
Adrian Iftene, Jean Vanderdonckt (Eds.)

113

Terrain Synthesis from Crude Heightmaps
Alexandre Philippe Mangra
Technical University of Cluj-

Napoca
Str. G. Barițiu 28, 400027,

Cluj-Napoca, România
alexandre.mangra@gmail.com

Adrian Sabou
Technical University of Cluj-

Napoca
Str. G. Barițiu 28, 400027,

Cluj-Napoca, România
adrian.sabou@cs.utcluj.ro

Dorian Gorgan
Technical University of Cluj-

Napoca
Str. G. Barițiu 28, 400027,

Cluj-Napoca, România
dorian.gorgan@cs.utcluj.ro

ABSTRACT
This paper presents an approach to terrain synthesis from

minimal-detail user-provided heightmaps. There is no

assumption regarding the level of detail provided, in

order to allow users without access to powerful

heightmap tools and/or resources to generate useable

terrain based on a self-provided crude feature plan. We

present the issues stemming from a lack of detail in user

input, notably sharp altitude increases and oversimplified

feature edges, and proceed to elaborate on using the

terrain synthesis algorithm to solve the issues and create a

level of detail that more closely resembles realistic terrain

models. The algorithm pipeline is presented and

parametrized to show how the user can influence the

resulting model.

Author Keywords
Terrain synthesis; Heightmap; Worley noise; Perlin noise;

Filters.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,

HCI): Miscellaneous.

General Terms
Algorithms; Terrain models.

INTRODUCTION
Over the past decades, computational power has become

less expensive and more powerful thanks to technological

advances. Alongside it, computer generated imagery

(CGI) increased in availability and potential. CGI is one

of the mainstays of technology, used in various fields like

video games, movies, art, simulation software and

anywhere else image generation is beneficial. One of the

reasons for its popularity is the artistic freedom it entails,

coupled with the potential to mimic something that does

not exist in the real world.

When compared to physical props and background,

computer generated imagery becomes evidently

advantageous. There is a large number of images unable

to be accurately reproduced without the use of computers,

be it spaceships, hellish creatures, otherworldly plants or

simply vast, expanding landscapes. Creating a quality

physical replica would incur costs unreasonable for any

budget, not to mention unfeasible if we’re considering the

entire landscape of an alien planet. A virtual

reproduction’s costs can easily be quantified in the artist’s

and/or programmer’s work and the required hardware.

Thus, the industry’s needs have fueled the development

of an array of algorithms and generation software tailored

specifically at creating this kind of models. Among them,

terrain generation is one of the most used fields due to it

contributing significantly at reducing production costs of

backgrounds.

The terrain model can be created procedurally (using a set

of rules) or based on a set of given input data. The latter

is usually combined further with algorithms to refine the

given data and produce something usable. Purely

procedural terrain suffers from restricting the user control

over the final location of terrain features like mountains,

hills, plains, rivers or islands. On the other side of the

spectrum, some synthesis algorithms working with input

data such as heightmaps, feature graphs or guides require

at least part of the data to be highly specific. This can

prove inconvenient to the casual user, forcing him to

spend increasing amounts of time researching the

software used and finding ways of creating the necessary

input.

The casual user, then, raises new issues when trying to

create terrain with specific features. He will, in most

cases, be unable to properly form input data relevant for

the application that would lead up to the desired terrain

model. It can become tedious and time-consuming to

master a new skill or software in order to obtain decent

results.

One issue will be the sudden altitude increases caused by

the user creating the input heightmap by hand. Painting

the heightmap with only a handful of colors or grayscale

values leads to the creation of a layered terrain which

does not conform to reality nor has any kind of transition

between layers, hence the sharp, perfectly vertical,

altitude changes.

Another issue is the lack of detail on such models. The

layman will have neither the time nor experience to paint

“rough” edges, as seen in nature at the delimitation of two

differently elevated areas. There is a high probability of

encountering very uniform edges, if not downright

straight, thus breaking the illusion of natural, chaotic,

form.

This paper elaborates on a simple algorithm which tries to

solve these issues by detailing very crude input to a point

where it becomes usable, either as the final terrain model

or as a more precise input heightmap for more complex

algorithms.

