focuses on techniques used for achieving interactivity

and real-time visualization, while section five presents

some experimental scenarios and performance

measurements.

RELATED WORKS

The term of crowd dynamics refers to a system of behaviors

and psychological processes that arise in a social group or

between several such groups. Studying the dynamics of

crowds can be useful for understanding behaviors in

decision making, information diffusion or disease spreading

in society, as well as in many other contexts. Such

applications can be seen in domains such as: psychology,

sociology, political sciences, business or education.

The idea that macroscale behavior can be deduced from

microscale interactions between individuals has become

key concept in understanding human behavior in crowds.

Examples of such collective behaviors have been

represented in several ways, one of them being the social

forces model.

A social forces model sufficiently complex to allow for

realistic computer-based simulations of human crowds has

been introduced by Helbing and Molnar [3]. They claimed

that pedestriam motion can be described in such a way as to

be the result of social forces. These forces are not directly

exerted only by the environment, but are rather a measure

of the internal motivation of each individual that arrises in

order to guide the individual towards certain actions or

movements.

After the initial introduction of this model, different

improvements and variations started to emerge, since it was

found that it could also be applied to a variety of domains

other than pedestrian dynamics, like biology, for simulating

the behavior of microscopic particles. Different variations

of attraction and rejection forces lead to new models being

created that described the behavior of large crowds of

particles even better than the initial one and that would

realistically reproduce several observed phenomena. Thus

several important works emerged which present collective

patterns, [8] [10] [6] and [4].

However, the assumptions that the above mentioned model

relies on and the exact form of the presented social forces

has never been measured or validated empirically, even if

the functions describing the interaction between individuals

could definitely influence the behavioral patterns that were

the outcome of the simulations. This has been proved by a

series of studies on different animal species [1]. The most

accurate and correct studies were limited to calibrating the

assumed parameters for the interaction forces in order to

minimize the errors in predicting individual behaviors.

Regarding simulating social models on high-performance

architectures, Joselli et al. [5] present a case study in which

they evaluate the performances of a simulation system with

one CPU and two GPUs. The model that they use is an

agent-based one, in which each individual has several

properties and interact with their environment. They used a

series of data structures and algorithms in order to

accelerate the computation, most of them done in the GPU.

Among the used techniques are spatial hashing, in which

each agent is assigned a hash code based on its location in

the simulated scene. The authors have chosen to split the

scene among the two GPUs in such a way as to allow each

one to process part of the scene and to synchronize common

areas. Their experiments show a speedup up to 1.8 for a

very large number of agents. However, the authors do not

specifically discuss real-time visualization and techniques

that might improve performance when interactivity is

required.

Sabou et al. [9] present an extension of particle models with

regard to their initial purpose and propose a solution for

simulating sociophysics models interactively using a

particle-based visual approach. An existent agent-based

“small-world” model is mapped on a particle-based grid

and its evolution in time is simulated on a high-

performance graphics cluster in order to model technology

adoption and consumer behavior. Several experimental

scenarios validate the initial hypothesis that particle-based

models can be extended beyond their original scope and

evaluate the system’s performance and scalability.

SIMULATING CROWD DYNAMICS

As seen in the previous section, agent-based models contain

individuals that interact in a given environment. The agents

may be either distinct computer programs or distinct parts

of the same program, with the purpose of representing

social actors – persons, organizations or nations. These

agents are programmed to react to the computing

environment that they are placed in, a model of a real

environment in which the agents would interact.

One crucial aspect of agent-based modeling is that agents

need to be able to interact, i.e. exchange information

carrying messages and to behave accordingly with what

they learn from these messages. The messages can be, for

instance, specific dialogs between persons, but also indirect

means of transferring information such as observing

another agent or detecting the effects of another agent’s

actions. The possibility to model such interactions is the

main way in which agent-based modeling differs from other

computational models.

123

Of course, keeping in mind that this is a visual simulation,

the agents will have to be visually represented in one way

or another. In our particular case, we have chosen a

representation in a bi-dimensional virtual scene in which

each entity is described by its X and Y coordinate. This way,

users can observe in real-time the movement of agents and

their interactions.

We will now describe the construction of the simulated

scenario and the different types of forces that act on agents.

