
RoCHI 2016 proceedings

26

Enactment of User Interface Development Methods
in Software Life Cycles

Iyad Khaddam, Hanaa Barakat, Jean Vanderdonckt
Louvain School of Management, Université catholique de Louvain

Place des Doyens, 1 – B-1348 Louvain-le-Neuve, Belgium
{iyad.khaddam, hanaa.barakat, jean.vanderdonckt}@uclouvain.be

ABSTRACT
This paper presents UIDLC Manager, a software that
provides user interface designers and developers with
methodological guidance throughout user interface
development life cycle. A methodologist firstly creates a
dashboard model of the life cycle according to a
corresponding meta-model in order to define a
development path, decomposed into development tasks
which structure the path into actions, and dependencies
which serve as methodological milestones. A user
interface designer or developer then enacts a previously
defined development path by instantiating and
interpreting a dashboard model while being provided with
methodological guidance to conduct this development
path. This guidance consists of steps, sub-steps, cheat
sheets, and methodological actions. This approach is
validated by applying it on nine classical user interface
development life cycles, on two approaches for forward
model-driven engineering of user interfaces based on a
user interface description language, and on a linguistic
approach for user interface software evolution.

Author Keywords
Dashboard model, dependency, development path,
evolution, method enactment, method engineering,
methodological guidance, model driven engineering, user
interface description language, user interface
development life cycle.

ACM Classification Keywords
• Software and its engineering ~ Software
implementation planning • Software and its engineering
~ Software development methods • Software and its
engineering ~ Software configuration management and
version control systems • Human-centred computing ~
HCI theory, concepts and models.

INTRODUCTION
When User Interface (UI) stakeholders such as designers,
modellers, analysts, graphical designers, and developers
are involved in a UI development life cycle (UIDLC),
they often ask what they need to do when and how,
therefore complaining about the lack of methodological
guidance [6, 9, 25]. This is particular applicable to
Model-Driven Engineering (MDE), where the sequence
of development steps should be rigorously followed in
order to guarantee the quality of the results, as opposed to
flexible [14], open UIDLCs where the process can be
initiated from different starting points [19].

MDE of UIs [19] explicitly relies on a structured
transformation process, namely involving Model-to-

Model transformation (M2M), Model-to-Code compila-
tion (M2C) or Model-to-Code interpretation (M2I).
UIDLC stakeholders do not easily perceive when some
degree of freedom exists to allow alternative choices in
the process [7] and when some degree of determinism
constraints these choices. MDE is often considered as a
straightforward process, where little or no degree of
freedom is offered, even when multiple development
paths are possible [11].

Facing the multiplicity of models, such as task, domain,
abstract UI, concrete UI, context of use, in a particular
development path, stakeholders in general, the designer in
particular, are rarely provided with some guidance on
when and how to produce such models [20]. The
proliferation of models may even be considered as a
hindrance to conduct the UIDLC in a realistic way.

When a particular step in the UIDLC should be executed,
designers do not easily identify which software should be
used for this purpose, especially when different pieces of
software could support the same step, partially or totally
[7]. When a particular software is selected, they often feel
lost in identifying the right actions to execute in order to
achieve the step required in the UIDLC [10].

The multiplicity of development paths conducted among
or within various organizations, in particular software
development companies [3], increases the feeling that
executing an unsupported UIDLC requires extensive
training to become effective and efficient. Typical
development paths occur along the following lines [11]:
forward engineering, reverse engineering, lateral
engineering, cross-cutting, round-trip engineering [1],
beautification [28], etc.

Although several standardization efforts (e.g., the
international standard for describing the method of
selecting, implementing and monitoring the software
development life cycle is ISO 1220707) and official
organizations promote the usage of process models in
order to increase the productivity of the development life
cycle and the quality of the resulting software, they do
not often rely on an explicit definition and usage of a
method in these process models.

The above observations suggest that MDE seems more
driven by the software intended to support it, less by the
models involved, and even less by a method that is
explicitly defined to help UI stakeholders. Therefore, a
UIDLC could rest on three methodological pillars:
models that capture the various UI abstractions required

Adrian Iftene, Jean Vanderdonckt (Eds.)

27

to produce a UI, a method that defines a methodological
approach in order to proceed and ensure an appropriate
UIDLC, and a software support that explicitly supports
applying the method.

For this purpose, the remainder of this paper is structured
as follows: Section 2 presents a characterization of these
three pillars in order to report on some initial pioneering
work conducted in the area of UI method engineering
with the particular emphasis of methodological support.
Section 3 introduces the dashboard model as a mean to
define a method that may consist of one or many
development paths by defining its semantics and syntax.
Section 4 describes how a method could be enacted, i.e.
how a development path can now be applied for a
particular UI project by interpreting the dashboard model.
Section 5 provides a qualitative analysis of the potential
benefits of using this dashboard model for method
engineering in the UIDLC. Section 6 discusses some
avenues of this work and presents some conclusion.

