
67

Opinion Summarization for Hotel Reviews

Bogdan Cristian

Marchis

University Politehnica of

Bucharest
313 Splaiul

Independentei, Romania

bogdan.marchis

@gmail.com

Alexandru Tifrea

University Politehnica

of Bucharest
313 Splaiul

Independentei, Romania

alex.tifrea93

@gmail.com

Mihai-Cristian Volmer

University Politehnica

of Bucharest
313 Splaiul

Independentei, Romania

mihaivolmer

@gmail.com

Traian Rebedea

University Politehnica

of Bucharest
313 Splaiul

Independentei,

Romania

traian.rebedea

@cs.pub.ro

ABSTRACT
This paper presents a new approach for finding the best n-

grams that efficiently summarize a large set of reviews. The

proposed unsupervised method uses a readability score and

a representativeness score to select those n-grams that best

convey the main opinions contained in the processed

reviews. In order to further refine the selected n-grams, we

use sentiment analysis and part of speech (POS) tagging to

impose certain requirements that the n-grams that we are

looking for should meet. Furthermore, the best n-grams

were classified into several topics, which allowed a better

prevention of redundancy among the summarizing n-grams.

Therefore we offer an unsupervised, mostly non-aspect

based, unstructured opinion summarization algorithm that

can be easily implemented for any web platform that

accepts reviews, due to its genericity. In order to assess the

results of our algorithm, we summarized hotel reviews

extracted for the TripAdvisor
1
 website. The algorithm

produces readable results that convey relevant opinions

about the hotels that we used for testing.

Author Keywords

Opinion summarization, opinion mining, natural language

processing, n-grams, micropinions.

ACM Classification Keywords

H.5.2. User Interfaces: Natural language, I.2.7 Natural

Language Processing.

INTRODUCTION
Almost every online platform that offers services to

customers has a reviews section nowadays. This is one of

the building blocks on which e-Commerce relies, but it also

raises a few problems. The main issue is that popular

services like Amazon, eBay or TripAdvisor can end up

having hundreds or thousands of reviews for a single

product. Of course, this makes it very hard for users to go

through all the reviews and extract the relevant opinions

from all of them. Another problem, which makes it all the

more difficult for users to form an opinion about a product,

is the fact that quite a few of the reviews do not talk about a

1
 www.tripadvisor.com

concrete aspect of the given product, but rather use very

general phrases to describe it, such as ‘The hotel was great’

or ‘I didn’t like it at all’.

Generating an opinion summary starting from a very large

text is something that has been extensively researched in

the last few years [1, 7, 8, 9, 11, 12] as the number of

opinions on the web is always increasing, thus making it

harder and harder for users to take into account every

opinion when deciding upon a product, a service or, in our

case, a hotel. Opinion summarization can vary from simply

giving an overall rating [14] based on all the ratings for a

single hotel, or generating a rating based on what each user

had to say about that hotel, to generating a new review that

will be a summary of every other review [2, 4, 6, 17].

Generating an opinion summary can be compared to normal

text summarization - finding a small set of keywords or key

phrases in the text that best describe the overall text [10] -

with the difference that not all keywords or key phrases can

be considered an opinion. This makes opinion

summarization more difficult than generic text

summarization.

In this project we seek to generate a few sentences that best

represent a summary for hundreds or thousands of reviews.

In order to do this, we thought that the best approach was

not to use the sentences that were already in the reviews,

but to create new sentences, based on the text, and then

check how representative each sentence is for the entire set

of reviews. We chose this approach because it is often the

case that a sentence covers more than just one topic and

contains more than one opinion. By creating new sentences

instead of extracting sentences from the reviews, we no

longer have to make sure the sentence that we selected from

the original text is appropriate (i.e. the sentence that exactly

matches the opinion that the algorithm decides to output).

Generating a new sentence is a demanding task, not only

because the sentence has to be grammatically correct, but

also because it has to convey an opinion that is relevant to

the large set of reviews. Moreover, with such an approach,

that only uses a representativeness score to filter opinions, it

is very hard to keep among the selected n-grams those

which contain negative opinions, since these are, based on

our observations, far less common than the positive ones.

