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ABSTRACT 
This paper presents the design and development of a 

complete hardware and software solution for a brain 

computer interface (BCI). It consists of a non-intrusive 

multiple channel data acquisition device which captures 

the electrical brain wave signals and passes the data to a 

computer. The computer then uses signal processing and 

machine learning algorithms to identify patterns in the 

signals received from the BCI. The goal of the device is 

to be a highly adaptable BCI, able to be used in a 

multitude of applications ranging from object recognition 

to basic control functions. Currently, the system is work 

in progress. 
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INTRODUCTION 
Brain computer interfaces have been a subject of research 

for decades. Their primary use has been mind prosthetic 

control for patients with severed limbs, neurological 

diseases study and treatment (such as epilepsy) and the 

study of the brain itself. They are generally composed 

from an EEG (electroencephalography) system which 

records brain wave electrical signals by the means of 

electrodes either placed on the scalp, in a non-intrusive 

manner, or implanted in the brain, in an intrusive manner. 

Brain implanted computer interfaces have far greater 

accuracy when compared with non-intrusive techniques, 

and thus, they are mainly used in medical research and 

treatment. Lately, however, non-intrusive solutions have 

seen a rise in popularity as they can be easily used in 

various applications: basic mind-controlled devices such 

as drones, remote controlled (RC) cars as well as 

computer games. Therefore, nowadays there are 

commercially available BCI devices such as NeuroSky

[2] or Emotiv [3] headsets which provide basic EEG data 

acquisition and offer programming SDKs for easy 

software development. This paper focuses on 

implementing such a device, able to handle a multitude of 

use cases. From the simple control of a computer, RC car 

or drone maneuvering to medical use and brain research, 

this BCI aims at providing the hardware and software 

necessary for a complete easy to configure and enhance 

system. One other notable non-invasive BCI system can 

be achieved by using functional magnetic resonance 

imaging (fMRI) scans of the brain. Through this 

technique a 3D representation of the blood pressure 

distribution within the brain can be obtained. In 2008 

scientists at the Advanced Telecommunications Research 

(ATR) Computational Neuroscience Laboratories in 

Kyoto, Japan successfully reconstructed 10x10 black and 

white images from the brain using such a system. 

BRAIN WAVES AND REGIONS 
Brain waves are caused by neural oscillations within the 

brain. They have been studied by measuring the 

cumulative signals of large groups of neurons using EEG 

devices. Brain waves are classified according to their 

frequency and amplitude. Each frequency band is shown 

to correspond to a different mental activity and since each 

cortex has a distinct function, these signals can be more 

prominent in some parts of the brain when compared to 

others. Therefore, a time-frequency analysis of the signal 

is one of the first steps in decoding their information. The 

signal frequency bands are as follows [1]:  

� Delta (less than 4 Hz) - are high amplitude waves that 

in the frontal part of the brain. They are present during 

slow-wave sleep (dreamless NREM stage).  

� Theta (4 - 7 Hz) - are the waves most often present 

during states of drowsiness or idling thoughts.  

� Alpha (8 - 15 Hz) - waves are located in the posterior 

regions of the brain, on both sides. They are present 

during a relaxed state of the brain.  

� Beta (16 - 31 Hz) - are low amplitude waves located 

most prominently in the front, but also on both sides of 

the brain and manifest during active thinking.  

� Gamma (more than 32 Hz) - are located in the 

somatosensory cortex and are displayed during the 

perception of two different senses, such as sound and 

sight.  

� Mu (8 - 12 Hz) - are sensorimotor waves located in the 

sensorimotor cortex. 

Figure 1: One second of typical EEG signal. 
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BCI HARDWARE DESIGN 

Electroencephalography (EEG) 
Electroencephalography devices consist in a number of 

electrodes placed on the scalp; each electrode providing a 

data channel for further processing. The most important 

features of such a device are the number of channels, the 

sampling rate and the sample resolution of each channel. 

Since data acquisition scenarios are expected to be 

reproducible to compare subject studies over time, 

international standards for scalp electrode placement have 

been defined. One of the most popular ones is the 10-20 

system 3.1 which specifies a positioning such that the 

actual distances between adjacent electrodes are either 

10% or 20% of the total front-back or right-left distance 

of the skull. There are also the 10-10 higher resolution 

system and a proposed 10-5 system. 

Figure 2. The 10-20 system. The letters F, T, C, O stand for 
frontal, temporal, central, parietal and occipital. 

Commercial solutions 

Commercial BCI solutions have risen in popularity due to 

their ease of use and available SDKs. Such products are:  

� NeuroSky [2] - It has one electrode with a sampling 

rate of 512 Hz. Its frequency range is 3 to 100 Hz. It 

sends its data through an UART connection.  