RELATED WORK
In general in computer science, a Software Development
Life Cycle (SDLC) [29] is the structure imposed on the
software development by a development method.
Synonyms include software development and software
process. Similarly, in the field of UI, a UI development
life cycle (UIDLC) consists of the development path(s)
defined by a UI development method in order to develop
a UI (Figure 1). Representative examples of include: the
Rational Unified Process (RUP) or the Microsoft Solution
Framework (MSF). Each development path is recursively
decomposed into a variety of development steps that take
place during the development path. Each step uses one or
several models (e.g., task, domain, and context) and may
be supported by some software. All pieces of software,
taken together support the development method.

For instance, the development path "Forward
engineering“ may be decomposed into a series of
development steps: building a task model, building a
domain model, building a context model, linking them,
producing a UI model from these models, then generate
code according to M2C. Method engineering [16, 21] is
the field of defining such development methods so that a
method is submitted to method configuration [17] when
executed.

The meta-method Method for Method Configuration
(MMC) [16] and the Computer-Aided Method
Engineering (CAME) tool MC Sandbox have been
developed to support method configuration. One integral
part of the MMC is the method component construct as a
way to achieve effective and efficient decomposition of a
method into paths and paths into steps and sub-steps and
explain the rationale that exist behind this decomposition.
Method engineering has already been applied to various
domains of computer science such as, but not limited to:
information systems [17], collaborative applications [26],
and complex systems [8, 13]. Typically, method
engineering is based on a meta-model [18, 30] and could
give rise to various adaptations, such as situational

method engineering [16] and method engineering coupled
to activity theory [21].

In Human-Computer Interaction (HCI), we are not aware
of any significant research and development on applying
method engineering to the problem of engineering
interactive systems, part from M2Flex [7], Sonata [14],
and Symphony [13]. Several HCI development methods
do exist and are well defined, such as a task-based
development method [34], method-user-centred design
[20], activity theory [21], but they are not expressed
according to method engineering techniques, so they do
not benefit from its potential advantages.

Development path
User interface
development

life cycle
Development method

Development step

Model

Software

involves
1..n

is involved
in
1..n

defines
1..n 1..n

is defined
in

uses

is used in

1..n

1..n

supports

is supported by

1..n

0..n

Figure 1. Structure of a UI development life cycle.

Probably the first one to address method engineering in
HCI was the MIDAS (Managing Interface Design via
Agendas/Scenarios) [25] environment. In this software, a
methodologist was able to define a method by its
different paths that could be followed and the steps
required for achieving each path. MIDAS was able to
show at any time when a method is executed, what are the
different paths possible (e.g., design alternatives, criteria)
by looking at design intentions stored in a library. MIDAS

is tailored to the HUMANOÏD environment [25] and does
not rely on a meta-model for defining a method and to
execute. But it was a real methodological help.

User Interface Description Languages (UIDLs) [12] do
not possess any methodological guidance based on
method engineering because they mostly concentrate on
the definition and the usage of their corresponding
syntaxes and less on the definition of the method [3, 7].

TEALLACH [11] offers some method flexibility by
enabling the designer to start from a task model, a domain
model or a UI model and to then derive or link other
elements related to each other. This flexibility is not
method-oriented though. A more recent effort used
Service Oriented Architecture (SOA) to define and enact
a method [32], but there was no real software for
achieving the method engineering. In conclusion, very
few works exist on applying method engineering to HCI,
but several existing work could benefit from it.

A DASHBOARD META-MODEL FOR A METHOD
To adhere to method engineering principles, a meta-
model [18] is defined that addresses its methodological
concepts as outlined in Figure 2. The dashboard is based
on a meta-model that allows the description of
development steps via their decomposition in Tasks,
Resources required in Tasks and Dependencies between
Tasks. This Dashboard meta-model has been expressed
using Ecore/Eclipse Modelling Framework (EMF) and
implemented in the MOSKitt environment [33]. The main

RoCHI 2016 proceedings

28

entities, i.e. Task, Resource, Dependency and Action, are
structured as follows.

Figure 2. The meta-model for a methodological dashboard.

A NamedElement consists of a common ancestor for all
metamodel elements. With the experience of the
definition of several meta-models, we have found very
useful to have a common ancestor element that all other
elements in the meta-model inherit from. It simplifies
several tasks in the following steps in the MDE approach,
such as allowing to identify whether any given element
belongs to this meta-model by checking its ancestry, and
providing several properties we need in all elements, such
as the 'name' property.

A DashboardModel represents a complete development
path and at the same time is the root element of the meta-
model. It holds the visual configuration to be used in the
interpreter/enactment view.