68

We take this aspect into account and offer certain bonuses

in order to keep a good balance between positive and

negative reviews, regardless of what the general opinion

about the given hotel is. For instance, a generally well-seen

hotel, can still have flaws. This is why we want to make

sure the reviews mentioning these flaws stand a chance in

the face of the more numerous positive reviews.

Our approach is mostly non-aspect based, meaning that we

don’t look for opinions related to particular aspects of the

product/hotel. All the resulting n-grams that summarize the

reviews are built and selected only based on their

readability and representativeness scores. We also give

bonuses to n-grams that are formed around certain

syntactical structures as will be explained in the following

sections. It is only after all the n-grams are computed and

sorted by their scores that we use some predefined topics to

extract only those summaries that are relevant to our

product. This is the aspect based part of the algorithm.

RELATED WORK

State-of-the-art algorithms for review summarization are

usually aspect based, looking for opinions related to certain

features of the product that is reviewed [8]. This approach

is highly dependent on the way the features are chosen.

Syntactic tree parsing, POS (part of speech) tagging or a

supervised approach are just some of the methods that are

very common when trying to extract the features that need

to be analyzed.

In generic text summarization, most attempts use extractive

summarization which consists of extracting relevant and

representative fragments from the given text. Some

important contributions in this direction are [7, 11, 12].

Abstractive summarization is considerably harder than the

extractive approach, since it raises the problem of

generating readable phrases that can also convey a relevant

opinion, which is also representative for opinion

summarization.

Our work builds on the results obtained by [1]. They

propose an abstractive unsupervised algorithm that extracts

micropinions and generates short sentences to present them

to the users. Unlike their work, ours is a hybrid approach,

using a non-aspect based algorithm to generate the

candidate sentences and then using some predefined topics

(i.e. features) to select only sentences relevant to the

product which is being reviewed. In addition to that, we use

a slightly different algorithm for generating the candidates,

which allowed us to use some tools more efficiently (i.e.

Microsoft Ngram Service, CoreNLP etc.) by traversing the

solution space in a breadth-first fashion. Moreover, our

version of the algorithm lends itself to working with an

adaptive pruning mechanism, which allows us to select at

each step only valuable n-grams. Thus we can improve the

efficiency of the algorithm up to the level that we desire by

heuristically adjusting the thresholds used for the

readability and representativeness scores. Of course, this

has a direct impact on the quality of the results, but can

prove useful when running an implementation for a system

with limited resources, like a mobile device.

Another work that is similar to ours is [9]. They offer both

an abstractive and an extractive algorithm. However, in

their abstractive approach, they generate whole paragraphs,

using complex natural language processing tools in order to

achieve this. Rather than doing this, we aim to create small,

concise sentences, not longer than 10-15 words.

OPINION SUMMARIZATION SYSTEM

We wanted to create an algorithm that would find a few

sentences that would best summarize the opinions of a few

hundred people. In our opinion, the best solution was to

find short sentences, between three and eight words, that

would summarize the set of reviews as good as possible.

The main reasons for selecting this approach are the

following. Firstly, it is fairly easy to construct short

sentences based on the initial text and it also means that it

will be easy to check the sentences for their readability and

their representativeness, which we are going to discuss a bit

later. Secondly, having a short sentence also means that it is

going to be easier to compare it with another sentence,

which helps us reduce the run-time considerably.

In order to generate the sentences that best summarize the

opinions of hundreds of users, we decided that the best

solution would be to use a bottom-up approach and create

new sentences based on the words from our initial text

(which is made by concatenating all the reviews of a given

hotel). Although we are using words from the initial text,

the words in the newly created sentences do not have to be

in the same order as they were in the original sentence,

making sure that we have a better chance of creating a

sentence that summarizes the opinion of more than one user.

If we consider a sentence to be represented as si, our final

result should be a set of sentences, R= and each word

from si should be a word from our original text T= ,

which is also a set of sentences.