Defining the simulation scenario

Besides the main actors of the simulation, which are the

agents, in order to obtain a realistic model, we had to

introduce several other elements. Thus, we will have:

Scene boundaries

It was decided that all simulations were to take place in a

restricted environment which can be defined to the user’s

best suiting. This way, the one that initiates the simulation

has the possibility to choose the horizontal as well as the

vertical limits that will constitute the boundaries of the

simulated scene. Agent movement is restricted between

these user defined limits, providing for a more controllable

scenario and a better visualization experience. The

boundaries will be drawn as simple straight walls through

which agents cannot pass.

Obstacles

Besides the aforementioned boundaries, the interior of the

scene will contain different obstacles that will influence the

agents’ trajectories. The obstacles can have various shapes,

ranging from simple walls to complex polygonal objects.

Same as with boundaries, the users can control obstacle

placement as they see fit, both their position and their

shape.

Social forces

Each agent has a clearly defined objective during the

simulation. Furthermore, during their movement towards

their objective, there will be a series of interactions, both

agent-agent and agent-other elements. The model for the

forces that act upon agents and the equations of movement

are the same originally proposed by Helbing and Molnar

[3]. As they said, it is often believed that human behavior is

chaotic or unpredictable, but, for relatively simple

situations, certain behavior patterns can be created, among

which, the social forces model. Due to the fact that

pedestrians are already used to a multitude of situations,

their reactions are most often automatic, based on their

similar previous experiences. Thus, the velocity and the

direction of each pedestrian could be represented as a

vector quantity , which is the so called social force and

which represents the effect of several other forces that the

environment and other pedestrians generate. In what

follows, we will briefly describe the types of forces that

influence the pedestrians’ movement.

Attraction forces towards the objective

This is the main force that drives the agent towards its goal.

Normally, agents will take the shortest route, which is a

straight line, unless they encounter obstacles, in which case

they will temporary modify their objective in order to avoid

them. The formula that computes these forces is:

 (1)

where is the current speed, is the desired speed and

is the relaxation time (i.e. the delay in agent

acceleration).

Repulsion forces from obstacles

On their way towards the objective, an agent ca encounter

different types of obstacles. Normally, even in real life,

pedestrians keep their distance to obstacles such as walls or

other kind of objects, thus we require a formula to express a

force of repulsion coming from obstacles. This formula is

the following:

 (2)

where is the distance between the agent’s current

position and the obstacle and is a monotonic

decreasing potential that scales the repulsion force with the

distance between the agent and the obstacle.

Repulsion forces from other agents

Similar to the previous case, when a repulsion force is

generated by the obstacles, repulsion forces are generated

from other agents. When agents are in proximity, this

repulsion force appears that is intended to keep agents from

violating each other’s “personal space”. The repulsion

depends on the distance between agents and their relative

velocities. For great distances, this force is negligible, but

as agents get closer, it will increase exponentially. The

formula to compute these forces is:

 (3)

where is a monotonic decreasing function with

the same role as before and b is the small radius of the

elliptic shaped personal space of the agent.

Acceleration structure based on hash codes

In order to speed-up the neighbor search when dealing with

a large number of agents, we apply a spatial hashing

technique. The simulated world is split into a grid of cells

(Figure 1), each agent belonging to a single such cell at any

given time. Thus, we have to establish a relation between

the agent and the cell, based on the agent’s position.

The basic idea is to firstly determine the position of an

agent in the scene and secondly we must search for the cell

that contains that position. To speedup calculations, each

agent is assigned a hash code, computed using the

following formula:

124

 (4)

where

and p1, p2 and p3 are large prime numbers.

The role of this formula is to assign a code to each agent

based on its position in the scene. The purpose of these

codes is to use them to obtain an agent-cell association,

which explains why the code computation depends on the

size of the cells dividing the simulation space. Code

computation for each agent must occur at each simulation

step since agents modify their positions as long as their

objective was not reached. Moreover, to be able to associate

agents and cells, the latter need to have an assigned code,

computed using the same formula. Since cells do not

modify their positions, their codes can be precomputed.

Thus, after computing the aforementioned codes, each

agent will be assigned the hash code of the cell that it

belongs to, making it easy to quickly determine the

neighbors for each agent during the simulation process. In

order to guarantee a unique code for each cell, the prime

numbers must be much larger than the total number of cells.

Code computing is done using the specified formula for

better performance and computing speed.

REAL-TIME SIMULATION AND VISUALIZATION

Accelerating computation using the GPU

GPUs are electronic components specially designed to

execute a huge number of operations in parallel. Their

initial purpose was to create raster images in a framebuffer

to present through a display device, but they have recently

started to be used more and more for applications and

systems designed to offer a huge degree of parallelism.

