

Agile Software Development Process with Task Models
having Triggers, Preconditions and Context Constraints

Peter Forbrig
University of Rostock

Albert-Einstein-Str. 22,
18051 Rostock

peter.forbrig@uni-rostock.de

Gregor Buchholz
University of Rostock

Albert-Einstein-Str. 22,
18051 Rostock

gregor.buchholz@uni-rostock.de

ABSTRACT
Agile software development asks for seamless integration
of software engineering methods and approaches from HCI.
A process model will be discussed that includes HCD as
one sprint ahead in the corresponding process model.
Additionally, model simulations are suggested for improved
evaluation of design decisions.

The language CoTaSL (Cooperative Task Specification
Language) is introduced for specifying the activities of
users and certain context aspects. Its editor was developed
based on the Xtext framework. The language is a human-
centered form of CoTaL (Cooperative Task Language) that
can be simulated by CoTaSE (Cooperative Task Simulation
Environment). CoTaL and CoTaSE will be discussed as
well.

Different approaches for specifying collaborative work are
presented. Advantages and disadvantages are discussed. An
outlook is provided that suggests some further support for
CoTaSL by other tools.

Author Keywords
Agile Development Process, Task model, Constraints,
Context, Coordination model, Team model, Role model.

ACM Classification Keywords
H.5 [Information Interfaces and Presentation]: H.5.2 User
Interfaces – User-centred design; H.5.3 Group and
Organization Interfaces – Theory and models.

General Terms
Human Factors; Requirements Specification, Simulation

INTRODUCTION
Currently, it is common ground that software should be
developed iteratively in an agile way. This is necessary to
improve the communication with the stakeholders.
Otherwise, it is difficult or even impossible to capture the
correct requirements. However, the classical waterfall
model has some advantages for managing milestones.
Therefore, a combination of both approaches makes sense
that supports both the management aspect and the software
development aspect.

In this paper, we will discuss the usage of extended task
models that together with corresponding tool support can
support a human-centered agile development process. The

language CoTaSL was developed to allow specifications of
collaborative activities. This is especially important for
developing smart collaborative environments and workflow
applications.

Each CoTaSL specification consists of one team model and
several role models. The simulated team model instance
reflects the state of the collaboration of the different role
model instances.

First, we will focus on the integration of HCI aspects into a
process model of agile software development. After that,
the language CoTaSL will be introduced based on CoTaL
and different simulation situations in CoTaSE.

SOFTWARE DEVELOPMENT PROCESS MODELS
Agile software development has become popular since the
1990s because many projects failed. The reason for that was
that it took too much time from finalized requirements
specification to first tests of the developed system. At the
beginning of the 2000s a manifesto [1] was published that
characterizes the agile idea by twelve main principles.

An overview of influences on agile software development is
presented by Fig. 1.1It shows approaches from planning,
analysis, design, build, test, deploy, and review that found
their way into the agile approach.

1http://blog.kiandra.com.au/wp-content/uploads/2013/08/Agile-21.png

Figure 1. Influences to agile software development1

- 35 -

Currently, one of the most popular agile software
development approaches is SCRUM [19]. It is quite good
characterized by the following Fig. 2.

Originally, the process model of SCRUM (like software
engineering in general) focused on software development
activities only. However, usability aspects are important as
well. Therefore, the integration of HCI aspects into the
development process is discussed by several authors.

Two interleaving processes for developers and HCI
specialists are suggested by Sy [21]. She suggest the
gathering of some user data and the establishment of a
common plan at the very beginning of a project. This has to
be done by all participants. Developers start in the first
development cycle with implementations that are
independent from the user interface. This could e.g. be
certain internal services of the application. At the same
time, HCI specialists provide design solutions for cycle two
and gather customer data for cycle three.

Developers implement the design solutions from cycle one
in cycle two and in parallel their code from cycle one is
tested by HCI experts. Additionally, they design for the
next cycle and analyze for the cycle after the next cycle.
This is the general development pattern. In this way, HCI
specialists work two cycles ahead to developers in
analyzing customer data and one cycle ahead in developing
design solutions. Paelke et al. [16] published another
process model for combining agile software development
and agile user-centered activities.