Since we earlier stated that the sentences we create might be

different from every sentence in the original text, we must

create some functions that will assure us that the result is

readable and is relevant to our initial set of reviews. The

first functions that we need to take into consideration are a

readability score [5], which tells us how readable a sentence

or a small group of words is, and a representativeness score,

which tells us if the sentence is relevant for our initial set of

reviews. After creating these two functions, our job should

only be to determine which sentence has the best score of

representativeness and of readability:

69

where:

1. Srep is a function for scoring the representativeness

of a sentence

2. Sread is a function for scoring the readability of a

sentence

Once we have a set of sentences, R, we have to take into

account that two or more of those sentences might have the

same meaning. To address this problem, as we mentioned

in the paragraph above, we have to define a similarity

function, Ssim which will give us the similarity score

between two sentences. If the result returned by the

similarity function, Ssim(si, sj), is above a similarity

threshold, which was determined heuristically, we will

consider the two sentences, si and sj, to be similar. If we

find that two sentences are similar, we have to eliminate the

one that yields the lowest result for the formula: Sread + Srep.

Once we have these functions, we can determine the best

sentences by using a threshold for each function and a

threshold for the sum of the representativeness function and

the readability function:

where:

 is the minimum readability accepted for a

sentence

 is the minimum representativeness accepted

for a sentence

 is the maximum similarity between two

sentences

Readability

The purpose of the readability function is to tell us if a

sentence is grammatically correct and to make sure that the

sentence makes sense for a user. This function is especially

important in our case, since we are creating new sentences

by combining every possible word from our initial text. At

this point, we have to realize that when we put together two

words from a text, most of the results will make no sense at

all. Since most of the results will make no sense, we can

drastically reduce the number of word tuples by setting a

high enough value.

In our implementation of the readability function, we chose

to use the Microsoft Web N-gram Service. This cloud-based

platform provides a joint probability score for a given

sentence. The cloud platform provides a readability score

for a sentence and uses as training set all documents

indexed by Bing in the en-us market.

To access this service we used the Python module provided

on the Microsoft N-gram blog from MSDN. On top of the

module we implemented a server-like interface. Thus, the

Python module runs in parallel with the main process.

Queries are sent from the main process to the Python

module, which resolves them with the Microsoft N-gram

server.

Representativeness

The representativeness function determines whether a newly

created sentence is found in the original reviews, how many

times it is found and in which combination of words. We

will not take into account how readable a sentence is when

computing its representativeness score, because for this part

we only care if a sentence appears in a form or another in

the original text.

The first thing considered when computing the

representativeness score is whether or not the words that

form the new sentence are actually closely related in the

original text. In order to make sure the words are related in

the original text, we first check whether the words are in the

same sentence, and if so, how many times they appear in

the same sentence and whether the distance between the

two words, inside the sentence, is not greater than a window

size, C. The first condition makes sure that two words that

have a high appearance rate in the initial text, but almost

never appear together, will not be able to form a new

sentence. The second condition makes sure that strongly

connected words have a better chance of forming a new

sentence, then words that just happen to appear in the same

sentences a lot.

We will define Srep as:

Where pmilocal is defined as the local pointwise mutual

information (PMI) function:

Where:

 C is the size of the window within which we look for

closely related words

 p(wj, wk) is the frequency of two words co-occurring in

the same sentence

 c(wj, wk) is the frequency of two words co-occurring in

the same sentence and in the same window

 p(wj) is the frequency of a word in the text

Let us consider the following example: if we have a text

made of twenty sentences and two words, wj and wk, which

appear in the text ten times each. The words also appear

five times in the same sentence and twice in the same

window, C. The values for the relations above, will be p(wj,

wk) = 5/20, c(wj, wk) = 2/20 and p(wj) = p(wk) = 10/20,

which means that we get the final value: pmilocal = 1/(2C) *

log2(0.1).

70

In order to speed up the implementation of the system, a

hash table has been used, with the word as a key, and a

vector as a value, in which we can find the exact position of

every word. Using this structure, we know exactly in which

sentence we can find a word, so we only need to iterate

through that sentence when computing the pmi. This

structure gives us a worst case time complexity of

O(n*m*l) where n is the total number of unique words, m is

the number of sentences in the initial text and l is the

maximum size of a sentence, in words.

The representativeness value is computed for each n-gram

before the readability score because the readability score is

much more time consuming, since the score is not

computed locally, but rather on a remote web server. By

computing the representativeness first, more than three

quarters of the original n-grams were eliminated, since most

of the n-grams are not strongly related.