A Task represents one development step of the
development path. A Task is always bounded by
Dependencies, except for the Tasks involving the first
and last steps of the process. A Task can produce or
consume zero or many Resources. As an
ActionContainer, a Task can perform Actions on selected
Resources.

A Dependency represents a milestone in the development
path, which means that a series of development steps
should be achieved before proceeding to the next
development step. The Milestone is introduced as a
straightforward mechanism for synchronizing different
types of development steps, whatever their purpose is.
Each Dependency is a step in the development path
(Process) that forces the preceding Tasks to synchronize.
A Dependency can require zero or more Resources from
previous Tasks to be completed. As an ActionContainer, a

Dependency can perform one or more Actions on selected
Resources.

Figure 3. The meta-model of UIDLC Manager.

A Resource consists of a (im-)material entity, produced
or consumed by a Task or a Dependency of this
development path (Process): model definition files to
meta-model..

An Action represents an action to be performed by the
user when enacting the process. An Action can range
from launching a transformation to opening a cheatsheet
to visiting a web page. An ActionContainer represents
any element in the meta-model that can hold and perform
Actions. A CustomAction represents a custom Action
allows the methodologist to specify uncommon Actions
with an external specification of the Action. A
RunWizardAction expresses a specialized Action that
runs the wizard specified by the hint parameter of the
Action.

The UIDLC Manager is the software that implements the
methodological dashboard whose meta-model is depicted
in Figure 2. Figure 3 graphically depicts the meta-model
of a project.

METHOD DEFINITION AND ENACTMENT
In order to define a UIDLC based on one or many UI
development paths (e.g., simplified, enhanced forward
engineering, forward engineering with loops) as defined
in Figure 1, methodologist has to create one Dashboard
model based on the meta-model outlined in Figure 2. A
Dashboard model therefore represents the definition of a
particular development path, but may also contain several

Adrian Iftene, Jean Vanderdonckt (Eds.)

29

development paths in one model thanks to the concept of
milestone. A milestone consists of synchronization points
between tasks (e.g., development steps) involved in a
development path and is attached to a synchronization
condition. Such a condition governs the contribution of
each task to the milestone (AND, OR, XOR, NOT, n
iterations). Once the synchronization condition is
satisfied, the milestone is considered to be achieved and
the development path can proceed to the next
development step.

Definition
Figure 4 depicts in Moskitt how a Dashboard model is
created for the development path “Forward Engineering”
that consists of the following development steps (that are
represented as tasks to achieve to complete the
development step) [32]:

Figure 4. The Dashboard model for the “Forward
engineering” development path.

1. Create Task Model. This task is aimed at creating a
task model that is compliant with the task meta-model,
whatever the task meta-model would be. This task has
three resources:

1. One and only one task model that will result from
this task.

2. An optional document containing a documentation
of the task modelled.

3. An optional set of task formal specifications.

A “task model definition guide” is a cheatsheet provided
for giving methodological guidance on how to define a
task model. Figure 4 details some potential development
steps and sub-steps for this purpose in a cheatsheet. A
cheatsheet is hereby referred to as a methodological panel
that is provided from the methodologist to the method
applier with any rules, heuristics, principles, algorithms,
or guidelines that are helpful for achieving the associated
task (here, creating a task model that is correct, complete,
and consistent). An action “Generate Task
Documentation” is added in order to specify a task model
would ultimately result from it. The tool allows passing
parameters to customize the generation.

2. Validate Task Model. Once the task model has been
created, its validity with respect to its corresponding task
meta-model is checked by means of Eclipse model
checking techniques. Therefore, only one action is
triggered: “Validate Task Model”. Note that this task

serves as a milestone: the method applier cannot proceed
with the next tasks if the synchronization condition is not
satisfied.

3. Create Domain Model. This task is aimed at creating a
domain model that is compliant with the task meta-
model, whatever the task meta-model would be. It
contains three resources, one cheatsheet and one action
that are similar to those introduced for the task model.

4. Validate Domain Model. Once the domain model has
been created, its validity with respect to its corresponding
domain meta-model is checked by Eclipse model
checking.

5. Link Task and Domain models. This task is aimed at
establishing a link from the nodes of a task model to the
appropriate nodes of a domain model thanks to the set of
mappings accepted between these two models (e.g., a task
observes a domain class, a task supports input/output of a
set of attributes taken from different classes, a task
triggers a method belonging to a class). Note that there is
a dependency between this task and the two previous
ones in order to ensure that the linking will be applied on
two syntactically valid task and domain models.

6. Milestone: start the Abstract UI generation. When the
task model has been linked to a domain model, we have
all the elements in order to initiate a generation of an
Abstract UI [15]. Again, this serves as a milestone.