HCD (Human-Centered Design) [12] is popular among
usability and user experience experts in the same way as
SCRUM with software developers. It provides an iterative
approach for requirements gathering and considers the
context of use, the requirements of the users and the
evaluation of design solutions. The HCD process has been
standardized by ISO 9241-210. Fig. 3 presents a part of an
agile process model from [9] that includes an adapted HCD
process model. It combines the ideas of HCD, Sy [21] and
Paelke et al. [16]. A first version of the process model was
presented in [8].

Currently user stories, scenarios, or use-case slices are used
to capture requirements of applications. However,
sometimes more elaborate activities for specifying activities

are helpful to explore an application domain. Task models
have been proven a useful tool for HCD. However,
sometimes detailed features of the models are missing.

The next paragraph will discuss a special version of task
models that allows the creation of instances and the
specification of context dependencies. This is especially
important for specifications in smart environments or
applications following a complex workflow.

SPECIFICATION OF SEQUNCES OF ACTIONS

Task Model
Sequences of actions can be specified by use cases [22] or
business process models in the notation of BPMN [4] or S-
BPM [6]. However, in the field of software ergonomics task
models have proved to be helpful specifications [17]. TKS
[13] and HTA [2] were one of the first approaches to
specify possible task executions by models. Currently,
systems like CTTE [5] and HAMSTERS [11] exist that
allow the generation of other models and the cooperation
with different other systems. Additionally, they allow the
simulation of task models. Collaboration specification was
discussed in [14], [18] and [20]. This allows very good
stakeholder involvement at early stages of software
development, which can be considered to be a substantial
contribution to user centered development methodologies.

However, our application domain of “Smart Environments”
asks for features that neither the cooperation model of
CTTE nor the task groups in HAMSTERSs fulfill. This
includes, first and foremost, the opportunity to have a
variable number of task model instances. It is not known
before the actual execution how many actors will
collaborate. The current systems do not have this flexibility.
Additionally, we require the temporal relation “instance
iteration” that means the second iteration of a task can be
started before the first ends. Task models need this feature
for practical applications. The importance of models was
already discussed in [7].

Figure 2. Model for the SCRUM development process

Figure 3. HCD details for SCRUM model sprints

- 36 -

The specification language CoTaL (Cooperative Task
Language) and a corresponding interpretation environment
CoTaSE (Cooperative Task Simulation Environment) were
developed for this reason. Some ideas were taken from the
predecessor language CTML [23]. The separation of task
models into several role models and one team model is one
of the ideas of CTML that we included into CoTaL. The
activity of a certain kind of actor (in terms of use cases),
subject (in terms of S-BPMN) or pool (in terms of BPMN)
is modelled as a role. During runtime several instances of a
role model can exist. This is of course also true for a
simulation. The instances specify the state of the task
performance of a specific person (actor instance). The
instantiation of a task model immediately delivers a stateful
“running” model instance. This is very similar to the
relation of classes and objects in object-oriented programs.

The cooperation of related role instances is reflected by the
instance of a team model. This model may vary in its level
of detail. It is thus possible to reflect each and every task of
all role models. However, it is also viable to have one
single team task only. The state of this task model shows
when the collaborative activities are running and when they
are finished. The optimal solution seems to be something in
between those two extremes.

The two kinds of task models will be discussed within the
following paragraph by an example, which assumes that a
conference session has to be organized in a smart meeting
room. It is further assumed that there are only the two roles
of “Chair” and “Presenter”. The chair has to introduce a
session first, followed by the presenters. After all
presentations of the conference session are finished a joined
discussion will be performed. We will first have a look at
the structure of the team model and will later discuss the
structure of role models.

Team Model
The cooperation of actors is specified by a team model. The
model specifies all roles involved and specifies events
coming from individual task model instances. Activities of
actors can be represented by different task model instances
simultaneously. For example, a person can have the role of
a chair and the role of a presenter at the same time.

