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ABSTRACT 
This paper presents an approach to terrain synthesis from 

minimal-detail user-provided heightmaps. There is no 

assumption regarding the level of detail provided, in 

order to allow users without access to powerful 

heightmap tools and/or resources to generate useable 

terrain based on a self-provided crude feature plan. We 

present the issues stemming from a lack of detail in user 

input, notably sharp altitude increases and oversimplified 

feature edges, and proceed to elaborate on using the 

terrain synthesis algorithm to solve the issues and create a 

level of detail that more closely resembles realistic terrain 

models. The algorithm pipeline is presented and 

parametrized to show how the user can influence the 

resulting model. 
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INTRODUCTION 
Over the past decades, computational power has become 

less expensive and more powerful thanks to technological 

advances. Alongside it, computer generated imagery 

(CGI) increased in availability and potential. CGI is one 

of the mainstays of technology, used in various fields like 

video games, movies, art, simulation software and 

anywhere else image generation is beneficial. One of the 

reasons for its popularity is the artistic freedom it entails, 

coupled with the potential to mimic something that does 

not exist in the real world. 

When compared to physical props and background, 

computer generated imagery becomes evidently 

advantageous. There is a large number of images unable 

to be accurately reproduced without the use of computers, 

be it spaceships, hellish creatures, otherworldly plants or 

simply vast, expanding landscapes. Creating a quality 

physical replica would incur costs unreasonable for any 

budget, not to mention unfeasible if we’re considering the 

entire landscape of an alien planet. A virtual 

reproduction’s costs can easily be quantified in the artist’s 

and/or programmer’s work and the required hardware.

Thus, the industry’s needs have fueled the development 

of an array of algorithms and generation software tailored 

specifically at creating this kind of models. Among them, 

terrain generation is one of the most used fields due to it 

contributing significantly at reducing production costs of 

backgrounds. 

The terrain model can be created procedurally (using a set 

of rules) or based on a set of given input data. The latter 

is usually combined further with algorithms to refine the 

given data and produce something usable. Purely 

procedural terrain suffers from restricting the user control 

over the final location of terrain features like mountains, 

hills, plains, rivers or islands. On the other side of the 

spectrum, some synthesis algorithms working with input 

data such as heightmaps, feature graphs or guides require 

at least part of the data to be highly specific. This can 

prove inconvenient to the casual user, forcing him to 

spend increasing amounts of time researching the 

software used and finding ways of creating the necessary 

input. 

The casual user, then, raises new issues when trying to 

create terrain with specific features. He will, in most 

cases, be unable to properly form input data relevant for 

the application that would lead up to the desired terrain 

model. It can become tedious and time-consuming to 

master a new skill or software in order to obtain decent 

results. 

One issue will be the sudden altitude increases caused by 

the user creating the input heightmap by hand. Painting 

the heightmap with only a handful of colors or grayscale 

values leads to the creation of a layered terrain which 

does not conform to reality nor has any kind of transition 

between layers, hence the sharp, perfectly vertical, 

altitude changes. 

Another issue is the lack of detail on such models. The 

layman will have neither the time nor experience to paint 

“rough” edges, as seen in nature at the delimitation of two 

differently elevated areas. There is a high probability of 

encountering very uniform edges, if not downright 

straight, thus breaking the illusion of natural, chaotic, 

form. 

This paper elaborates on a simple algorithm which tries to 

solve these issues by detailing very crude input to a point 

where it becomes usable, either as the final terrain model 

or as a more precise input heightmap for more complex 

algorithms. 
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RELATED WORKS 
A variety of techniques for procedural or user-guided 

generation already exists, due to the high demand of 

terrain generation in the movies and video games 

industries. As information becomes increasingly 

available, more and more people try to expand the 

horizons by either improving existing methods or finding 

new ones. Terrain synthesis is one of those expanding 

domains, with entire companies being built around terrain 

generation software and a growing number of research 

papers detailing new algorithms. 