7. Generate AUI. This task is aimed at (semi-)
automatically generating an Abstract UI (AUI). For this
purpose, an input resource “Task and domain models
linked” (coming from the previous milestone) will result
into an output resource “AUI model” by means of the
action “Transform into AUI”. This action is related to a
set of transformation rules that are automatically applied
to the input resource in order to obtain the output
resource. Only one set of transformations is defined, but
several alternative sets of transformation rules could be
considered, thus leaving the control to the method applier
by selecting at run-time which set to apply. Furthermore,
this action is related to a transformation step (here, a
M2M), but it could also be attached to an external
algorithm that is programmed in a software. When all
these alternatives coexist, a cheatsheet could be added to
help the method applier in selecting an appropriate
technique for ensuring this action (e.g., a transformation
or an external algorithm) and parameters that are
associated to this action.

8. Milestone “AUI to CUI”. This milestone serves as a
synchronization point for initiating the next development
step through the task required for this purpose [1].

9. Generate CUI. This task is similar to the “Generate
AUI” except that a CUI is produced instead of an AUI,
but with parameters that govern the CUI generation.

10. Milestone “CUI to FUI”. This milestone serves for
initiating the last step and corresponds to a transformation
[1].

RoCHI 2016 proceedings

30

11. Generate FUI. This task is aimed at transforming the
CUI resulting from the previous task into code of the
Final UI (FUI) by means of M2C transformation. Again,
we may want to specify here that the transformation
could be achieved by code generation or by interpretation
of the CUI model produced. In the first case, a code
generator is executed while a FUI interpreter renders the
CUI into a FUI in the second case. Again, one default
interpreter could be specified or the method applier can
pick another one from a list of potential interpreters or
rendering engines.

Enactment
Once one or several development paths of a UI
development method have been defined in a dashboard
model, the method can be enacted [3,6] by instantiating
the dashboard model. This instantiation results into a run-
time representation of the Dashboard (Figure 7) that
depicts the progression of tasks already achieved, future
and pending tasks, all with their associated resources. For
instance, if a task requires to output resources to be
created, this task will only be considered finished when
the corresponding actions will have been able to produce
the required resources. The method enactment is then
under the responsibility of the person who is in charge of
applying the method defined, e.g. an analyst, a designer.
In the next section, we review potential benefits brought
by the MDA approach under the light of this dashboard
approach.

THE PRISM UIDLC
The prism UIDLC is different from common. It is based
on a linguistic perspective to the development of the GUI.
It mainly addresses the integration between HCI and
Software Engineering in the development of a software
product with usable UIs, with focus on the evolution of
the software.

The linguistic perspective to the GUI development
considers the interaction between the human and the
machine as a communication text that is written
differently than the human language, based on Nielsen’s
virtual protocol [27]. This GUI text is analysed
linguistically to identify what is exchanged on each
linguistic level; what are the semantics, syntactical rules,
lexemes and alphabets used. It re-arranges GUI concepts
on these linguistic levels and defines communication
interfaces between them, in order to realize (refine with
more details) concepts from upper levels on lower levels.
More details on this linguistic perspective can be found in
[22,23].

The linguistic perspective defines 6 levels for the
development of the GUI. These levels are presented in the
table 1, with description of concepts on each level, in
addition to defining the communication interface between
levels. The first level is “goal and task”, which should be
separated into two levels: “goal” and “task”. But because
task analysis cannot make this separation, we merge both
levels into one. This merge is less confusing to the HCI
community who is familiar with task analysis.

An example on the linguistic UI development
UI development from the linguistic perspective is
iteratively refined. At first, we identify task input
elements: input elements that modify a task state. A task
can pass through several states like: created, offered,
started, completed, suspended, destroyed, and erred.
More on task modelling from this perspective (a linguistic
task model) is in [23]. State transitions define required
input elements on the UI, for the task.

W
or

ld
 Artifacts

K
ey

G

U
I

C
on

ce
pt

s

Communication interface

Level
Realize from
upper level

Define for lower
level

C
on

ce
pt

ua
l

Goal
&
Task Goals,

Tasks

- -Define goals and
real objects

U
I

E
le

m
en

ts

goals -Define tasks and
relations amongst
-Define task input
elements.

Semantic

Detailed
functions:
System,
Input,
Output

-Realize tasks
by defining
needed detailed
functions.

-define input and
output elements

P
er

ce
pt

ua
l

Syntax-
time

Time
containers:
groups of
Navigation
elements

N
av

ig
at

io
n

-Realize
distribution of
UI elements on
time by
defining time
containers.

-Define time
containers
-Define navigation
elements.

Syntax-
space

Space
containers:
Placement
rules.

P
la

ce
m

en
t

-Realize
placement of
UI elements in
time containers
on the screen.

-Define space
containers
- Place UI elements
on space containers

Widgets
GUI
widgets

G
U

I
W

id
ge

ts

-concretize UI
elements by
mapping with
appropriate
widgets.