Similarity

Looking for the best sentences to represent the initial text

we noticed that it might be the case that most of the

sentences have the same meaning. This might happen if

every user says something like ‘The hotel was very clean’,

but in many different ways. In order to prevent this from

happening, we need a good similarity function. We use the

Jaccard index to compare two n-grams:

Of course, this only has to do with the sets of words of the

n-grams, so no semantic analysis is performed (this may be

seen as possible further work). At all times, the queue

containing n-grams waiting to be processed only contains n-

grams that are not similar to one another.

It is rather important what course of action is taken when a

new n-gram that is about to be added to the queue does not

pass the similarity test. There are two different scenarios

that are considered:

i) the new n-gram is similar to just one n-gram in the queue;

in this case, we simply compare the readability and

representativeness scores of the two n-grams and only keep

the one with the highest scores;

e.g.: the queue is [..., bathrooms are ok, …] and we try to

add bathrooms are nice

ii) the new n-gram is similar to more than just one n-gram

in the queue; this means that some part of the new n-gram is

similar to one existing n-gram, and some other parts are

similar to other n-grams (because otherwise it would mean

that the same fragment of the new n-gram is similar to all

the existing n-grams with which it doesn’t pass the

similarity test which leads to a contradiction since we stated

before that all none of the n-grams in the queue are similar

to one another). When this happens it usually means that

the new n-gram conveys information about more than just

one topic (since it overlaps with two existing standalone n-

grams). In this case, we drop the new n-gram.

e.g.: we try to add bathrooms are nice and staff is helpful to

the queue: [..., bathrooms are nice, staff is helpful, ...]

 General algorithm

As stated earlier, the easiest way to generate sentences that

would best summarize the reviews is to generate the

sentences using words from the initial text. If we generate

new n-grams based on the words that are in the original

reviews, we have a better chance of generating sentences

that better summarize the opinion, than we would have if

we were to start from scratch.

The first step of the algorithm is to look for the most

frequent unique words in the text. The final n-grams

generated by the system will only have words that have a

frequency higher than a threshold, . This threshold was

determined heuristically and is usually dependent on the

number of reviews that are in the dataset. Once we have the

most frequent words, we use backtracking to generate every

possible bi-gram. However, we employ the pruning

algorithm described in the previous section, which

eliminates every bigram that has no chance of existing in

the original text. We also have to mention that we check

every possible permutation of a bigram, hence, we will

compute the representativeness score only once, but we will

determine which permutation is the best by using the

readability score. There is no point in checking the

similarity at this point since we only have bigrams and we

will only use them as a seed to generate new n-grams. In

order to make the algorithm faster, these bigrams are stored

in a hash table, for which the key is the first word of the

bigram, so that it will be easy to add the bigram to an

existing n-gram.

The values for the thresholds that we used in order to select

only those n-grams that meet certain requirements (e.g. high

readability score, high representativeness score, limit

redundancy using the similarity score etc.) were chosen

heuristically, by considering both the execution time of the

algorithm and the quality of the resulting summaries. The

window size C used in the representativeness formula was

also chosen by testing different values for it, between 5 and

15.

In the process of generating (n+1)-grams we use the n-

grams that we already have at this stage and try to

concatenate them with every possible bigram that we have

not eliminated after the first stage of the algorithm. A new

(n+1)-gram can be formed only if the last word of the n-

gram matches the first word of the bigram. We use Breadth-

First Search (BFS) to generate the (n+1)-grams since the

requests for the Microsoft Web N-gram Service are the

most time consuming parts of the algorithm. By using BFS,

we can generate every possible (n+1)-gram, eliminate the

71

worst ones using the representativeness score and only

afterwards interrogate the cloud-based platform.

Generate (n+1)-grams

 1: Input: queue in which we have every n-gram

 2: Output: new_queue in which we will have the (n+1)-

grams

 3: FOR every n-gram in queue

 4: FOR every bigram matching n-gram

 5: new_ngram JoinNgrams(n-gram, bigram)

 6: if new_ngram.representativeness >

 7: new_queue.push(new_ngram)

 8: ENDIF

 9: ENDFOR

10: ENDFOR

11: GetReadability(new_queue)

12: FOR every new_ngram in new_queue

13: IF new_ngram.readability >

14: FOR every ngram in all_ngrams

15: IF GetSimilarity(new_ngram, ngram) >

16: eliminate the worst ngram

17: ENDIF

18: IF new_ngram is not similar with any other

existing ngram

19: all_ngrams.push(new_ngram)

20: ENDIF

21: ENDFOR

22: ELSE

23: new_queue.delete(new_ngram)

24: ENDIF

25: ENDFOR

If the similarity function finds that two n-grams are similar,

we are going to keep only the best n-gram, which will be

the one with the highest sum between the readability score

and the representativeness score. We could check the

similarity only at the end of the algorithm but we found that

the number of similar n-grams generated this way was quite

large, so a lot of time is wasted to generate and assess new

n-grams that were just (partial) copies of other n-grams.