� Emotiv [3] - a more powerful headset. It has 14 

channels of 16 bits resolution and a sampling rate of 

128 samples per second. It sends its data through a 

WiFi connection.  

� OpenBCI [4] - available since 2013, this is a DIY open 

source BCI of high performance. It uses an ADS1299 a 

24 bit, 8 channel Analog to Digital Converter (ADC), 

reaching a maximum of 16 kHz sampling rate 

(distributed evenly on the number of used channels). 

The kit also comes with an open source signal 

monitoring and frequency analyzing software. 

IMPLEMENTATION  

Hardware Architecture 
As EEG signals are of 10 to 100 microvolts in amplitude, 

they require amplification and filtering before reaching 

the digital acquisition device. For testing purposes, 

electrocardiogram (ECG) signals are better suited as they 

reach 1 to 5 millivolts and are easier to identify. 

Therefore, each data acquisition board channel has 

amplification stages with configurable gains. One other 

issue encountered in bio potential data acquisition is the 

common mode signal. This parasitic wave forms are 

typically caused by power line electromagnetic 

interference. The common mode signal can be rejected 

using a driven-right-leg[6] circuit designed to feed the 

amplified and inverted signal back into the subject’s leg, 

effectively cancelling the electric noise. 

In this paper, we are using an ADS1258-ep 16-channel 

ADC with 24 bit of resolution and a maximum of 23.7 

kHz sampling rate (distributed evenly on the number of 

used channels). It is also able to provide 125 ksamples 

per second in a fixed channel operating mode. The ADC 

can communicate its data through the standard SPI 

interface. For acquiring this data a RaspberryPi 2[12] is 

used, as it is a high performance embedded system 

capable of an Ethernet connection to send the data to a 

computer for further processing in real time. Ethernet was 

the preferred mean of data connection as it is high speed 

and eliminates the electric noise encountered in UART 

communication. 

Each time a sample is acquired the ADC emits an 

interrupt on a dedicated pin and 4 bytes of data have to be 

read by means of SPI (3 bytes of channel data and 1 byte 

of channel details). If the train of data is not read within 

the 40 μs window between two sample conversions, the 

data might be corrupted. Although the RaspberryPi 2 

itself is a performant system, the Linux scheduler adds 

high (milliseconds) interrupt latencies when trying to 

communicate with the ADC from a user-space written 

code. To counter this problem, interrupt handling and SPI 

communication has been achieved within a kernel module 

which buffers the data to the user-space by a character 

device interface. The Pi then forwards the data to the 

computer through an UDP communication. The interrupt 

response latency has been, therefore, reduced to an 

average of 4 μs (21 μs worst case scenario), as seen in 

Figure 3. 

Figure 3. Interrupt response latency test - oscilloscope plots. 
Yellow plot represents the SPI SCLK signal and the blue plot 
represents the falling edge interrupt test signal. The second 
SPI data train is a captured worst case scenario interrupt 

response latency. 
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Even though it is not complete yet, the analog hardware 

component is aimed at obtaining microvolt level 

accuracy, while the digital one outclasses most of the 

available EEG sets. Compared with OpenBCI, which uses 

the ADS1299 (24 bit, 8 channels, 16 ksps), the used 

ADS1258-ep has 8 more channels, with a sampling rate 

of 23.7 kHz. 

Software Architecture 

Data acquisition 
The data acquisition and analysis software provides basic 

plotting functionality (time, frequency and bar plots) as 

well as plugin interfaces for custom data source and data 

altering plugins. It is fully written in C++ and uses the Qt 

Gui toolkit [13] and the QCustomPlot [14] library for 

graphs. This highly modular framework handles all data 

transfers and thread management allowing the user to 

focus on the actual signal processing algorithms as one 

only needs to implement a few callbacks for passing data 

through the plugin system. As a simple proof of concept, 

the framework has been coupled with an audio streaming 

plugin and a Fast Fourier Transform (FFT) plugin which 

returns the frequency plot of the signal.  

For the BCI application, the source plugin gets the data 

from the RaspberryPi through the UDP Ethernet 

communication protocol. The data is then passed through 

the FFT plugin and through the data interpretation plugins 

which are used for classifying the signals. Compared to 

other BCI software solutions, the configurable signal 

processing pipeline makes this framework more flexible 

and professional use ready. Its functionality is similar to 

the OpenVibe [5] software. 

Algorithms  
Once the data has been recorded, the signals have to be 

classified. For this task machine learning offers promising 

techniques for pattern matching and identification.