-Select appropriate
concrete widgets for
UI elements

P
hy

si
ca

l

Widgets
Propertie
s

Properties
of GUI
widgets

-Realize
widgets
attributes.

-set attributes of
widgets
-define nothing for
lower level

Table 1. The linguistic perspective to UI development:
levels, concepts, activities and the communication interface.

Take the example of a GUI for registration to a
conference. The end user needs to fill registration
information and then pay the fees. Registration
information include the user’s personal information,
registration type (regular, student or discounted fees), and
additional information if exists, and billing information.
The goal of the user from using the GUI is: Register for a
conference. This goal is further refined at the task level
by performing two tasks: “Fill registration information”
and “Pay conference fees”. The task level should identify
task input elements, which are in this case, input elements
each completes the related task. Figure 5 presents the
“Finalize Order” task input element that completes the
first task. On the semantic level (Figure 5 refines only the
task “Fill registration information”), we refine tasks by
defining necessary detailed functions to carry out these

Adrian Iftene, Jean Vanderdonckt (Eds.)

31

tasks. Detailed functions define needed input and output
elements for the performance of the task. They also
define the interface to communicate with software
modules.

On the syntax-time, we define a correct distribution on
time (that respects environment constraints): when each
group of UI elements will appear on the screen. We may
have two styles: (1) Display UI elements at the same
time. (2) Define navigation as in Figure 6.

 Figure 5. Outcome on the semantic level. “Finalize Order”
is a task input element.

The syntax-space (Figure 7) refines only the syntax-time
style 1 for concision: place elements on screen= vertical
placement, horizontal, or any other form of placement.
Figure 7 depicts only the output of this level for the first
time container: Personal Info. according to syntax-time
style 2 in Figure 6.

Figure 6. Distribute on time containers and define
navigation elements for parts of the GUI.

On the widget level (Figure 8), map UI elements to
concrete GUI widgets. Finally, on widget Properties level
(Figure 9): Setting properties of widgets to get the final
GUI. On the final GUI, we note that every element is
related to the level of abstraction that defines it. The
“next step” button in Figure9 is defined at the syntax-time

level, while other input elements (text boxes) are defined
at the semantic level. The reader can foresee that the
button “Finalize Order” that is defined at the task level
will appear on a screen at a later step (Figure 6). Please
notice that upper levels may impose constraints on the
choices on lower levels (like selection of widgets).

Figure 7. Placement of elements on the screen.

Prism-DLC
Prism is the development life cycle that aligns the UI
development (from the linguistic perspective) and the
software development. The main difference from other
DLCs activities is the use of a classification step to
analyse and classify UI requirements in order to
determine the level(s) of enactment.

The linguistic perspective allows perceiving the UI since
the analysis phase. This allows defining the term “UI
requirements”: any modification(s) on the UI is based on
a UI requirement. UI requirements may issue from
usability (like adapt to the user’s culture), software design
decisions (software modules and interaction capabilities),
and software detailed design modules (like allow the user
to interact with a function in the system). UI requirements
impact on the UI might be decomposed on several levels,
which is grouped in a UI batch.

Figure 8. Mapping UI elements with concrete GUI widgets.

G
re

y
sh

ap
es

 a
re

 a
bs

tr
ac

t
ou

tp
ut

 e
le

m
en

ts
,

w
hi

te
sh

ap
es

ar
e

ab
st

ra
ct

in
pu

te
le

m
en

ts

RoCHI 2016 proceedings

32

Figure 9. Setting widgets properties and the final GUI.

A UI patch then is the impact of a UI requirement on
different levels. Different development paths can be
enacted in Prism. It can be used in a real software
development to align UI and software developments, or
to create a UI prototype to elicit usability requirements. In
this paper, we explain the first development path as it is
the more interesting one. Other development paths can be
figured out by the reader.

Prism does not impose any constraint on the software
DLC to integrate the UI development in. Anyway, in
order to explain how integration and development is
performed in Prism, we show integration with general
development phases: analysis, design, detailed design,
coding and testing. The Prism DLC is graphically
depicted in Figure 10.

The software leads the UI development: This approach
may be preferred by software engineers. The system
development starts with the analysis activity of the
system. When the analysis is completed, requirements
pass through the classification phase to create the UI
patch. This UI patch allows creating the task model from
the software analysis.

The UI patch created after the software analysis may
impacts other linguistic levels.
Note that software requirements
are expressed at different levels of
details. A user may express very
detailed requirements like the
preference for a specific theme of
colours. The classification activity
identifies UI-related aspects in
every requirement and maps them
to the appropriate linguistic level.

While developing the task level,
usability shortcoming in analysis
might be identified. The feedback
loop from the task level to the
analysis phase, not only ensures
that usability requirements are
gathered, it also assess
consistency between the task
model and the system analysis.