Once we have the (n+1)-grams in new_queue, the algorithm

proceeds recursively to generate new n-grams until we

reach the maximum size of an n-gram, eight, or until none

of the newly created n-grams pass the pruning stage.

Sentiment Analysis

The best way to summarize the opinion of a user is to

capture his or her sentiment [13, 15] towards a hotel. Since

the purpose of the algorithm is to summarize how good or

how bad a hotel is, the stronger the sentiment expressed by

a user is, the better. The tool that we found fit to analyze the

sentiment of a sentence was CoreNLP [3]. CoreNLP

provides a rating for a given sentence, using the following

classes: very negative, negative, neutral, positive and very

positive. Based on the rating that is returned by CoreNLP, a

bonus is added to each n-gram. The bonus added for an n-

gram that has a very positive or a very negative rating is

higher that the bonus added for an n-gram rated as positive

or negative.

After early testing, we found that most of the sentences that

we were creating had small grammar problems. The

sentences were readable, but the words inside the sentence

were not quite in the correct order. For example we would

get ‘nice the staff was’ instead of ‘the staff was nice’. The

first thing we did was to find the readability of every

permutation possible for the initial n-gram and choose the

one with the best readability. The second solution was to

rearrange the words inside the sentence until the words are

in the write order. To change the order of the words inside a

sentence, we only need the part of speech for each word,

which we could find by using CoreNLP. Some of the rules

that we were using to rearrange the words were: adjective

before noun and adverb before verb.

We realized that we could use the fact that we already have

the part of speech of each word to improve the generation

of new sentences/n-grams. There is no way that we could

generate a sentence that would express a strong sentiment

without it having at least a noun and an adjective. We

thought that we could speed up the generating phase of the

algorithm by adding a bonus if an n-gram had a noun or an

adjective. We also figured it would be a good idea to

penalize a sentence if it contains an interjection, a

determiner, a preposition or a number.

Topic detection

After generating every possible sentence and choosing the

best ones using the algorithm described above, we have to

choose the sentences that are most relevant for each hotel.

The best way to determine if a sentence is relevant for a

given domain is to find the topic of a sentence and match it

with some predefined topics relevant for that domain. In

this case, the selected topics were: kitchen, room, staff,

noise, location and price.

The tool we used is Word2Vec
2
, which is an efficient

implementation of the continuous bag-of-words and skip-

gram architectures for computing vector representations of

words. This tool provides an algorithm that, for a given

word, creates a list of words having the highest cosine

distance related to it. Based on that algorithm, we were able

to obtain the cosine distance of two given words.

We created lists of words for each predefined topic. To

obtain the topic of an n-gram, we calculate its cosine

distance towards each topic. The topic with the highest

cosine distance towards the n-gram is the matching one.

However, if that distance is not above a minimum

threshold, the n-gram is considered to be out of topic and

can be dropped from the final output. We established the

value for the threshold heuristically, by evaluating the

2
 https://code.google.com/p/word2vec/

72

performance of the algorithm for several different values,

the same way we did with the other thresholds mentioned

throughout this paper.

RESULTS
For testing purposes, various datasets for reviews were

used. These were collected from the TripAdvisor website

and there was a focus on hotels with at least several

hundred different reviews. The average number of requests

sent to the Microsoft N-gram Web Service is 195 per

review. We make an average of 55000 requests per hotel.

Obviously, the server requests are one of the most time

consuming part of the application. Hence, we limited the

number of bigrams at 5000. The number of n-grams with a

size greater than 2 is limited at 1500. This limit was never

reached, since the number of (n+1)-grams is usually

considerably lower that the number of n-grams. This

decrease is caused by the pruning of the n-grams which

takes place during the BFS traversing.

