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ABSTRACT 
This paper presents a new approach for finding the best n-

grams that efficiently summarize a large set of reviews. The 

proposed unsupervised method uses a readability score and 

a representativeness score to select those n-grams that best 

convey the main opinions contained in the processed 

reviews. In order to further refine the selected n-grams, we 

use sentiment analysis and part of speech (POS) tagging to 

impose certain requirements that the n-grams that we are 

looking for should meet. Furthermore, the best n-grams 

were classified into several topics, which allowed a better 

prevention of redundancy among the summarizing n-grams. 

Therefore we offer an unsupervised, mostly non-aspect 

based, unstructured opinion summarization algorithm that 

can be easily implemented for any web platform that 

accepts reviews, due to its genericity. In order to assess the 

results of our algorithm, we summarized hotel reviews 

extracted for the TripAdvisor
1
 website. The algorithm 

produces readable results that convey relevant opinions 

about the hotels that we used for testing. 

Author Keywords 

Opinion summarization, opinion mining, natural language 

processing, n-grams, micropinions. 

ACM Classification Keywords 

H.5.2. User Interfaces: Natural language, I.2.7 Natural 

Language Processing.  

INTRODUCTION 
Almost every online platform that offers services to 

customers has a reviews section nowadays. This is one of 

the building blocks on which e-Commerce relies, but it also 

raises a few problems. The main issue is that popular 

services like Amazon, eBay or TripAdvisor can end up 

having hundreds or thousands of reviews for a single 

product. Of course, this makes it very hard for users to go 

through all the reviews and extract the relevant opinions 

from all of them. Another problem, which makes it all the 

more difficult for users to form an opinion about a product, 

is the fact that quite a few of the reviews do not talk about a 

                                                           

1
 www.tripadvisor.com 

concrete aspect of the given product, but rather use very 

general phrases to describe it, such as ‘The hotel was great’ 

or ‘I didn’t like it at all’. 

Generating an opinion summary starting from a very large 

text is something that has been extensively researched in 

the last few years [1, 7, 8, 9, 11, 12] as the number of 

opinions on the web is always increasing, thus making it 

harder and harder for users to take into account every 

opinion when deciding upon a product, a service or, in our 

case, a hotel. Opinion summarization can vary from simply 

giving an overall rating [14] based on all the ratings for a 

single hotel, or generating a rating based on what each user 

had to say about that hotel, to generating a new review that 

will be a summary of every other review [2, 4, 6, 17]. 

Generating an opinion summary can be compared to normal 

text summarization - finding a small set of keywords or key 

phrases in the text that best describe the overall text [10] - 

with the difference that not all keywords or key phrases can 

be considered an opinion. This makes opinion 

summarization more difficult than generic text 

summarization. 

In this project we seek to generate a few sentences that best 

represent a summary for hundreds or thousands of reviews. 

In order to do this, we thought that the best approach was 

not to use the sentences that were already in the reviews, 

but to create new sentences, based on the text, and then 

check how representative each sentence is for the entire set 

of reviews. We chose this approach because it is often the 

case that a sentence covers more than just one topic and 

contains more than one opinion. By creating new sentences 

instead of extracting sentences from the reviews, we no 

longer have to make sure the sentence that we selected from 

the original text is appropriate (i.e. the sentence that exactly 

matches the opinion that the algorithm decides to output). 

Generating a new sentence is a demanding task, not only 

because the sentence has to be grammatically correct, but 

also because it has to convey an opinion that is relevant to 

the large set of reviews. Moreover, with such an approach, 

that only uses a representativeness score to filter opinions, it 

is very hard to keep among the selected n-grams those 

which contain negative opinions, since these are, based on 

our observations, far less common than the positive ones.  
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We take this aspect into account and offer certain bonuses 

in order to keep a good balance between positive and 

negative reviews, regardless of what the general opinion 

about the given hotel is. For instance, a generally well-seen 

hotel, can still have flaws. This is why we want to make 

sure the reviews mentioning these flaws stand a chance in 

the face of the more numerous positive reviews. 

Our approach is mostly non-aspect based, meaning that we 

don’t look for opinions related to particular aspects of the 

product/hotel. All the resulting n-grams that summarize the 

reviews are built and selected only based on their 

readability and representativeness scores. We also give 

bonuses to n-grams that are formed around certain 

syntactical structures as will be explained in the following 

sections. It is only after all the n-grams are computed and 

sorted by their scores that we use some predefined topics to 

extract only those summaries that are relevant to our 

product. This is the aspect based part of the algorithm. 