One such example is World Machine Software, LLC and 

their sole product: World Machine 1. An immensely 

powerful terrain generation software which allows users 

to create terrain from scratch. This is done by layering 

algorithms and directing data through a pipeline formed 

by the user. It also supports user-guided generation, by 

allowing the input for algorithms to be provided through 

external files. At first glance, however, it does not offer 

ways to process low-detail input. Elevation discrepancies 

remain sorely visible throughout the processing pipeline. 

A person trying to control the features will be unable to 

do so unless he or she invests enough time in learning 

how to use this complex software. If such procedures 

exist, they are unintuitive at best. 

A case should be made for Gaia 2, procedural terrain 

software created by Procedural Worlds, which, among 

other capabilities, allows users to define where they want 

certain features to be placed by inserting specialized 

markers called “stamps”. This greatly alleviates the input 

issues but restricts the user to the set of available stamps 

(currently over 150) as an advantageous tradeoff between 

control and power. The only downside is its reliance to 

the Unity game engine since it is provided as a Unity 

“asset”, a plug-in of sorts. 

Aside from terrain synthesis software, the number of 

papers detailing new and experimental algorithms for 

synthesis is on the rise. The focus is on giving as much 

power as possible to the user, creating new ways of 

synthesizing terrain from different input data-sets. 

Somewhat unsurprisingly, the tendency is to reach for 

improved reproduction quality. To give the end-user the 

power to remake relief forms based on certain patterns 

and to do so at the best quality level possible. 

For example, one of the more well-known papers on the 

topic is the work of Zhou et al. 3, describing an algorithm 

to map a relief style onto a simplistic user-provided 

sketch. As long as the user finds a heightmap describing 

the desired relief shape and pattern, he can utilize the 

algorithm to great results. This only partially solves the 

issue of low-detail user guidance. Firstly because only 

one type of pattern can be applied at a time, preventing, 

for instance, both a mountain range and a river or lake to 

be mapped in the same map instance. Secondly, because 

obtaining such patterns may or may not prove difficult, 

depending on what the user intends to obtain and the 

available patterns on the internet. These problems arise, 

of course, because of the high specialization of the 

algorithm and are perfectly acceptable in the context of 

the goal set for this procedure.  

Another such work is that of Cruz et al. 4, with an 

objective similar to that of Zhou et al.: user-guided terrain 

synthesis. This paper focuses on having an input graph 

besides the simplistic sketch, called “guide” here. They 

try to create geomorphically correct terrain from a 

collection of real-world data. Very similar in both scope 

and surfacing issues to the previously presented work: it 

requires information the layman may not immediately 

have available and it becomes hard to model several 

terrain features at once. 

In the quest for improving the obtained terrain, most 

researchers specialize their work, leaving the 

inexperienced user dead in the water. Even when a 

software product implements something with general 

availability, the learning curve is almost never shallow. 

Large amounts of time must be invested for the average 

user to obtain usable results from most of today’s 

software implementations. 

There are two main types of generation algorithms: 

guided and unguided. Unguided algorithms are easy to 

use and are controlled by input parameters, but it is hard 

to restrict the output to certain desired features (i.e. 

placement of mountains/ rivers/ plateaus). Guided 

algorithms exist and most of them try to use either 

existing real-world data 3, 4 or place markers on the spots 

where certain features are to be created 2. All these 

methods demand auxiliary input from the user, which 

may be hard to obtain. 

USER-GUIDED TERRAIN SYNTHESIS 
While procedurally generating terrain has plenty of 

advantages, such as speed of generation, variety and 

realistic detailing, the main drawback is the lack of user 

involvement in the placement of terrain features. This 

makes it hard to create something specific and which 

conforms to the user’s requirements.  

As described in the previous section, this gave birth to a 

series of algorithms and software which do exactly that: 

create terrain based on a set of specific user input data. 

They give more freedom to affect the end product and 

allow one to model the shape of the terrain based on their 

own wishes. Artists and designers gain tremendous power 

by being able to create terrain in drawing that is then 

converted to a highly-realistic 3D model. Researchers and 

other technical-oriented people gain an equal amount of 

power by being able to convert data obtained from the 

real world to create incredible virtual replicas. 