RoCHI 2016 proceedings

114

RELATED WORKS
A variety of techniques for procedural or user-guided

generation already exists, due to the high demand of

terrain generation in the movies and video games

industries. As information becomes increasingly

available, more and more people try to expand the

horizons by either improving existing methods or finding

new ones. Terrain synthesis is one of those expanding

domains, with entire companies being built around terrain

generation software and a growing number of research

papers detailing new algorithms.

One such example is World Machine Software, LLC and

their sole product: World Machine 1. An immensely

powerful terrain generation software which allows users

to create terrain from scratch. This is done by layering

algorithms and directing data through a pipeline formed

by the user. It also supports user-guided generation, by

allowing the input for algorithms to be provided through

external files. At first glance, however, it does not offer

ways to process low-detail input. Elevation discrepancies

remain sorely visible throughout the processing pipeline.

A person trying to control the features will be unable to

do so unless he or she invests enough time in learning

how to use this complex software. If such procedures

exist, they are unintuitive at best.

A case should be made for Gaia 2, procedural terrain

software created by Procedural Worlds, which, among

other capabilities, allows users to define where they want

certain features to be placed by inserting specialized

markers called “stamps”. This greatly alleviates the input

issues but restricts the user to the set of available stamps

(currently over 150) as an advantageous tradeoff between

control and power. The only downside is its reliance to

the Unity game engine since it is provided as a Unity

“asset”, a plug-in of sorts.

Aside from terrain synthesis software, the number of

papers detailing new and experimental algorithms for

synthesis is on the rise. The focus is on giving as much

power as possible to the user, creating new ways of

synthesizing terrain from different input data-sets.

Somewhat unsurprisingly, the tendency is to reach for

improved reproduction quality. To give the end-user the

power to remake relief forms based on certain patterns

and to do so at the best quality level possible.

For example, one of the more well-known papers on the

topic is the work of Zhou et al. 3, describing an algorithm

to map a relief style onto a simplistic user-provided

sketch. As long as the user finds a heightmap describing

the desired relief shape and pattern, he can utilize the

algorithm to great results. This only partially solves the

issue of low-detail user guidance. Firstly because only

one type of pattern can be applied at a time, preventing,

for instance, both a mountain range and a river or lake to

be mapped in the same map instance. Secondly, because

obtaining such patterns may or may not prove difficult,

depending on what the user intends to obtain and the

available patterns on the internet. These problems arise,

of course, because of the high specialization of the

algorithm and are perfectly acceptable in the context of

the goal set for this procedure.

Another such work is that of Cruz et al. 4, with an

objective similar to that of Zhou et al.: user-guided terrain

synthesis. This paper focuses on having an input graph

besides the simplistic sketch, called “guide” here. They

try to create geomorphically correct terrain from a

collection of real-world data. Very similar in both scope

and surfacing issues to the previously presented work: it

requires information the layman may not immediately

have available and it becomes hard to model several

terrain features at once.

In the quest for improving the obtained terrain, most

researchers specialize their work, leaving the

inexperienced user dead in the water. Even when a

software product implements something with general

availability, the learning curve is almost never shallow.

Large amounts of time must be invested for the average

user to obtain usable results from most of today’s

software implementations.

There are two main types of generation algorithms:

guided and unguided. Unguided algorithms are easy to

use and are controlled by input parameters, but it is hard

to restrict the output to certain desired features (i.e.

placement of mountains/ rivers/ plateaus). Guided

algorithms exist and most of them try to use either

existing real-world data 3, 4 or place markers on the spots

where certain features are to be created 2. All these

methods demand auxiliary input from the user, which

may be hard to obtain.

USER-GUIDED TERRAIN SYNTHESIS
While procedurally generating terrain has plenty of

advantages, such as speed of generation, variety and

realistic detailing, the main drawback is the lack of user

involvement in the placement of terrain features. This

makes it hard to create something specific and which

conforms to the user’s requirements.

As described in the previous section, this gave birth to a

series of algorithms and software which do exactly that:

create terrain based on a set of specific user input data.

They give more freedom to affect the end product and

allow one to model the shape of the terrain based on their

own wishes. Artists and designers gain tremendous power

by being able to create terrain in drawing that is then

converted to a highly-realistic 3D model. Researchers and

other technical-oriented people gain an equal amount of

power by being able to convert data obtained from the

real world to create incredible virtual replicas.