RELATED WORK 

State-of-the-art algorithms for review summarization are 

usually aspect based, looking for opinions related to certain 

features of the product that is reviewed [8]. This approach 

is highly dependent on the way the features are chosen. 

Syntactic tree parsing, POS (part of speech) tagging or a 

supervised approach are just some of the methods that are 

very common when trying to extract the features that need 

to be analyzed. 

In generic text summarization, most attempts use extractive 

summarization which consists of extracting relevant and 

representative fragments from the given text. Some 

important contributions in this direction are [7, 11, 12]. 

Abstractive summarization is considerably harder than the 

extractive approach, since it raises the problem of 

generating readable phrases that can also convey a relevant 

opinion, which is also representative for opinion 

summarization. 

Our work builds on the results obtained by [1]. They 

propose an abstractive unsupervised algorithm that extracts 

micropinions and generates short sentences to present them 

to the users. Unlike their work, ours is a hybrid approach, 

using a non-aspect based algorithm to generate the 

candidate sentences and then using some predefined topics 

(i.e. features) to select only sentences relevant to the 

product which is being reviewed. In addition to that, we use 

a slightly different algorithm for generating the candidates, 

which allowed us to use some tools more efficiently (i.e. 

Microsoft Ngram Service, CoreNLP etc.) by traversing the 

solution space in a breadth-first fashion. Moreover, our 

version of the algorithm lends itself to working with an 

adaptive pruning mechanism, which allows us to select at 

each step only valuable n-grams. Thus we can improve the 

efficiency of the algorithm up to the level that we desire by 

heuristically adjusting the thresholds used for the 

readability and representativeness scores. Of course, this 

has a direct impact on the quality of the results, but can 

prove useful when running an implementation for a system 

with limited resources, like a mobile device. 

Another work that is similar to ours is [9]. They offer both 

an abstractive and an extractive algorithm. However, in 

their abstractive approach, they generate whole paragraphs, 

using complex natural language processing tools in order to 

achieve this. Rather than doing this, we aim to create small, 

concise sentences, not longer than 10-15 words.  

OPINION SUMMARIZATION SYSTEM 

We wanted to create an algorithm that would find a  few 

sentences that would best summarize the opinions of a few 

hundred people. In our opinion, the best solution was to 

find short sentences, between three and eight words, that 

would summarize the set of reviews as good as possible. 

The main reasons for selecting this approach are the 

following. Firstly, it is fairly easy to construct short 

sentences based on the initial text and it also means that it 

will be easy to check the sentences for their readability and 

their representativeness, which we are going to discuss a bit 

later. Secondly, having a short sentence also means that it is 

going to be easier to compare it with another sentence, 

which helps us reduce the run-time considerably. 

In order to generate the sentences that best summarize the 

opinions of hundreds of users, we decided that the best 

solution would be to use a bottom-up approach and create 

new sentences based on the words from our initial text 

(which is made by concatenating all the reviews of a given 

hotel). Although we are using words from the initial text, 

the words in the newly created sentences do not have to be 

in the same order as they were in the original sentence, 

making sure that we have a better chance of creating a 

sentence that summarizes the opinion of more than one user. 

If we consider a sentence to be represented as si, our final 

result should be a set of sentences, R=  and each word 

from si should be a word from our original text T= , 

which is also a set of sentences.  

Since we earlier stated that the sentences we create might be 

different from every sentence in the original text, we must 

create some functions that will assure us that the result is 

readable and is relevant to our initial set of reviews. The 

first functions that we need to take into consideration are a 

readability score [5], which tells us how readable a sentence 

or a small group of words is, and a representativeness score, 

which tells us if the sentence is relevant for our initial set of 

reviews. After creating these two functions, our job should 

only be to determine which sentence has the best score of 

representativeness and of readability:  
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where: 

1. Srep is a function for scoring the representativeness 

of a sentence 

2. Sread is a function for scoring the readability of a 

sentence 

Once we have a set of sentences, R, we have to take into 

account that two or more of those sentences might have the 

same meaning. To address this problem, as we mentioned 

in the paragraph above, we have to define a similarity 

function, Ssim which will give us the similarity score 

between two sentences. If the result returned by the 

similarity function, Ssim(si, sj), is above a similarity 

threshold, which was determined heuristically, we will 

consider the two sentences, si and sj, to be similar. If we 

find that two sentences are similar, we have to eliminate the 

one that yields the lowest result for the formula: Sread + Srep. 