Convolutional Neural Network 
Neural networks are mathematical models inspired by 

biological neural networks which are used to estimate or 

approximate functions that can depend on a large number 

of inputs. Their architecture is a system of interconnected 

neurons which exchange values between each other. 

These models are suitable for pattern matching since they 

can be trained to fit non-linear and arbitrary functions. 

Convolutional neural networks [7] use kernels mapped on 

the input to create feature maps on higher order layers. 

The weights between the kernel and every linked neuron 

in the upper layer are shared. This architecture allows 

identifying features in patterns in an offset-independent 

manner, a property of great use in signal and image 

classification. It is very popular for hand writing 

recognition tasks.  

As seen in Figure 4, the first algorithm prototype consists 

in a convolutional neural network with 3 layers: the 

convolutional, subsampling and fully connected layer. Its 

input is formed by n spectrograms, where n is the number 

of signal channels. Although the architecture is in theory 

promising, because of the high dimensionality of the 

problem, the network may fail to converge if not provided 

enough training samples. Since the order of the input is 

around 105, it is hard to provide a similar number of 

training examples.

Figure 4. Convolutional neural network. 

Feature extraction 

Spatial filtering 
To counter this problem, one can use a spatial filter to 

extract features from the signals and reduce the number 

of inputs in the classifier. The role of this filter is to 

output signals of high and low variances signals, 

according to the class of the original signal. Spatial filters 

can only be applied on binary classification problems. 

To train the parameters of such a filter, the Common 

Spatial Pattern (CSP) algorithm is used.  

Other features that may prove of use for the classifier are: 

Power Spectral Intensity and Relative Intensity Ratio 
[8]. For a time series [x1, x2,  . . . xN], and its Fast Fourier 

Transform result [X1, X2, . . . XN ], a continuous frequency 

band from flow to fhigh is sliced into K bins. Boundaries of 

bins are specified by a vector [f1, f2,  …, fK] such that the 

lower and upper frequencies of the ith bin are fi and fi+1. 

The Power Spectral Intensity (PSI) of the kth bin is: 

where fs is the sampling rate and N is the number of 

samples. Commonly used bins for EEG are δ (0.5 − 4Hz), 

θ (4 − 7Hz), α (8 − 12Hz), β (12 − 30Hz), γ (30 − 

100Hz). 

Relative Intensity Ratio (RIR) is defined as: 

Spectral entropy [8]. The spectral entropy is defined as: 
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EXPERIMENTS  

Open datasets 
In order to test the algorithms, openly available data sets 

can be used. PhysioNet [10] offers a bank of EEG and 

ECG signals in the standard European Data Format 

(EDF). It has a multitude of signal types from epilepsy 

seizure recordings to usual brain activity patterns. A 

particularly interesting dataset is the EEG motor-imagery 

set [11]. It contains data from 109 subjects who have 

been instructed to perform several tasks. Each subject 

opens and closes each of his fists or moves his feet when 

being signaled by visual cues on a screen. They also 

perform the same tasks but only imagining them.  

Figure 5. Channel data. 

The recordings have 64 channels of data with the 

electrodes positioned according to the 10-10 system, each 

with a sample rate of 180 Hz. They have been 

successfully classified using the MNE [15] Python 

library. After frequency and spatial (CSP) filtering, the 

signals have been classified using an SVM algorithm. 

The classification was 94% accurate. It was tested using 

cross-validation with 20% of the data used for the test set. 

Future experiment  
Once the equipment is complete, the following 

experiment will be performed. A microcontroller will be 

programmed to blink several LEDs at distinct frequencies 

(16-30 Hz). The subject will look at each of the LEDs 

while having his EEG activity monitored. After several 

sessions, the subject will picture the blinking LEDs in his 

mind while still being monitored. The goal of the 

experiment is to see if the visual LED frequencies can be 

easily found embedded in the signals picked up by the 

BCI. The pattern identification could prove to be a viable 

way for physically impaired people to control a computer. 

Although it is slow to control, the technique allows quick 

algorithm training thanks to the few features needed for 

the classification. 

CONCLUSION  
Although it is still a work in progress, the high precision 

of the hardware and modularity of the software already 

form the shape of a successful brain computer interface 

solution. The software framework is complete and the 

CSP based classification algorithm has proven reliable. 

The final goal of the project is to provide the tools a user 

needs for a ready to use BCI system and the freedom and 

configurability that would empower one to add new 

functionality. As for the improvements in the near future, 

once the system is completed, small computer or RC-car 

mind driven applications can be achieved.  
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