GPU-accelerated computing is a technique that uses a GPU

together with a CPU to accelerate scientific, analytic or

engineering applications. This path was opened by NVIDIA

in 2007 and a level was reached in which GPUs power

entire data centers, especially power efficient ones serving

Universities and small and medium enterprises [7]. GPUs

accelerate a wide range of applications, from applications in

the auto industry to mobile phone apps, drones or robots,

offering superior performances.

The way this acceleration works is by taking over the

intense workloads from the CPU and running them in the

GPU, while the rest of tasks continue running in the CPU.

In our case, the main and most complex entities are the

agents. Most computation is done around them, the rest of

the scene being mainly static. Thus, fast processing of

agents would lead to better overall simulation performance.

Seeing as all agents require the same set of operations at

one time, processing them on the GPU is the best choice.

Each agent will be processed by a different GPU thread and

necessary data will be transmitted between host and device.

After deciding on all elements required for host-device

communication, the simulation can be attempted. We must

firstly configure all simulations and visualization

parameters and after that we can start an infinite loop. This

simulation loop contains two main phases: the computation

phase and the visualization phase.

The computation phase is done in a distinct function which

is called from inside the infinite loop and contains a series

of commands to be executed, either in the CPU or on the

GPU. Computing new agents’ positions is done in three

distinct steps:

1. The first kernel computes the hash codes for all

agents using their positions in the scene.

2. The second step consists of computing the hash

structures that allow for fast discovery of all agents

inside of a specified cell, using the second kernel.

This way, we get two data structures with the same

dimension as the number of cells, the first one

indicating which is the first agent inside a certain

cell and the second one indicating what is the last

agent in that cell, with regard to a data structure in

which agents are ordered by their hash code.

3. The third step is the actual computing of forces,

new positions and velocities for all agents, using

the third kernel.

Once computation is finalized, the scene must be prepared

for rendering.

Figure 1. Example grid for 16 cells and 10 agents [2].

125

Rendering is done as a two-step process. The first step

involves rendering all elements in the scene besides the

agents (scene boundaries, obstacles, grid of cells, etc.). The

second step involves rendering the agents themselves. As

the number of agents becomes sufficiently large, the

computing process is no longer the only issue that has an

impact on performance, the sheer size of the crowd

imposing penalties upon the rate at which visual

information is rendered. Seeing as the positions of all

agents are computed on the device and stored into OpenCL

buffers, they would normally have to be copied back and

forth between host and device in order to render them,

generating a large number of memory transfers. The

solution is to combine the GPU computing and the GPU

rendering by using an interoperability mode between

OpenCL and OpenGL.

Combining computation and visualization

In order to be able to utilize the GPU for both GPGPU

computation and as a traditional rendering pipeline, we

must avoid unnecessary memory transfers while switching

between operating modes, since the general purpose

computation and the rendering process basically use the

same data, namely particle positions.

This calls for an interoperability solution between OpenCL

and OpenGL that can be achieved through a special data

structure called a Vertex Buffer Object (VBO) and which

allows for OpenGL data manipulation by OpenCL, without

the need to transfer data back and forth (Figure 2). The

VBO is an extension for OpenGL intended to improve

performance by providing benefits of vertex arrays and

display lists while avoiding downsides of their

implementation. VBOs allow vertex array data storage in

high-performance graphics memory on the server side and

efficient data transfer. Using VBOs, the number of function

calls and redundant usage of shared vertices can be reduced.

TEST SCENARIOS

In this section we present in detail certain test scenarios that

were executed to validate and evaluate our solution. The

experiments were carried out by varying different elements

in the scene such as the number of agents, the number and

size of obstacles or simply by creating some special

scenarios.

Besides the proper functioning of our application, we

wanted to emphasize the differences in performance that

appear when executing just on the CPU executing on hybrid

CPU/GPU architectures, the differences being quite

notable. In order to be able to run these tests, we

implemented a version of our application that runs entirely

on the CPU, this way avoiding all the GPU configuration

overhead.

Testing with regard to the number of agents

The first type of test and one of the most important for

noticing the differences in performance was done by

increasing the number of agents in the scene.

The number of agents has the greatest impact on application

performance, because agents are the main actors and all

processing is done around them.

Except for computation for splitting the scene in a grid of

cells and computation strictly regarding the scene, which

are quite few, all other computation is done in order to

compute forces, velocities and new positions of each agent.