As stated before, each n-gram is given a score based on

readability, representativeness and POS bonus. As

expected, during the course of each run, the mean

readability value decreases and the mean representativeness

value rises as the n-gram size increases.

The readability and representativeness values are constant

throughout every output and are not affected by the number

of reviews, as seen in Figure 1 and Figure 2. The spike is

caused by a hotel that has poorly written reviews. As a

consequence, the generated n-grams have lower

representativeness score. This forces the algorithm to finish

in an early stage.

Figure 1: Average readability of the summaries from multiple

hotels

Figure 2: Average representativeness of the summaries from

multiple hotels

In what follows, there are some output examples from two

different hotels. The application generates for each hotel, on

average, 20 summaries. The output is formatted as follows:

[<n-gram>, <readability>, <representativeness>, <POS

bonus>, <sentiment polarity>] <topic>

Output for Hotel Christina:

[romanian red glass wine and welcome cheese, 1.44092e-

09, 1.0253, 0.11 NEUTRAL] food

[bucharest at the hotel i had, 9.28771e-08, 1.09938, -0.092

NEUTRAL] none

[metro bus 5 minutes walk, 4.1583e-07, 0.830261, -0.101

NEUTRAL] location

[accommodating staff very, 8.7571e-10, 0.763112, -0.091

NEUTRAL] staff

[smooth cab she said, 6.06846e-07, 0.528349, 0.11

NEUTRAL] location

[food was excellent, 0.000520357, 0.52147, 0.11

POSITIVE] food

[helpful staff, 7.7023e-06, 0.440511, 0.11 NEUTRAL] staff

[street noisy noise, 4.23309e-05, 0.419229, 0.11

NEUTRAL] noise

Output for hotel Palm Opera:

[will definitely book again soon next, 7.45793e-09,

1.23048, 0.109 POSITIVE] none

[welcoming attentive staff and professional at rest,

9.25606e-09, 1.17844, 0.109 POSITIVE] staff

[location we were good, 2.90115e-07, 1.07646, 0.109

NEUTRAL] location

[available water supply area a lounge touch, 2.2848e-09,

1.07143, 0.109 NEUTRAL] room

[not disappointed me fortunately my wife, 8.25395e-08,

1.03246, 0.11 NEGATIVE] none

[free lounge drinks they offer, 5.15874e-08, 1.02223, 0.108

NEUTRAL] food

[floor bath was lovely had got, 8.14061e-10, 1.0202, 0.109

POSITIVE] room

[children just loved ikea play kitchen, 8.23065e-10,

1.21441, -0.09 POSITIVE] food

73

In order to assess the quality of the resulting n-grams (e.g.

the n-grams that are shown above) we created a survey

where summaries could be rated on scale from 1 to 5 (5

being the highest). The survey consisted of 187 summaries

from 7 hotels and was taken by six fellow students coming

from different backgrounds, namely not just computer

science. We have instructed them to focus on how useful a

summary is and not necessarily on whether or not it is

grammatically correct. After aggregating the data we have

obtained an average of 3.12. We have also noticed that this

score fluctuates in a rather narrow window of just 1 (i.e.

between 2.5 and 3.5) when we vary the number of reviews

that we process, as seen in Figure 3.

Figure 3: Average grade for hotels with different number of

reviews

CONCLUSION
To sum up, our approach offers a fast solution to the

problem of finding a set of n-grams that can summarize a

given set of reviews without losing the recurrent aspects

that appear throughout the reviews. Using the readability

and representativeness scores as well as other useful

metadata like the POS tags and the sentiment conveyed by

an n-gram, the proposed algorithm attempts to use as much

information as possible in order to select only the most

suitable n-grams. On top of all this, the topic selection

functionality makes sure to get rid of n-grams that do not

cover a relevant subject as far as the reviewed product is

concerned.

As far as other similar attempts go, our approach provides

simple, unsupervised and unstructured way to summarize

reviews while taking advantage of as much of the available

information as possible. Since most of the algorithm is non-

aspect based (except for the final part where we start

looking for reviews with high scores that also fit a certain

topic) it can be changed rather easily to work on different

web platforms and different products, even though our

implementation uses hotel reviews crawled from

www.tripadvisor.com. As for further work, more

optimization, including parallelization of some of the

operations, will allow for more data to be analyzed in a

decent amount of time and, therefore, will greatly increase

the quality of the yielded n-grams.