Let us have a look at a simple example of performing a
conference session. A chair has to manage the presentations
first and afterwards the discussion. The task “Manage
presentation” consists of two subtasks “Introduce talk” by
the chair followed by “Present” assigned to the presenter.

In the following two visual representations of the
corresponding team will be shown. They do not show who
executed or is intended to perform a tasks. The visualization
of task tree instances uses different colors and symbols to
illustrate the state of the respective task. The set of possible
task states include disabled (!, red), enabled (!, yellow),
running (, green), skipped (↴, gray) and finished (",
white). Please keep in mind that only leaf tasks can be

started directly. Therefore, inner nodes are depicted in a
slightly paler colour shade. Their state is derived bottom-up
from their respective child tasks. Fig. 4 provides a
visualization of a model instance that consists of the team
model.

According to the model instance’s current state, a talk can
be introduced or the discussion can be started. A talk has to
be introduced first and can only be presented afterwards
(>>, enable). To perform a conference session several
presentations have to be managed (*, iteration). The
sequence of presentations is stopped ([>, deactivate) by
starting the discussion. Fig. 4 presents the task visualization
like CTTE. We will call it task tree. An alternative
presentation like in HAMSTERS, where temporal operators
are represented as nodes is shown in Fig. 5.

The visualization of the task model in Fig. 5 is called
syntactic tree. Within the CoTaSE tool both representations
of task model instances can be shown alternatively or even
together. The XML specification of the team model is the
following one.

<?xml version="1.0" encoding="UTF-8"?>
<taskmodel name="Performing a conference" role="Team">
 <roles>

 <role name="Chair" file="Chair.xml"/>
 <role name="Presenter" file="Presenter.xml"/>
 </roles>
 <task name="Perform Conference Session">

 <task name="Manage presentations"
 operator="disabling" iterative="true">
 <task name="Introduce talk" operator="enabling"
 startTrigger=

 "Chair.oneInstance.IntroducePresenter.start"
 endTrigger=
 "Chair.oneInstance.IntroducePresenter.end">
 </task>

 <task name="Present"
 startTrigger=
 "Presenter.oneInstance.IntroduceTalk.start"
 endTrigger=
 "Presenter.oneInstance.EndTalk.end">

 </task>
 </task>
 <task name="Discuss"
 startTrigger="Presenter.allInstances.EndTalk.end"

 endTrigger="Chair.allInstances.CloseSession.end">
 </task>
 </task>
</taskmodel>

Figure 4. Session example of a task tree instance.

∞

Figure 5. Session example of a syntactic tree instance.

∞

- 37 -

For each leaf task in the team model there exists a start
trigger and an end trigger. Triggers are specified in an
OCL-like notation [15]. The first part of the expression is a
role name that is followed by “oneInstance” or
“allInstances”. This is followed by a task that is started or
ended. The task “Introduce talk” is started when an instance
of the role “Chair” has started the task “Introduce
presenter” (Introduce presenter is equal to
IntroducePresenter). It ends when the introduction is
ended. A presentation is started, when one presenter started
to present his or her talk. The discussion starts when all
talks were presented. The conference session ends when all
“Chairs” closed the session.

To avoid the XML details of CoTaL the domain specific
language CoTaSL (Cooperative Task Specification
Language) was designed based on Xtext [25]. Xtext
generates a syntax driven text editor that can be combined
with Xtend [24] to generate CoTaL specifications.

The above example of CoTaL looks like the following
specification.

team for t {
 task Perform_Conference_Session = Manage_presentation{*} [> Discuss;
 task Manage_presentation = Introduce_talk >> Present;
 task Introduce_talk;
 trig Introduce_talk = (start.Chair.oneInstance.Introduce_presenter.start);
 trig Introduce_talk = (end.Chair.oneInstance.Introduce_presenter.end);
 task Present;
 trig Present = (start.Presenter.oneInstance.Introduce_talk.start);
 trig Present = (end.Presenter.oneInstance.Give_talk.end);
 task Discuss;
 trig Discuss = (start.Presenter.allInstances.Give_talk.end);
 trig Discuss = (end.Chair.oneInstance.Close_session.end);
}

It is assumed that it is much easier to use the domain
specific language CoTaSL than CoTaL, which is optimized
for machine interpretation while CoTaSL is intended for
human usage.