Once we have these functions, we can determine the best 

sentences by using a threshold for each function and a 

threshold for the sum of the representativeness function and 

the readability function:  

 

where: 

  is the minimum readability accepted for a 

sentence 

  is the minimum representativeness accepted 

for a sentence 

 is the maximum similarity between two 

sentences 

Readability 

The purpose of the readability function is to tell us if a 

sentence is grammatically correct and to make sure that the 

sentence makes sense for a user. This function is especially 

important in our case, since we are creating new sentences 

by combining every possible word from our initial text. At 

this point, we have to realize that when we put together two 

words from a text, most of the results will make no sense at 

all. Since most of the results will make no sense, we can 

drastically reduce the number of word tuples by setting a 

high enough  value. 

In our implementation of the readability function, we chose 

to use the Microsoft Web N-gram Service. This cloud-based 

platform provides a joint probability score for a given 

sentence. The cloud platform provides a readability score 

for a sentence and uses as training set all documents 

indexed by Bing in the en-us market. 

To access this service we used the Python module provided 

on the Microsoft N-gram blog from MSDN. On top of the 

module we implemented a server-like interface. Thus, the 

Python module runs in parallel with the main process. 

Queries are sent from the main process to the Python 

module, which resolves them with the Microsoft N-gram 

server. 

Representativeness 

The representativeness function determines whether a newly 

created sentence is found in the original reviews, how many 

times it is found and in which combination of words. We 

will not take into account how readable a sentence is when 

computing its representativeness score, because for this part 

we only care if a sentence appears in a form or another in 

the original text.  

The first thing considered when computing the 

representativeness score is whether or not the words that 

form the new sentence are actually closely related in the 

original text. In order to make sure the words are related in 

the original text, we first check whether the words are in the 

same sentence, and if so, how many times they appear in 

the same sentence and whether the distance between the 

two words, inside the sentence, is not greater than a window 

size, C. The first condition makes sure that two words that 

have a high appearance rate in the initial text, but almost 

never appear together, will not be able to form a new 

sentence. The second condition makes sure that strongly 

connected words have a better chance of forming a new 

sentence, then words that just happen to appear in the same 

sentences a lot. 

We will define Srep as: 

 

Where pmilocal is defined as the local pointwise mutual 

information (PMI) function: 

 

Where: 

 C is the size of the window within which we look for 

closely related words 

 p(wj, wk) is the frequency of two words co-occurring in 

the same sentence 

 c(wj, wk) is the frequency of two words co-occurring in 

the same sentence and in the same window 

 p(wj) is the frequency of a word in the text  

Let us consider the following example: if we have a text 

made of twenty sentences and two words, wj and wk, which 

appear in the text ten times each. The words also appear 

five times in the same sentence and twice in the same 

window, C. The values for the relations above, will be p(wj, 

wk) = 5/20, c(wj, wk) = 2/20 and p(wj) = p(wk) = 10/20, 

which means that we get the final value: pmilocal = 1/(2C) * 

log2(0.1). 



 

70 

 

In order to speed up the implementation of the system, a 

hash table has been used, with the word as a key, and a 

vector as a value, in which we can find the exact position of 

every word. Using this structure, we know exactly in which 

sentence we can find a word, so we only need to iterate 

through that sentence when computing the pmi. This 

structure gives us a worst case time complexity of 

O(n*m*l) where n is the total number of unique words, m is 

the number of sentences in the initial text and l is the 

maximum size of a sentence, in words. 

The representativeness value is computed for each n-gram 

before the readability score because the readability score is 

much more time consuming, since the score is not 

computed locally, but rather on a remote web server. By 

computing the representativeness first, more than three 

quarters of the original n-grams were eliminated, since most 

of the n-grams are not strongly related. 

Similarity 

Looking for the best sentences to represent the initial text 

we noticed that it might be the case that most of the 

sentences have the same meaning. This might happen if 

every user says something like ‘The hotel was very clean’, 

but in many different ways. In order to prevent this from 

happening, we need a good similarity function. We use the 

Jaccard index to compare two n-grams: 

 

Of course, this only has to do with the sets of words of the 

n-grams, so no semantic analysis is performed (this may be 

seen as possible further work). At all times, the queue 

containing n-grams waiting to be processed only contains n-

grams that are not similar to one another.  