For the hobbyist, however, or any other inexperienced 

user the challenge becomes much greater. One has no use 

for powerful tools if they require large time investments 

to master. Furthermore, there is a definite possibility that 

said user is not interested in highly-detailed or 

geomorphically correct terrain. The main interest point is 

the creation of a terrain model simulacrum that abides by 

the user’s requirements. Most of the people interested in 

terrain synthesis will not be artists, capable of creating 

detailed heightmaps to provide to the software nor 
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experienced enough to find the other resources needed as 

input, such as real-world data, formatted in a way which 

the software expects. 

Following is the algorithm proposed to solve this problem 

by interpreting low-detail heightmaps and synthesizing a 

terrain model that, while not necessarily accurate from a 

realistic point of view, meets the requirements set by the 

user through the input heightmap and places the terrain 

features where they are expected. It is assumed that an 

input is provided in the form of a crudely-drawn 

heightmap, lacking detail. To generate realistic terrain, at 

this stage of development, plus the issue of needing a 

collection of patches, explained earlier in this paper, may 

be hard to obtain by the inexperienced user. 

Edge smoothing 
The first step is to solve two issues in the same pass. The 

issues being: 

Sharp elevation level transitions 
The neophyte user will provide a heightmap where one 

elevation level ends and another beings with a drastic 

difference in value/height. Best example would be the 

user wanting a mountain surrounded by sea and drawing 

with a high value in an area of very low values. This will 

cause a vertical drop (value change of 100%) between the 

value level represented by the “mountain” (white) and the 

one of the “sea” (black), as can be seen in Figure 1. 

Going straight from perfect gray to white or black is also 

not a good use-case, since the value switches by 50% of 

the total. A lesser but still perfectly vertical drop. 

Simplistic edge definitions 
The layman will not have the art skills or appropriate 

resources to paint better edges. He or she will resort to 

basic straight or curved lines as shape delimiters, also 

exemplified on Figure 1. 

Both of these problems can be solved by a single, well-

chosen algorithm which creates a transitory area between 

levels and breaks the edges up in a rougher contour. In 

this case it is a custom-made algorithm inspired by 

Worley noise 5. 

Solution 
The first step consists of scattering seed points randomly 

but evenly across the surface of the heightmap, taking the 

equivalent height values from the input. I. e. if point X’s 

location is above a black pixel, its value will be 0.0. If it’s 

above a white pixel, its value will be 1.0. The number of 

seed points is proportional to the number of pixels in the 

heightmap and can be adjusted for different end results. 

The second step is parsing the entire mesh and adjusting 

the heights of points based on the nearest N seed points as 

a linear interpolation of their assigned height values using 

the distance between the affected point and the seed as a 

weight. This differs from classical Worley noise, where 

only the N-th closest point is considered in the rendering 

function. Increasing N enlarges the area which affects the 

mesh point, meaning the transitional area between 

altitudes becomes wider. Exemplified in Figure 2. Circled 

are the seed points used in computing the new point’s 

height when N = 6. The target point will be affected by 4 

perfectly black seeds and 2 perfectly white ones, meaning 

it will end up closer to, but not perfectly, black. 

The randomness of the seed point location creates the 

rough, natural edges that users expect to see and permits 

infinite variations on the exact contour when randomly 

redistributing the seed points again: at one time, the mesh 

point is affected by 6 low-height points and 3 great-height 

points then, during another run, the same point is affected 

by only 2 low-height points and 7 great-height points 

because in the new seed distribution, the positions change 

and, hence, distances are altered. 

The issue of sharp elevation transitions is solved by the 

linear interpolation between neighboring seed points by 

creating transition areas which are equally random in 

appearance, even if this detail is less noticeable.

Adding detail 
After creating transitory areas at the edges, the model is 

left with large expanses of flat terrain. This happens 

because all throughout the same level of value, 

encompassing seed points will all have the same value, 

hence linear interpolation produces that value repeatedly. 

At this point, another procedural generation algorithm can 

be used and overlaid on top of the model in order to 

create rough detail across the flat areas. We have chosen 

Figure 1. Sharp transition example. 