Thus, a huge impact on overall performance was to be

expected.

In order to best emphasize the performance gain obtained

on GPUs, besides observing the simulated scenario and the

evolution of the simulation, we ran the simulation both on

the CPU and on the GPU and compare the results. The first

test consists of a simple simulation scenario with few

agents placed on the right side (Figure 3). We computed the

time required for all agents to migrate to the left side of the

scene.

After several successive runs using both application

versions, a significant increase in processing time is noticed

on the CPU-based one. Table 1 shows the computed

execution times.

Figure 2-OpenGL/OpenCL interoperability.

.

Figure 3 - Experiment 1

.

126

Number

of agents

CPU

execution

time

CPU+GPU execution

time

10 3 s 5 s

100 6 s 5 s

250 8 s 6 s

500 14 s 7 s

750 43 s 8 s

1000 63 s 9 s

Table 1 - Execution times

These test easily prove the performance gain obtained by

parallelizing the application. We will also compare

performance results between the two versions of the

application in subsequent tests.

Testing with regard to scene partitioning

When dividing the scene into a grid of cells in order to

speed up the neighbor searching procedure, the number of

cells (and thus their size) can vary, depending on scene

complexity and size, or number of processed agents. There

is no general formula to determine the optimum number of

cells, thus we shall try to determine them empirically.

When using smaller cell sizes (Figure 4) we obtain the

advantage of processing only a small part of the scene when

computing agent interactions. Due to the fact that a smaller

region surrounding each agent is taken into account, the

number of neighboring agents is relatively small, thus

generating less computation. Since computation for each

agent is handled by a single GPU thread, this should count

pretty much.

On the other hand, when using a larger cell size (Figure 5),

even if the neighborhood is larger, the data structures

holding hash info is considerably smaller. Thus, searching

for neighboring cells as well as neighboring agents is faster,

which should account for a performance gain, even if the

number of neighbors for each agent is larger than in the

previous case.

Experiments showed that the best performance results are

obtained for a balanced partitioning of the scene, which

means that the relative dimension of the cells with regard to

the scene should be chosen in a way as to ensure that the

entire scene is covered by approx. 50-100 cells. Even if for

a small number of agents the differences are not obvious,

for large number of agents, this will impact on execution

times.

Testing with regard to agents’ trajectories

The third types of tests were carried out in order to validate

the correctness of the implemented model and of

interactions between simulation elements. This was carried

out by generating the agents in several ways and varying

their objectives.

Figure 4 - Experiment 2 - Small cell size

.

Figure 5 - Experiment 2 - Large cell size

.

Figure 6 - Experiment 3-1 - Random agent generation

.

127

Figure 7 - Experiment 3-2 - Clustered agents

Figure 8 - Experiment 3-3 - Agents forced through a small

opening

For the first test, we generated all agents at random

positions in the scene with random objectives (Figure 6).

Although the movement in the scene was chaotic, no

interaction problems were detected.

For the second test, the agents were programed to cluster in

the middle of the scene (Figure 7) in order to test their

behavior in a crowded environment, but without

supplementary difficulties posed by obstacles, with many

agent-agent interactions. The simulation was once again

without problems, although a small decrease in

performance was noticed when all agents were in close

proximity.

For the third test, all agents were forced through a tight

opening (Figure 8). This test extends the previous one, but

this time with difficulties posed by obstacles. The agents’

behavior was consistent with the previous test.

It is worth mentioning that all three tests were carried out

on both the CPU and the GPU version of the application

and the results were consistent with performance

measurements in the first experiment, namely the

simulation time for the CPU version increases considerably

with the number of agents, while for the GPU version, the

increase in execution time is considerably smaller.

Testing with regard to scene complexity

Last but not least, we followed the impact that the scene

Figure 9 - Experiment 4 - Scenario 1

Figure 10 - Experiment 4 - Scenario 2

Figure 11 - Experiment 4 - Scenario 3

128

complexity has on overall simulation performance. Several

scenarios were generated, ranging from simple ones, with 1

or 2 obstacles (Figure 9) to complex ones containing a

much larger number of obstacles of different shapes (Figure

10, Figure 11). All agents were generated in the same

positions for all scenarios in order to observe just the

influence of scene complexity.

Results show that even if the scene is far more complex,

there is an insignificant increase in simulation times when

compared to differences in times for the previous

experiments, when we were varying the number of agents.