For the hobbyist, however, or any other inexperienced

user the challenge becomes much greater. One has no use

for powerful tools if they require large time investments

to master. Furthermore, there is a definite possibility that

said user is not interested in highly-detailed or

geomorphically correct terrain. The main interest point is

the creation of a terrain model simulacrum that abides by

the user’s requirements. Most of the people interested in

terrain synthesis will not be artists, capable of creating

detailed heightmaps to provide to the software nor

Adrian Iftene, Jean Vanderdonckt (Eds.)

115

experienced enough to find the other resources needed as

input, such as real-world data, formatted in a way which

the software expects.

Following is the algorithm proposed to solve this problem

by interpreting low-detail heightmaps and synthesizing a

terrain model that, while not necessarily accurate from a

realistic point of view, meets the requirements set by the

user through the input heightmap and places the terrain

features where they are expected. It is assumed that an

input is provided in the form of a crudely-drawn

heightmap, lacking detail. To generate realistic terrain, at

this stage of development, plus the issue of needing a

collection of patches, explained earlier in this paper, may

be hard to obtain by the inexperienced user.

Edge smoothing
The first step is to solve two issues in the same pass. The

issues being:

Sharp elevation level transitions
The neophyte user will provide a heightmap where one

elevation level ends and another beings with a drastic

difference in value/height. Best example would be the

user wanting a mountain surrounded by sea and drawing

with a high value in an area of very low values. This will

cause a vertical drop (value change of 100%) between the

value level represented by the “mountain” (white) and the

one of the “sea” (black), as can be seen in Figure 1.

Going straight from perfect gray to white or black is also

not a good use-case, since the value switches by 50% of

the total. A lesser but still perfectly vertical drop.

Simplistic edge definitions
The layman will not have the art skills or appropriate

resources to paint better edges. He or she will resort to

basic straight or curved lines as shape delimiters, also

exemplified on Figure 1.

Both of these problems can be solved by a single, well-

chosen algorithm which creates a transitory area between

levels and breaks the edges up in a rougher contour. In

this case it is a custom-made algorithm inspired by

Worley noise 5.

Solution
The first step consists of scattering seed points randomly

but evenly across the surface of the heightmap, taking the

equivalent height values from the input. I. e. if point X’s

location is above a black pixel, its value will be 0.0. If it’s

above a white pixel, its value will be 1.0. The number of

seed points is proportional to the number of pixels in the

heightmap and can be adjusted for different end results.

The second step is parsing the entire mesh and adjusting

the heights of points based on the nearest N seed points as

a linear interpolation of their assigned height values using

the distance between the affected point and the seed as a

weight. This differs from classical Worley noise, where

only the N-th closest point is considered in the rendering

function. Increasing N enlarges the area which affects the

mesh point, meaning the transitional area between

altitudes becomes wider. Exemplified in Figure 2. Circled

are the seed points used in computing the new point’s

height when N = 6. The target point will be affected by 4

perfectly black seeds and 2 perfectly white ones, meaning

it will end up closer to, but not perfectly, black.

The randomness of the seed point location creates the

rough, natural edges that users expect to see and permits

infinite variations on the exact contour when randomly

redistributing the seed points again: at one time, the mesh

point is affected by 6 low-height points and 3 great-height

points then, during another run, the same point is affected

by only 2 low-height points and 7 great-height points

because in the new seed distribution, the positions change

and, hence, distances are altered.

The issue of sharp elevation transitions is solved by the

linear interpolation between neighboring seed points by

creating transition areas which are equally random in

appearance, even if this detail is less noticeable.

Adding detail
After creating transitory areas at the edges, the model is

left with large expanses of flat terrain. This happens

because all throughout the same level of value,

encompassing seed points will all have the same value,

hence linear interpolation produces that value repeatedly.

At this point, another procedural generation algorithm can

be used and overlaid on top of the model in order to

create rough detail across the flat areas. We have chosen

Figure 1. Sharp transition example.

Figure 2. Seed points around a fixed point.

RoCHI 2016 proceedings

116

Perlin noise 6 for this purpose, which is a homogenous

noise implementation created by Ken Perlin in the early

‘80s. The fact that this noise is homogenous means that

any two neighboring points have close values and create a

pleasing, flowing aspect, unlike true random noise.

The noise will be added as a small increase in height

across the entire terrain model. This means it will affect

both the large areas of flat terrain and the previously

created transitory ones. This will improve the aspect of

the terrain and make it more palatable for the human eye.

As a side-effect, it adds randomness throughout the

model, increasing reusability and the diversity of

potential outputs. However, since the detailing is small

compared to the overall scale of the terrain, this remark is

not of such great importance.