Figure 2. Seed points around a fixed point. 
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Perlin noise 6 for this purpose, which is a homogenous 

noise implementation created by Ken Perlin in the early 

‘80s. The fact that this noise is homogenous means that 

any two neighboring points have close values and create a 

pleasing, flowing aspect, unlike true random noise. 

The noise will be added as a small increase in height 

across the entire terrain model. This means it will affect 

both the large areas of flat terrain and the previously 

created transitory ones. This will improve the aspect of 

the terrain and make it more palatable for the human eye. 

As a side-effect, it adds randomness throughout the 

model, increasing reusability and the diversity of 

potential outputs. However, since the detailing is small 

compared to the overall scale of the terrain, this remark is 

not of such great importance. 

We should add that this step may be replaced by another 

way of imprinting a more realistic texture to the terrain. 

The caveat is that one should take care not to add 

complexity to the user interaction, like needing a 

secondary input, such as a realistic texture for imprinting 

upon the model or an extended number of added 

parameters. 

Detail smoothing 
After applying the Perlin noise as a means for detailing 

the terrain model, the shape of the model needs to be 

smoothened to eliminate any kind of sharp peaks that 

may occur near the edges. This step also helps make the 

terrain more pleasing to the eye. 

Odd peaks and shapes 
This phenomenon may happen because as Perlin is 

applied uniformly across the mesh, it also affects the 

slopes previously created. The points on these slopes will 

be displaced and sometimes the displacement goes 

against the desired shape, i.e. a point will increase in 

height whilst it would be aesthetically pleasing to remain 

fixed or decrease in height. 

Digital filters – image processing 
The chosen solution to the previous problem is to run the 

whole model through a digital noise reduction filter. This 

will effectively remove any “noise” which, in this case, is 

represented by those seemingly random shapes. 

A median or mean filter 7, 8 with a 3x3 kernel is 

perfectly reasonable to solve this issue and any other 

oddities the terrain model may show. It is applied to the 

entire model. One run through should suffice, since over-

applying a filter will reduce the level of detail, counter to 

the initial purpose of this algorithm. Likewise, care 

should be exercised with more powerful filters, some of 

which will strip too much detail even with a single pass. 

After the completion of this step, one should be left with 

a reasonably detailed terrain model which respects the 

initial feature placement requirements provided by the 

user through a crudely-drawn heightmap. Needless to say, 

this algorithm will work just as well with more complex 

input, meaning it is suitable for the entire range of 

possible heightmap detail. 

IMPLEMENTATION 

The Unity game engine 
For implementing and testing, the Unity 9 game engine 

was chosen because of its existing rendering engine and 

ease of programming using self-contained scripts. All 

steps have been converted into C# scripts and linked 

together. 

The algorithm is implemented using operations on a float 

value matrix representing the terrain model then said 

matrix is applied onto the heights of a mesh, effectively 

rendering the result onscreen. 

The following testing section has been fully realized 

using the Unity implementation. Due to mesh restrictions, 

the size of the samples has been reduced to under or at 

128x128 pixels. 

TESTING 
For the purposes of testing, only the aesthetics of the final 

terrain model have been taken into consideration. 

Completely ignoring the performance aspect, since it is 

reliant on implementation, the testing focuses on 

confirming that the before-stated issues are solved and 

that the final model is at least partially resembling a 

natural form of terrain. The three heightmaps used for 

testing are: an overly simplistic, a slightly detailed, and a 

very detailed one. The first two were made by hand, the 

third one is sampled from the Internet 10; presented in 

Figure 3. 

Figure 3. Left: Simple Heightmap; Right: Detailed 
Heightmap; Bottom: Complex Heightmap. 
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Validating result 
Initial testing was done to prove the algorithm does 

indeed end with a detailed model of plausible terrain. It 

bears mentioning again that the end goal was not realistic 

terrain. Instead, it was to create a level of detail that more 

closely resembles realistic terrain models. Any 

sufficiently detailed model which may pass for terrain is 

good enough for confirmation. Figures 4a and 4b show 

how the model advances from its initial state to the final, 

more detailed output. Figure 4b also showcases visual 

artefacts (sharp edges, noticeable on the “mountain” 

edge) remaining from previous steps and how they are 

eliminated through filtering. 