It is rather important what course of action is taken when a 

new n-gram that is about to be added to the queue does not 

pass the similarity test. There are two different scenarios 

that are considered: 

i) the new n-gram is similar to just one n-gram in the queue; 

in this case, we simply compare the readability and 

representativeness scores of the two n-grams and only keep 

the one with the highest scores; 

e.g.: the queue is [..., bathrooms are ok, …] and we try to 

add bathrooms are nice 

ii) the new n-gram is similar to more than just one n-gram 

in the queue; this means that some part of the new n-gram is 

similar to one existing n-gram, and some other parts are 

similar to other n-grams (because otherwise it would mean 

that the same fragment of the new n-gram is similar to all 

the existing n-grams with which it doesn’t pass the 

similarity test which leads to a contradiction since we stated 

before that all none of the  n-grams in the queue are similar 

to one another). When this happens it usually means that 

the new n-gram conveys information about more than just 

one topic (since it overlaps with two existing standalone n-

grams). In this case, we drop the new n-gram. 

e.g.: we try to add bathrooms are nice and staff is helpful to 

the queue: [..., bathrooms are nice, staff is helpful, ...] 

 General algorithm 

As stated earlier, the easiest way to generate sentences that 

would best summarize the reviews is to generate the 

sentences using words from the initial text. If we generate 

new n-grams based on the words that are in the original 

reviews, we have a better chance of generating sentences 

that better summarize the opinion, than we would have if 

we were to start from scratch.  

The first step of the algorithm is to look for the most 

frequent unique words in the text. The final n-grams 

generated by the system will only have words that have a 

frequency higher than a threshold, . This threshold was 

determined heuristically and is usually dependent on the 

number of reviews that are in the dataset. Once we have the 

most frequent words, we use backtracking to generate every 

possible bi-gram. However, we employ the pruning 

algorithm described in the previous section, which 

eliminates every bigram that has no chance of existing in 

the original text. We also have to mention that we check 

every possible permutation of a bigram, hence, we will 

compute the representativeness score only once, but we will 

determine which permutation is the best by using the 

readability score. There is no point in checking the 

similarity at this point since we only have bigrams and we 

will only use them as a seed to generate new n-grams. In 

order to make the algorithm faster, these bigrams are stored 

in a hash table, for which the key is the first word of the 

bigram, so that it will be easy to add the bigram to an 

existing n-gram. 

The values for the thresholds that we used in order to select 

only those n-grams that meet certain requirements (e.g. high 

readability score, high representativeness score, limit 

redundancy using the similarity score etc.) were chosen 

heuristically, by considering both the execution time of the 

algorithm and the quality of the resulting summaries. The 

window size C used in the representativeness formula was 

also chosen by testing different values for it, between 5 and 

15. 

In the process of generating (n+1)-grams we use the n-

grams that we already have at this stage and try to 

concatenate them with every possible bigram that we have 

not eliminated after the first stage of the algorithm. A new 

(n+1)-gram can be formed only if the last word of the n-

gram matches the first word of the bigram. We use Breadth-

First Search (BFS) to generate the (n+1)-grams since the 

requests for the Microsoft Web N-gram Service are the 

most time consuming parts of the algorithm. By using BFS, 

we can generate every possible (n+1)-gram, eliminate the 
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worst ones using the representativeness score and only 

afterwards interrogate the cloud-based platform. 

Generate (n+1)-grams 

  1: Input: queue in which we have every n-gram 

  2: Output: new_queue in which we will have the (n+1)-

grams 

  3: FOR every n-gram in queue 

  4:     FOR every bigram matching n-gram 

  5:         new_ngram  JoinNgrams(n-gram, bigram) 

  6:         if new_ngram.representativeness >  

  7:             new_queue.push(new_ngram) 

  8:         ENDIF 

  9:     ENDFOR 

10: ENDFOR 

11: GetReadability(new_queue) 

12: FOR every new_ngram in new_queue 

13:     IF new_ngram.readability >  

14:         FOR every ngram in all_ngrams 

15:             IF GetSimilarity(new_ngram, ngram) >  

16:                 eliminate the worst ngram 

17:             ENDIF 

18:              IF new_ngram is not similar with any other 

existing ngram 

19:                         all_ngrams.push(new_ngram) 

20:              ENDIF 

21:         ENDFOR 

22:     ELSE 

23:         new_queue.delete(new_ngram) 

24:     ENDIF 

25: ENDFOR 

If the similarity function finds that two n-grams are similar, 

we are going to keep only the best n-gram, which will be 

the one with the highest sum between the readability score 

and the representativeness score. We could check the 

similarity only at the end of the algorithm but we found that 

the number of similar n-grams generated this way was quite 

large, so a lot of time is wasted to generate and assess new 

n-grams that were just (partial) copies of other n-grams. 