We should add that this step may be replaced by another

way of imprinting a more realistic texture to the terrain.

The caveat is that one should take care not to add

complexity to the user interaction, like needing a

secondary input, such as a realistic texture for imprinting

upon the model or an extended number of added

parameters.

Detail smoothing
After applying the Perlin noise as a means for detailing

the terrain model, the shape of the model needs to be

smoothened to eliminate any kind of sharp peaks that

may occur near the edges. This step also helps make the

terrain more pleasing to the eye.

Odd peaks and shapes
This phenomenon may happen because as Perlin is

applied uniformly across the mesh, it also affects the

slopes previously created. The points on these slopes will

be displaced and sometimes the displacement goes

against the desired shape, i.e. a point will increase in

height whilst it would be aesthetically pleasing to remain

fixed or decrease in height.

Digital filters – image processing
The chosen solution to the previous problem is to run the

whole model through a digital noise reduction filter. This

will effectively remove any “noise” which, in this case, is

represented by those seemingly random shapes.

A median or mean filter 7, 8 with a 3x3 kernel is

perfectly reasonable to solve this issue and any other

oddities the terrain model may show. It is applied to the

entire model. One run through should suffice, since over-

applying a filter will reduce the level of detail, counter to

the initial purpose of this algorithm. Likewise, care

should be exercised with more powerful filters, some of

which will strip too much detail even with a single pass.

After the completion of this step, one should be left with

a reasonably detailed terrain model which respects the

initial feature placement requirements provided by the

user through a crudely-drawn heightmap. Needless to say,

this algorithm will work just as well with more complex

input, meaning it is suitable for the entire range of

possible heightmap detail.

IMPLEMENTATION

The Unity game engine
For implementing and testing, the Unity 9 game engine

was chosen because of its existing rendering engine and

ease of programming using self-contained scripts. All

steps have been converted into C# scripts and linked

together.

The algorithm is implemented using operations on a float

value matrix representing the terrain model then said

matrix is applied onto the heights of a mesh, effectively

rendering the result onscreen.

The following testing section has been fully realized

using the Unity implementation. Due to mesh restrictions,

the size of the samples has been reduced to under or at

128x128 pixels.

TESTING
For the purposes of testing, only the aesthetics of the final

terrain model have been taken into consideration.

Completely ignoring the performance aspect, since it is

reliant on implementation, the testing focuses on

confirming that the before-stated issues are solved and

that the final model is at least partially resembling a

natural form of terrain. The three heightmaps used for

testing are: an overly simplistic, a slightly detailed, and a

very detailed one. The first two were made by hand, the

third one is sampled from the Internet 10; presented in

Figure 3.

Figure 3. Left: Simple Heightmap; Right: Detailed
Heightmap; Bottom: Complex Heightmap.

Adrian Iftene, Jean Vanderdonckt (Eds.)

117

Validating result
Initial testing was done to prove the algorithm does

indeed end with a detailed model of plausible terrain. It

bears mentioning again that the end goal was not realistic

terrain. Instead, it was to create a level of detail that more

closely resembles realistic terrain models. Any

sufficiently detailed model which may pass for terrain is

good enough for confirmation. Figures 4a and 4b show

how the model advances from its initial state to the final,

more detailed output. Figure 4b also showcases visual

artefacts (sharp edges, noticeable on the “mountain”

edge) remaining from previous steps and how they are

eliminated through filtering.

Figures 5 shows the effect on more detailed heightmaps.

The result is proof that when confronted with too much
detail, the algorithm overrides part of it with its own edge

smoothing.

Varying parameters for edge smoothing
These tests have been done to empirically find reasonable

value ranges for the number of nearest seed points and the

total number of seed points by altering one of them and

keeping the other constant.

Number of seed points
This number dictates how many seed points in total are

scattered throughout the plane. The number is related to

the total number of pixels available (height x width). We

shall call this number TotalPx. As we grow the number of

seeds, the area of influence for each point in the model

decreases, as more seeds are found in its direct vicinity.

This preserves more of the initial detail of the image,

counter to what edge smoothing is supposed to do. On the

other hand, too few seeds mean that the terrain will no

longer respect all the details provided. There may be

entire areas uncovered by seeds and, thus, initial detail is

not preserved enough. Figure 6 presents a succession of

models, showcasing this effect.