Figures 5 shows the effect on more detailed heightmaps. 

The result is proof that when confronted with too much
detail, the algorithm overrides part of it with its own edge 

smoothing. 

Varying parameters for edge smoothing 
These tests have been done to empirically find reasonable 

value ranges for the number of nearest seed points and the 

total number of seed points by altering one of them and 

keeping the other constant. 

Number of seed points 
This number dictates how many seed points in total are 

scattered throughout the plane. The number is related to 

the total number of pixels available (height x width). We 

shall call this number TotalPx. As we grow the number of 

seeds, the area of influence for each point in the model 

decreases, as more seeds are found in its direct vicinity.  

This preserves more of the initial detail of the image, 

counter to what edge smoothing is supposed to do. On the 

other hand, too few seeds mean that the terrain will no 

longer respect all the details provided. There may be 

entire areas uncovered by seeds and, thus, initial detail is 

not preserved enough. Figure 6 presents a succession of 

models, showcasing this effect. 

Number of nearest seed points 
Testing the number of nearest N points taken into 

consideration is also a worthwhile experiment, to 

showcase how different values affect the outcome. For 

this test, the number of seed points is TotalPx/25. Results 

empirically show that as the number of neighbors 

decreases, detail fidelity increases, up to a point where 

the desired smoothing effect is cancelled. When there are 

too many neighbors taken into consideration, the 

smoothing is too strong and the entire map becomes 

flattened. Figure 7 shows this effect. 

Conclusion 

Figure 4b. Left: Perlin Noise; Right: Filtering. 

Figure 4a. Left: Original State; Right: Edge Smoothing

Figure 5. Original and final model. Top: Detailed and 
Bottom: Complex Heightmap.

Figure 7. Neighbor number. Left: 5.

Figure 6. Seed Point Number. Top-left: TotalPx; Top-
right: TotalPx/20; Bottom-left: TotalPx/50; Bottom-

right: TotalPx/250. 
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While the number of seed points and neighboring seeds 

affect each other too, empirical results point to the area 

centered in TotalPx/20 -> TotalPx/25 seed points total 

and considering around 10-15 neighbors. This should 

provide acceptable results for most use-cases. Of course, 

this does not prevent one to experiment and find proper 

values depending on the given input heightmap. 

CONCLUSIONS 
In the world of procedural generation, terrain synthesis is 

one of the most common uses, allowing for inexpensive 

yet complex backgrounds in movies, video games, 

simulation software and other possible areas of interest. 

The rising demand for such algorithms has given birth to 

a vast array of advances in this field, ranging from pure 

optimization to hybrid algorithms and brand-new ones 

designed to bring a wealth of detail into the final model. 

While specialized software is constantly trying to 

simplify the interface and make procedural terrain 

generation available to the layman, it must always make 

compromises regarding input detail versus output detail.  

Trying to detail incomplete or crude heightmaps is 

something few people are trying to elaborate on since the 

focus is on the end product – a realistic terrain model –

and all inputs are usually simply mirroring the demands 

for the algorithm instead of the other way around. 

This paper presented a procedural generation algorithm 

that is supposed to work with minimal input detail. It 

outputs something aesthetically close to real terrain 

models, even if it lacks any kind of groundbreaking 

detailing. A case can be made for using this algorithm as 

a preliminary for other systems, detailing crude 

heightmaps to a level acceptable for more advanced 

synthesis software and / or algorithms. 

While not overly complex, this algorithm proved that 

there is hope for terrain synthesis from input of any 

detailing level and that one may still discover new 

techniques for allowing inexperienced users to generate 

beautiful scenery with minimal effort. 

Future work may involve adding more steps towards 

creating true geomorphically correct terrain. Possibly 

erosion algorithms or storing a knowledge base of real-

world heightmap information. Testing other initial steps, 

replacing the randomly seeded linear interpolation and 

experimenting with the results is another direction of 

future study worthy for consideration. 
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