Once we have the (n+1)-grams in new_queue, the algorithm 

proceeds recursively to generate new n-grams until we 

reach the maximum size of an n-gram, eight, or until none 

of the newly created n-grams pass the pruning stage. 

Sentiment Analysis 

The best way to summarize the opinion of a user is to 

capture his or her sentiment [13, 15] towards a hotel. Since 

the purpose of the algorithm is to summarize how good or 

how bad a hotel is, the stronger the sentiment expressed by 

a user is, the better. The tool that we found fit to analyze the 

sentiment of a sentence was CoreNLP [3]. CoreNLP 

provides a rating for a given sentence, using the following 

classes: very negative, negative, neutral, positive and very 

positive. Based on the rating that is returned by CoreNLP, a 

bonus is added to each n-gram. The bonus added for an n-

gram that has a very positive or a very negative rating is 

higher that the bonus added for an n-gram rated as positive 

or negative. 

After early testing, we found that most of the sentences that 

we were creating had small grammar problems. The 

sentences were readable, but the words inside the sentence 

were not quite in the correct order. For example we would 

get ‘nice the staff was’ instead of  ‘the staff was nice’. The 

first thing we did was to find the readability of every 

permutation possible for the initial n-gram and choose the 

one with the best readability. The second solution was to 

rearrange the words inside the sentence until the words are 

in the write order. To change the order of the words inside a 

sentence, we only need the part of speech for each word, 

which we could find by using CoreNLP. Some of the rules 

that we were using to rearrange the words were: adjective 

before noun and adverb before verb. 

We realized that we could use the fact that we already have 

the part of speech of each word to improve the generation 

of new sentences/n-grams. There is no way that we could 

generate a sentence that would express a strong sentiment 

without it having at least a noun and an adjective. We 

thought that we could speed up the generating phase of the 

algorithm by adding a bonus if an n-gram had a noun or an 

adjective. We also figured it would be a good idea to 

penalize a sentence if it contains an interjection, a 

determiner, a preposition or a number. 

Topic detection 

After generating every possible sentence and choosing the 

best ones using the algorithm described above, we have to 

choose the sentences that are most relevant for each hotel. 

The best way to determine if a sentence is relevant for a 

given domain is to find the topic of a sentence and match it 

with some predefined topics relevant for that domain. In 

this case, the selected topics were: kitchen, room, staff, 

noise, location and price.  

The tool we used is Word2Vec
2
, which is an efficient 

implementation of the continuous bag-of-words and skip-

gram architectures for computing vector representations of 

words. This tool provides an algorithm that, for a given 

word, creates a list of words having the highest cosine 

distance related to it. Based on that algorithm, we were able 

to obtain the cosine distance of two given words. 

We created lists of words for each predefined topic. To 

obtain the topic of an n-gram, we calculate its cosine 

distance towards each topic. The topic with the highest 

cosine distance towards the n-gram is the matching one. 

However, if that distance is not above a minimum 

threshold, the n-gram is considered to be out of topic and 

can be dropped from the final output. We established the 

value for the threshold heuristically, by evaluating the 

                                                           

2
 https://code.google.com/p/word2vec/ 
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performance of the algorithm for several different values, 

the same way we did with the other thresholds mentioned 

throughout this paper. 

RESULTS 
For testing purposes, various datasets for reviews were 

used. These were collected from the TripAdvisor website 

and there was a focus on hotels with at least several 

hundred different reviews. The average number of requests 

sent to the Microsoft N-gram Web Service is 195 per 

review. We make an average of 55000 requests per hotel. 

Obviously, the server requests are one of the most time 

consuming part of the application. Hence, we limited the 

number of bigrams at 5000. The number of n-grams with a 

size greater than 2 is limited at 1500. This limit was never 

reached, since the number of (n+1)-grams is usually 

considerably lower that the number of n-grams. This 

decrease is caused by the pruning of the n-grams which 

takes place during the BFS traversing. 

As stated before, each n-gram is given a score based on 

readability, representativeness and POS bonus. As 

expected, during the course of each run, the mean 

readability value decreases and the mean representativeness 

value rises as the n-gram size increases. 