Role Model
A role model specifies the activities of one role. In our
example, we need one for the role “Chair” and one for the
role “Presenter”. The XML specification of the task model
of a “Chair” will be discussed first.

<?xml version="1.0" encoding="UTF-8"?>
<taskmodel name="Chairing a session" role="Chair">

 <task name="Chair session">
 <task name="Introduce session"
 operator="enabling">
 </task>

 <task name="Introduce presenter"
 operator="disabling"
 iterative="true">
 </task>

 <task name="Open discussion"
 operator="enabling"
 precondition="Presenter.allInstances.EndTalk">
 </task>

 <task name="Close session"/>
 </task>
</taskmodel>

The above specification uses a precondition that has a
similar notation to that of triggers. In preconditions, the
completed execution of the mentioned task is assumed.

Therefore, the information “.start” or “.end” at the end of
the expression is missing.

According to the model, a chair introduces a session and
several presenters afterwards. After all presentations, the
discussion is opened and finally the chair closes a session.
A precondition for opening the discussion is the fact that all
presenters have finished their talks. Fig. 6 visualizes the
corresponding task hierarchy and presents the start state of
the task instance.

In CoTaSL these activities can be specified as follows:

role Chair for Chair {
 task Chair = Introduce_session >> Introduce_presenter{*} >> Open_discussion >>
 Close_session;
 pre Close_session -> (Presenter.allInstances.End_talk);
}

Let us assume that a presenter introduces his or her talk first
and afterwards, a series of slides is explained before the talk
is ended. A slide is explained by first activating it, taking an
optional nip of water afterwards and finally explain the
slide. Fig. 7 provides a corresponding animated task model
instance.

Below you will find the CoTaL specification of the task
model of the role “Presenter”. A talk can be introduced
after a chair introduced a new presenter.

<?xml version="1.0" encoding="UTF-8"?>
<taskmodel name="Presenting a talk" role="Presenter">
 <task name="Give talk">
 <task name="Introduce talk"

 operator="enabling"
 precondition=
 "Chair.oneInstance.IntroducePresenter">
 </task>

 <task name="Explain slide"
 operator="disabling" iterative="true">
 <task name="Activate slide" operator="enabling"/>
 <task name="Nip water" operator="enabling"
 optional="true">

 </task>
 <task name="Explain slide"/>>
 </task>

 <task name="End talk"/>

 </task>
</taskmodel>

There seems to be no further discussions of the role model
of a presenter necessary. No new language features were
used.

Figure 6. Task model instance of a chair.

Figure 7. Task model instance of a presenter after
instantiation.

- 38 -

In the following example we will have three presenters
Paul, Peter, and Penny and two chairs Charles and Chris.
The following Fig. 8 presents the visualization of the state
of the simulated team and role model instances of chair
Charles.

Figure 8. Model instances after scenario “Introduce session”
and “Introduce presenter”.

One can see the thrown events in the log information of
each model instance. In Fig. 8 only the team model logs are
presented because of lack of space. For Charles the task
“introduce presenter” is already executed once and now the
second activation waits. From the team model instance one
can see that yet no presentation was given. However, a
presentation could start right now. After Paul performed his
talk with four slides (the fifth could have been presented),
the state of the model instances presented in Fig. 9 is
reached. The team model instance and the role model
instance of Charles reflect the fact that the second talk can
be introduced.

According to the temporal relations of the task model chair
Charles can open the discussion. However, there is a
constraint that is still not fulfilled. The constraint is the
precondition “Presenter.allInstances.endTalk”, which
means that the discussion cannot be started until all
presenters finished their talks. The red overlay icon in
Charles’s task “Open discussion” symbolizes this. We now
assume that all presenters finished their talks and chair
Charles can open the discussion. This situation is reflected
by Fig. 10. The task models of the presenters are omitted
because they all look like that of presenter Paul in Fig. 9.