Number of nearest seed points
Testing the number of nearest N points taken into

consideration is also a worthwhile experiment, to

showcase how different values affect the outcome. For

this test, the number of seed points is TotalPx/25. Results

empirically show that as the number of neighbors

decreases, detail fidelity increases, up to a point where

the desired smoothing effect is cancelled. When there are

too many neighbors taken into consideration, the

smoothing is too strong and the entire map becomes

flattened. Figure 7 shows this effect.

Conclusion

Figure 4b. Left: Perlin Noise; Right: Filtering.

Figure 4a. Left: Original State; Right: Edge Smoothing

Figure 5. Original and final model. Top: Detailed and
Bottom: Complex Heightmap.

Figure 7. Neighbor number. Left: 5.

Figure 6. Seed Point Number. Top-left: TotalPx; Top-
right: TotalPx/20; Bottom-left: TotalPx/50; Bottom-

right: TotalPx/250.

RoCHI 2016 proceedings

118

While the number of seed points and neighboring seeds

affect each other too, empirical results point to the area

centered in TotalPx/20 -> TotalPx/25 seed points total

and considering around 10-15 neighbors. This should

provide acceptable results for most use-cases. Of course,

this does not prevent one to experiment and find proper

values depending on the given input heightmap.

CONCLUSIONS
In the world of procedural generation, terrain synthesis is

one of the most common uses, allowing for inexpensive

yet complex backgrounds in movies, video games,

simulation software and other possible areas of interest.

The rising demand for such algorithms has given birth to

a vast array of advances in this field, ranging from pure

optimization to hybrid algorithms and brand-new ones

designed to bring a wealth of detail into the final model.

While specialized software is constantly trying to

simplify the interface and make procedural terrain

generation available to the layman, it must always make

compromises regarding input detail versus output detail.

Trying to detail incomplete or crude heightmaps is

something few people are trying to elaborate on since the

focus is on the end product – a realistic terrain model –

and all inputs are usually simply mirroring the demands

for the algorithm instead of the other way around.

This paper presented a procedural generation algorithm

that is supposed to work with minimal input detail. It

outputs something aesthetically close to real terrain

models, even if it lacks any kind of groundbreaking

detailing. A case can be made for using this algorithm as

a preliminary for other systems, detailing crude

heightmaps to a level acceptable for more advanced

synthesis software and / or algorithms.

While not overly complex, this algorithm proved that

there is hope for terrain synthesis from input of any

detailing level and that one may still discover new

techniques for allowing inexperienced users to generate

beautiful scenery with minimal effort.

Future work may involve adding more steps towards

creating true geomorphically correct terrain. Possibly

erosion algorithms or storing a knowledge base of real-

world heightmap information. Testing other initial steps,

replacing the randomly seeded linear interpolation and

experimenting with the results is another direction of

future study worthy for consideration.

REFERENCES
1. Discover, World Machine Software, LLC, [Online].

Available: www.world-

machine.com/about.php?page= features.

2. Introducing Gaia, Procedural Worlds, 2015. [Online].

Available: www.procedural-worlds.com/gaia/.

3. Zhou, A. H., Sun, J., Turk, G. and Rehg, J. M. Terrain

synthesis from digital elevation models, IEEE

Transactions on Visualization and Computer

Graphics, 2007.

4. Cruz, L., Ganacim, F., Lucio, D., Velho, L. and de

Figueiredo, L. H. Exemplar-based Terrain Synthesis,

2013.

5. Worley, S. A Cellular Texture Basis Function. In
SIGGRAPH '96 Proceedings of the 23rd annual
conference on Computer graphics and interactive
techniques, 1996.

6. Perlin, K. Making Noise, 2002. [Online]. Available:

www.noisemachine.com/ talk1/.

7. Fisher, R., Perkins, S., Walker, A. and Wolfart, E.

Spatial filters - Median filter, 2003. [Online].

Available:

homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm.

8. Fisher, R., Perkins, S., Walker, A. and Wolfart, E.

Spatial filters - Mean filter, 2003. [Online]. Available:

homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm.

9. Unity - Game Engine, Unity Technologies, [Online].

Available: Unity Technologies.

10.Bisen, From Heightmap to Worldspace in Skyrim,

Hoddminir, [Online]. Available:

hoddminir.blogspot.ro/ 2012/02/from-heightmap-to-

worldspace-in-skyrim.html.