CONCLUSIONS

Agent-based models are one of the best methods for

realistic simulations of a complex environment or system

which are usually non-linear and for which no simple and

intuitive solutions exist that can offer precise results. Even

so, the complex computation during the simulation remains

an issue, due to the fact that the complexity of the studied

system leads to heavy calculations in order to obtain results

close to the real world.

Simulation techniques based on GPUs are an excellent

solution to these problems, due to their parallel architecture,

capable of executing hundreds and thousands of difficult

operations at once. Test results showed that there is a

considerable improvement in performance when using at

least a GPU for simulations. However, as the complexity of

the studied systems increases, a single GPU ceases to be

sufficient, thus requiring more powerful architectures such

as GPU clusters in order to carry out these simulations.

This paper presented key concepts for designing a real-time

crowd dynamics simulation and visualization system that

works in a hybrid CPU/GPU architecture, as well as having

the potential to be extended for multiple GPU equipped

nodes.

The simulation system that was presented proved the

advantages that such a hybrid CPU/GPU architecture can

have over traditional CPU-based architectures. Test results

show significant improvements in all simulated scenarios,

with the most significant one occurring when the number of

agents was large. This is good news, since, with these

simulations, the main entities are the ones that matter and

that are wished to be present in a large number. This

confirms that the approach presented is a promising one for

interactive simulation of large crowds. Future development

plans include porting the application to a GPU cluster in

order to accelerate the computation process even further

and to allow the user to interact in real-time with the

simulated scenario.

ACKNOWLEDGMENTS

The research has been carried out in the Computer Graphics

and Interactive Systems Laboratory of the Computer

Science Department, in the Technical University of Cluj-

Napoca, and partially supported through PN-II-PT-PCCA-

2013-4 project funded by MEN-UEFISCDI, Contract no.

344/2014, PECSA - Experimental High Performance

Computation Platform for Scientific Research and

Entrepreneurial Development.

REFERENCES

1. Iain D. Couzin, Jens Krause, Richard James, Graeme

D. Ruxton and Nigel R. Franks. 2002. Collective

Memory and Spatial Sorting in Animal Groups.

Journal of Theoretical Biology, vol. 218, no. 1.

2. Erin J. Hastings, Jaruwan Mesit and Ratan K. Guha.

2005. Optimization of Large-Scale, Real-Time

Simulations by Spatial Hashing. In Proceedings if the

2005 Summer Computer Simulation Conference 37 (4),

9-17.

3. Dirk Helbing and Peter Molnar. 1995. Social force

model for pedestrian dynamics. Phys. Rev. E 51, 4282.

http://dx.doi.org/10.1103/PhysRevE.51.4282.

4. Anders Johansson, Dirk Helbing and Pradyumn K.

Shukla. 2007. Specification of the Social Force

Pedestrian Model by Evolutionary Adjustement to

Video Tracking Data. Advances in Complex Systems,

vol. 10.

5. Mark Joselli, Jose Ricardo Da Silva and Esteban Clua.

2014. An Architecture for Real Time Crowd

Simulation Using Multiple GPUs. In Proceedings of

the 2014 Brazilian Symposium on Computer Games

and Digital Entertainment (SBGAMES).

6. Taras I. Lakoba, D. J. Kaup and Neal M. Finkelstein.

2005. Modifications of the Helbing-Molnár-Farkas-

Vicsek Social Force Model for Pedestrian Evolution.

Simulation, vol. 81, no. 5.

7. NVIDIA. CUDA. 2015. Retrieved July 21, 2015 from

http://www.nvidia.com/object/cuda_home_new.html.

8. Alessandro Pluchino, Cesare Garofalo, Giuseppe

Inturri, Andrea Rapisarda and Matteo Ignaccol. 2014.

Agent-Based Simulation of Pedestrian Behaviour in

Closed Spaces: A Museum Case Study. Journal of

Artificial Societies and Social Simulation 17 (1) 16.

9. Adrian Sabou, Dorian Gorgan and Ioan Radu Peter.

2014. Interactive Particle-based Simulation of

Sociophysics. In Proceedings of the 2014 IEEE

International Conference on Intelligent Computer

Communication and Processing (ICCP).

10. Andreas Schadschneider, Ansgar Kirchner and

Katsuhiro Nishinari. 2002. CA Approach to Collective

Phenomena in Pedestrian Dynamics. In Proceedings of

the 5th International Conference on Cellular Automata

for Research and Industry.