The readability and representativeness values are constant 

throughout every output and are not affected by the number 

of reviews, as seen in Figure 1 and Figure 2. The spike is 

caused by a hotel that has poorly written reviews. As a 

consequence, the generated n-grams have lower 

representativeness score. This forces the algorithm to finish 

in an early stage. 

 

 

Figure 1: Average readability of the summaries from multiple 

hotels 

 

Figure 2: Average representativeness of the summaries from 

multiple hotels 

In what follows, there are some output examples from two 

different hotels. The application generates for each hotel, on 

average, 20 summaries. The output is formatted as follows: 

[<n-gram>, <readability>, <representativeness>, <POS 

bonus>, <sentiment polarity>] <topic> 

Output for Hotel Christina: 

[romanian red glass wine and welcome cheese, 1.44092e-

09, 1.0253, 0.11 NEUTRAL] food 

[bucharest at the hotel i had, 9.28771e-08, 1.09938, -0.092 

NEUTRAL] none 

[metro bus 5 minutes walk, 4.1583e-07, 0.830261, -0.101 

NEUTRAL] location 

[accommodating staff very, 8.7571e-10, 0.763112, -0.091 

NEUTRAL] staff 

[smooth cab she said, 6.06846e-07, 0.528349, 0.11 

NEUTRAL] location 

[food was excellent, 0.000520357, 0.52147, 0.11 

POSITIVE] food 

[helpful staff, 7.7023e-06, 0.440511, 0.11 NEUTRAL] staff 

[street noisy noise, 4.23309e-05, 0.419229, 0.11 

NEUTRAL] noise 

Output for hotel Palm Opera: 

[will definitely book again soon next, 7.45793e-09, 

1.23048, 0.109 POSITIVE] none 

[welcoming attentive staff and professional at rest, 

9.25606e-09, 1.17844, 0.109 POSITIVE] staff 

[location we were good, 2.90115e-07, 1.07646, 0.109 

NEUTRAL] location 

[available water supply area a lounge touch, 2.2848e-09, 

1.07143, 0.109 NEUTRAL] room 

[not disappointed me fortunately my wife, 8.25395e-08, 

1.03246, 0.11 NEGATIVE] none 

[free lounge drinks they offer, 5.15874e-08, 1.02223, 0.108 

NEUTRAL] food 

[floor bath was lovely had got, 8.14061e-10, 1.0202, 0.109 

POSITIVE] room 

[children just loved ikea play kitchen, 8.23065e-10, 

1.21441, -0.09 POSITIVE] food 
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In order to assess the quality of the resulting n-grams (e.g. 

the n-grams that are shown above) we created a survey 

where summaries could be rated on scale from 1 to 5 (5 

being the highest). The survey consisted of 187 summaries 

from 7 hotels and was taken by six fellow students coming 

from different backgrounds, namely not just computer 

science. We have instructed them to focus on how useful a 

summary is and not necessarily on whether or not it is 

grammatically correct. After aggregating the data we have 

obtained an average of 3.12. We have also noticed that this 

score fluctuates in a rather narrow window of just 1 (i.e. 

between 2.5 and 3.5) when we vary the number of reviews 

that we process, as seen in Figure 3. 

 

Figure 3: Average grade for hotels with different number of 

reviews 

CONCLUSION 
To sum up, our approach offers a fast solution to the 

problem of finding a set of n-grams that can summarize a 

given set of reviews without losing the recurrent aspects 

that appear throughout the reviews. Using the readability 

and representativeness scores as well as other useful 

metadata like the POS tags and the sentiment conveyed by 

an n-gram, the proposed algorithm attempts to use as much 

information as possible in order to select only the most 

suitable n-grams. On top of all this, the topic selection 

functionality makes sure to get rid of n-grams that do not 

cover a relevant subject as far as the reviewed product is 

concerned. 

As far as other similar attempts go, our approach provides 

simple, unsupervised and unstructured way to summarize 

reviews while taking advantage of as much of the available 

information as possible. Since most of the algorithm is non-

aspect based (except for the final part where we start 

looking for reviews with high scores that also fit a certain 

topic) it can be changed rather easily to work on different 

web platforms and different products, even though our 

implementation uses hotel reviews crawled from 

www.tripadvisor.com. As for further work, more 

optimization, including parallelization of some of the 

operations, will allow for more data to be analyzed in a 

decent amount of time and, therefore, will greatly increase 

the quality of the yielded n-grams. 
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