After the analysis is completed,
the UI is fixed. This version of the
UI might be communicated with
the user as a premature version of what is expressing in

requirements. Later modifications on the UI should not
affect this version, which we call: the analysis-UI version.
Modifications to this version should be
communicated/approved with the user first.

The design phase starts with immediate feedback from
the UI. As the task level is fixed, the design should
implement each task appropriately: mapping to the
domain model (which is part of the software design
phase) and identify required UI elements. Design
decisions (as UI requirements) are also linguistically
classified to identify their impact on the UI. A UI patch is
also created to express this impact. Note that the feedback
loop from the semantic level to the design level is present
to ensure that the UI and the design are consistent.

If the UI patch at the design phase contains implications
on the task level, this means a shortcoming in the
requirements. Tasks were not identified properly. If the
software life cycle can handle such incompleteness, an
alert can be triggered.

At the detailed design phase, the same repeat as with the
design phase. After completing the detailed design, the
semantic level is fixed. The UI for carrying out tasks is
completely defined. No further modifications can be
performed on the semantic level without repeating the
design and detailed design phases. This version of the UI
is called the design-UI.

In parallel with the implementation phase, the UI can be
refined on the navigation, placement, widgets selection
and stylistics on the last level. This gives the UI design
the freedom to manipulate these aspects with the
guarantee that any implemented design is compatible
with the semantic and the task levels. Both activities are
synchronized to start the testing activity.

Figure 10. The Prism DLC.

Adrian Iftene, Jean Vanderdonckt (Eds.)

33

Testing can be decomposed into two activities (not
depicted in Figure 10). Validation is to assess the
implementation conforms to the specification (the
design), and Verification to verify that the product
satisfies user’s requirements. Note that validation testing
can be done on the design-UI version and verification can
be done on the analysis-UI version. UI Validation testing
is to compare the design-UI version with the final UI
version on the navigation design, placement, widgets and
stylistics. Functionality is guaranteed. Verification might
be possibly enacted before fixing the design-UI.

EXAMPLES ON OTHER UIDLC
The purpose of this section is to demonstrate that the
dashboard model is independent of any method, any
meta-model and any User Interface Description Language
(UIDL). It could be used for defining any UIDLC, any
method that supports UIDLC (such as [4, 5, 24] to name a
few), any meta-model of a model involved in such a
UIDLC, and any UIDL (see [6, 19] for some
representative examples). The only requirement is that
each model should be explicitly linked to its
corresponding meta-model in order to check its validity
and conformity with respect to the meta-model as it is
typically the case in MDE. Transformations gathered in
transformation steps [1] should satisfy the same
requirement, unless they are executed outside the Eclipse
platform. The advantage of this approach is that all
models and transformations between are defined by their
corresponding meta-models in Eclipse, but forces to
define them beforehand.

We evaluated UIDLC Manager on several UIDLCs.
Table 1 contains the list of evaluated DLCs with a
comparative analysis from the method engineering point
of view. The table shows the number of development
steps in each
method, the
number of check
points and the
number of
connections
among
development
steps. These
DLCs differ in
the coverage of
development
phases an in the
distribution of
activities on each
development phase. In order to illustrate this difference,
we project activities in each DLC on the generic
development phases, defined as: Requirements Analysis
(R), Design (D), Detailed Design (DD), Coding (C),
Testing (T) and Maintenance (M). The result is shown in
the right-most column in Table 1. Due to space
constraints in this paper, we only illustrate the modeling
of V-Cycle DLC using our tool in Fig 11. We also
illustrate the projection of V-Cycle on the generic
development phases in Figure 12. For the other UIDLC
that have been realised with UIDLC Manager, the reader

can visit the web-page: https://sites.google.com/site/user
interfacedevelopmentcycles/uidlcmanager. Screenshots
are given of respective UIDLCs that are typically found
in HCI.

SDLC

D
ev

.
st

ep
s

C
he

ck

po
in

ts

C
on

ne
ct

i
on

s

Distribution measures

Collin’s
Circle [4]

7 7 17 R D DD C T M

2 5 3 1 1 0

Curtis &
Hefley’s [5]

24 24 61 A D DD C T M

6 3 3 3 6 3

Nabla [24] 25 27 68 A D DD C T M

6 5 2 2 8 1

O Cycle
[31]

6 6 14 A D DD C T M

1 2 0 1 1 1

Spiral
Model [2]

22 22 43 A D DD C T M

9 6? 6? 4 4 ?

Star Model
[15]

6 6 15 A D DD C T M

2 1 0 1 1 0

V Cycle [8] 8 8 19 A D DD C T M

1 2 1 1 3 1

Waterfall
[29]

8 8 22 A D DD C T M

1 1 1 1 1 1

Prism-
SDLC

Max=
26

A D DD C T M

10 8 9 5 1 1

Table 2. A comparison between different DLCs.