ACKNOWLEDGEMENTS

This work has been partly funded by the Sectorial

Operational Programme Human Resources Development

2007-2013 of the Romanian Ministry of European Funds

through the Financial Agreement POSDRU/159/1.5/S/

132397.

REFERENCES
1. Carenini, G. and Cheung, J. C. K. Extractive vs. nlg-

based abstractive summarization of evaluative text: the

effect of corpus controversiality. In Proc. of the Fifth

International Natural Language Generation

Conference 2008, (2008), 33-41.

2. Di Fabbrizio, G., Stent, A. and Gaizauskas, R. A

Hybrid Approach to Multi-document Summarization of

Opinions in Reviews. In Proc. The 25th International

Conference on Computational Linguistics 2014, 1

(2014), 23-29.

3. Flesch, R. A New Readability Yardstick. Journal of

Applied Psychology 32, 1 (1948), 221-233.

4. Ganesan, K., Zhai, C and Viegas, E. Micropinion

Generation: An Unsupervised Approach to Generating

Ultra-Concise Summaries of Opinions. In Proc. of the

21st international conference on World Wide Web 1, 1

(2012), 869-878.

5. Hu, M. and Liu, B. Mining and summarizing customer

reviews. In Proc. of the tenth ACM SIGKDD

international conference on Knowledge discovery and

data mining, (2004), 168-177.

6. Kim, H. D., Ganesan, K., Sondhi, P. and Zhai, C.

Comprehensive Review of Opinion Summarization.

Technical Report University of Illinois at Urbana-

Champaign (2011).

7. Kupiec, J., Pedersen, J. and Chen, F. A trainable

document summarizer. In Proc. of the 18th annual

international ACM SIGIR conference on Research and

development in information retrieval 1995, (1995), 68-

73.

8. Lin, C.-Y. and Hovy, E. A trainable document

summarizer. In Proc. of the 18th conference on

Computational linguistics 2000, (2000), 495-501.

9. Liu, J., Cao, Y., Lin, C., Huang, Y. and Zhou, M. Low-

Quality Product Review Detection in Opinion

Summarization. In Proc. of the Joint Conference on

Empirical Methods in Natural Language Processing

and Computational Natural Language Learning 2007,

(2007), 334-342.

10. Lu, Y., Zhai, C. and Sundaresan, N. Rated aspect

summarization of short comments. In Proc. of the 18th

74

International World Wide Web Conference 2009,

(2009), 131-140.

11. Manning, Christopher D., Surdeanu, Mihai, Bauer,

John, Finkel, Jenny, Bethard, Steven J., and McClosky,

David. The Stanford CoreNLP Natural Language

Processing Toolkit. In Proc. of 52nd Annual Meeting of

the Association for Computational Linguistics: System

Demonstrations 2014, (2014)

12. Paice, C. Another stemmer. ACM SIGIR 24, 3 (1990),

56-61.

13. Pang, B. and Lee, L. Opinion Mining and Sentiment

Analysis. Foundations and Trends® in Information

Retrieval 2, 1–2 (2008), 1-135.

14. Pang, B. and Lee, L. Seeing stars: Exploiting class

relationships for sentiment categorization with respect

to rating scales. In Proc. of the First Workshop on

Graph Based Methods for Natural Language

Processing 2006, (2006), 45-52.

15. Pang, B., Lee, L. and Vaithyanathan, S. Thumbs up?

Sentiment classification using machine learning

techniques. In Proc. of the ACL-02 conference on

Empirical methods in natural language processing 10,

1-2 (2002), 79-86

16. Velikovich, L, Blair-Goldensohn, S, Hannan, K. and

McDonald, R. The viability of web-derived polarity

lexicons. In Proc. of the Annual Conference of the

North American Chapter of the Association for

Computational Linguistics 2010, (2010), 777-785.

17. Wang, H., Lu, Y. and Zhai, C. Latent aspect rating

analysis on review text data: a rating regression

approach. In Proc. of Proceedings of the 16th ACM

SIGKDD international conference on Knowledge

discovery and data mining 2010, (2010), 783-792.