Figure 11. The V-Cycle using UIDLC Manager.

CONCLUSION
In this paper, we presented the dashboard model as a way
to support the method engineering of a user interface
development life cycle. For this purpose, we first defined
what such a development life cycle is and how to
structure it according to the principles of method
engineering [3, 16, 17].

RoCHI 2016 proceedings

34

Figure. 12 Distribution of the V-Cycle activities on generic
development phases.

This development life cycle is then expressed in terms of
the following concepts: one or several development steps
are defined in one single dashboard in order to create one
development method, a development (sub-)step becomes
a task to be achieved in the dashboard, the models
involved in a development step become resources to be
created and consumed by a task in the dashboard, the
software required to manipulate these models become
associated to resources via their associated file extension
and/or from a list of potential software (e.g., model
editor, model validator, model checker, transformation
engine). The next step of this research will consider the
forthcoming ISO 24744 standard on method engineering
[2] that defines a set of concepts that support the
definition and the enactment of a method based on well-
defined concepts along with a graphical notation that
combines structural aspects (e.g., how a task is
decomposed into sub-tasks) and temporal aspects (e.g.,
how tasks are related to each other through dependencies
and constraints).

REFERENCES
1. Aquino, N., Vanderdonckt, J., and Pastor, O.

Transformation Templates: Adding Flexibility to
Model-Driven Engineering of User Interfaces. In
Proc. of 25th ACM Symposium on Applied Computing
SAC'2010 (Sierre, March 22-26, 2010). ACM Press,
New York, (2010), 1195–1202.

2. Boehm, B. A Spiral Model of Software Development
and Enhancement. IEEE Computer 21, 5, (1988), 61-
72.

3. Brinkkemper, S. Method engineering: engineering of
information systems development methods and tools.
Information and Software Technology 38, 4, (1996),
275–280.

4. Collins, D. Designing object-oriented user interfaces.
The Benjamin/Cummings Publishing Company, Inc,
Redwood City, 1995.

5. Curtis, B. and Hefley, B. A WIMP no more, the
maturing of user interface engineering. Interactions 1,
1, (1994), 22–34.

6. Céret, E., Dupuis-Chessa, S., Calvary, G., Front, A.
and Rieu, D. A taxonomy of design methods process
models. Information and Software Technology 55, 5,
(2013), 795–821.

7. Céret, E., Dupuy-Chessa, S. and Calvary, G.
M2FLEX: A process metamodel for flexibility at
runtime. In Proc. of IEEE Conf. on Research
Challenges in Information Systems RCIS’2013. IEEE
Press, Piscataway, (2013), 1–12.

8. Forsberg, K. and Mooz, H. System engineering
overview. In Software Requirements Engineering,
R.H. Thayer and M.Dorfman (eds.), Second edition.
IEEE Press, Piscataway, (1997), 44–72.

9. Gonzalez-Perez, C. and Henderson-Sellers, B. A work
product pool approach to methodology specification
and enactment. Journal of Systems and Software 81, 8,
(2008), 1288–1305.

10.Göransson, B., Gulliksen, J., and Boivie, I. The
usability design process - integrating user-centered
systems design in the software development process.
Software Process: Improvement and Practice 8, 2,
(2003), 111–131.

11.Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J.,
Kennedy, J.B., Gray, P.D., Cooper, R., Goble, C.A.,
and Pinheiro da Silva, P. Teallach: a model-based user
interface development environment for object
databases. Interacting with Computers 14, 1, (2001),
31–68.

12.Guerrero García, J., González Calleros, J.M.,
Vanderdonckt, J., and Muñoz Arteaga, J. A theoretical
survey of user interface description languages:
preliminary results. In Proc. of LA-Web/CLIHC'2009
(Merida, November 9-11, 2009). IEEE Press,
Piscataway, (2009), 36–43.

13.Godet-Bar, G., Rieu, D., Dupuy-Chessa, S., and Juras,
D. Interactional objects: HCI concerns in the analysis
phase of the Symphony Method. In Proc. of
ICEIS’2007, 5, (2007), 37–44.

14.Godet-Bar, G., Dupuy-Chessa, S., and Rieu, D.
Sonata: Flexible connections between interaction and
business spaces. Journal of Systems and Software 85,
5, (2012), 1105–1118.

15.Hartson, H.R. and Hix, D. Towards empirically
derived methodologies and tools for human-computer
interface development. International Journal of Man-
Machine Studies 31, 4, (1989), 477–494.

16.Henderson-Sellers, B. and Ralyté, J. Situational
method engineering: state-of-the-art review. Journal
of Universal Computer Science 16, 3, (2010), 424–
478.

17.Hug, Ch., Front, A., Rieu, D., and Henderson-Sellers,
B. A method to build information systems engineering
process metamodels. Journal of Systems and Software
82, 10, (2009), 1730–1742.

18.Jeusfeld, M.A., Jarke, M., and Mylopoulos, J.
Metamodeling for Method Engineering. The MIT
Press, New York, 2009.

Adrian Iftene, Jean Vanderdonckt (Eds.)

35

19.Pérez-Medina, J.-L., Dupuy-Chessa, S., and Front, A.
A Survey of Model Driven Engineering Tools for
User Interface Design. In Proc. of Int. Workshop on
Task Models and Diagrams for User Interface Design
TAMODIA 2007. Lecture Notes in Computer Science,
vol. 4849. Springer, Berlin, (2007), 84–97.

20.Karlsson, F. and Ågerfalkb, P.J. Method-User-Centred
Method Configuration. In Proc. of Situational
Requirements Engineering Processes SREP'2005
(Paris, August 29-30, 2005). Ralyté, J., Ågerfalk, P.J.,
Kraiem, N. (Eds.), 2005.

21.Karlsson, F. and Wistrand, K. February. Combining
method engineering with activity theory: theoretical
grounding of the method component concept.
European Journal of Information Systems 15, 1,
(2006), 82–90.

22.Khaddam, I., Mezhoudi, N., and Vanderdonckt, J.
Towards a linguistic modeling of graphical user
interfaces: eliciting modeling requirements. In Proc.
of 3rd Int. Conf. on Control, Engineering &
Information Technology CEIT’2015 (Tlemcen, 25-27
May 2015). IEEE Press, Piscataway, (2015), 1–7.

23.Khaddam, I., Mezhoudi, N., and Vanderdonckt, J.
Towards Task-Based Linguistic Modeling for
designing GUIs. In Proc. of 27ème conference
francophone sur l'Interaction Homme-Machine
IHM’2015 (Toulouse, 27-30 October 2015). ACM
Press, NY, Article #17, 2015.

24.Kolski, C. A “call for answers” around the proposition
of an HCI-enriched model. Software Engineering
Notes 3, 23, (1998), 93–96.

25.Luo, P. A human-computer collaboration paradigm
for bridging design conceptualization and
implementation. In Proc. of DSV-IS'94 (Carrara, June
8-10, 1994). Focus on Computer Graphics Series.
Springer Vienna, (1994), 129–147.

26.Molina, A.I., Redondo, M.A. and Ortega, M. A
methodological approach for user interface
development of collaborative applications: A case
study. Science of Computer Programming 74, 9,
(2009), 754–776.

27.Nielsen, J.A. Virtual protocol model for computer-
human interaction. International Journal of Man-
Machine Studies 24, 3, (1986), 301–312.

28.Pederiva, I., Vanderdonckt, J., España, S., Panach, I.,
and Pastor, O. The beautification process in model-
driven engineering of user interfaces. In Proc. of 11th
IFIP TC 13 Int. Conf. on Human-Computer
Interaction INTERACT'2007 (Rio de Janeiro,
September 10-14, 2007). Lecture Notes in Computer
Science, 4662. Springer, Berlin, (2007), 409–422.

29.Pressman, R.S. Software engineering, a practitioner’s
approach. Fifth Edition. McGraw Hill, 2001.

30.Sauer, S. Applying meta-modeling for the definition
of model-driven development methods of advanced
user interfaces. In Proc. of Model-Driven
Development of Advanced User Interfaces
MDDAUI’2007. H. Hussmann, G. Meixner, D.
Zuehlke (Eds.). Studies in Computational Intelligence,
340, (2007), 67–86.

31.Scapin, D., Leulier, C., Vanderdonckt, J., Bastien,
Ch., Farenc, Ch., Palanque, Ph., and Bastide, R.
Towards automated testing of web usability
guidelines. In Proc. of 6th Conf. on human factors &
the web HFWeb’2000 (Austin, 19 June 2000). Ph.
Kortum & E. Kudzinger (Eds.). University of Texas,
Austin, 2000.

32.Sousa, K., Mendonça, H., and Vanderdonckt, J.
Towards method engineering of model-driven user
interface development. In Proc. of Int. Workshop on
Task Models and Diagrams for User Interface Design
TAMODIA 2007. Lecture Notes in Computer Science,
4849. Springer, Berlin, (2007), 112–125.

33.The Moskitt Environment, ProDevelop, Valencia,
2015. Accessible at http://www.
moskitt.org/eng/proyecto-moskitt/

34.Wurdel, M., Sinnig, D., and Forbrig, P. Task-Based
Development Methodology for Collaborative
Environments. In Proc. of EIS'2008. Lecture Notes in
Computer Science, vol. 5247. Springer, Berlin,
(2008), 118–125.