Charles can open the discussion at this stage. No new
presenters can be introduced because all presenters were
active already. “Introduce presenter” is in the fourth
iteration. Fig. 11 presents the final states for the model
instance of the conference and the chair.

The scenario of the conference session went well. However,
the specified constraints were very general. One instance of
a presenter had to start a talk and one instance had to end it.
Indeed, it is not checked whether this is the same instance.
The following situation would be possible.

In the example of Fig. 12 Charles and Chris introduced a
session. Additionally, Charles introduced one presenter and
Chris introduced two. Both can open the discussion now.
However, this is not the way a session should be performed.
The chair who opened a session should also close it.
Additionally, there should not be two openings. To allow a
more precise specification the concept of context and
related binding of variables is used.

Figure 9. Model instances after the first talk

Figure 10. Model instances after all talks.

Figure 11. Final model instances

Figure 12. Model instances after three talks

- 39 -

Context and Binding Variables
Sometimes it is necessary to specify certain constraints. A
session should e.g. be closed by those chair that opened it.
The constraint could be specified by OCL [15] expressions.
However, their readability is limited. Based on the
experience with CTML [23], a very reduced version of
OCL like expressions is used. Let us have a look at the
extended example of the team model.

team for t {
 contextVar Session { roleVar (Chair) C;};
 contextVar Talk { roleVar (Presenter) P;};
 task Perform_Conference_Session = Introduce_session >>
 Manage_presentation{*} [> Discuss;
 contextBind Perform_Conference_Session -> Session;
 task Introduce_session;
 roleVarBind introduce_session -> C.introduce_session;
 task Manage_presentation = Introduce_talk >> Present;
 contextBind manage_presentations -> Talk;
 task Introduce_talk;
 roleVarBind Introduce_talk -> C.Introduce_presenter;
 task Present;
 roleVarBind present_talk -> P.give_talk;
 task Discuss;
 roleVarBind open_discussion -> C.open_discussion;
}

Contexts can be defined for certain tasks in the team model:

 contextBind manage_conference -> Session;
 contextBind manage_presentations -> Talk;

Linked to such contexts it is possible to introduce variables
for roles:

 contextVar Session { roleVar (Chair) C; }
 contextVar Talk { roleVar (Presenter) P; };

The value of such a variable can be bound. The binding of
values within such a context takes place by a certain task
execution of an instance of the specified role:

 roleVarBind introduce_session ->C.introduce_session;

This would mean that the instance of any role model that
executes first the task “Introduce Session” is stored into
the variable “C”. Later use of this variable will refer to the
stored instance.

By specifying contexts, activities can be bound to a certain
subject (instance of a role). In the above example, the chair
that introduces a session, introduces the presenter and
closes the session has always to be the same person (role
instance). Additionally, within the example specification
presenters are bound to a talk. However, there is a need for
more dynamic bindings. Otherwise, the first presenter had
to give all talks. Within the iteration every time the
presenter that first started his talk is bound to the
corresponding variable. This is possible by a specific
attribute (bindAllIterations->"false"). The default
value of this attribute is “true” and means that the first
bound values are the same for all iterations.

With this improved specification with an additional team
task (“Open session”) and the specified constraints, the
situation presented in Fig. 10 looks now like shown in Fig.
13. The chair Charles cannot introduce a new presenter
after one presenter was introduced. In the old version of the

specification, the chair was able to introduce the next talks
while a presenter was still showing slides. This is no longer
possible with the new extended specification. For both
versions of the specification, it is possible within the
CoTaSE environment to create new instances of role
models. In this way, a new presenter can be created. This
reflects the fact that a new subject enters the room that has
the corresponding role. This instance creation, of course,
influences the states of the model of chair Charles and the
model of the team.

In the upper right corner, one can see that Paul is the

current presenter that is stored in Pr. Charles is the chair
that started the session. Neither Charles nor Chris are at this
stage allowed to introduce a new talk. Chris has to wait
until the whole session is over and Charles has to wait until
the current presentation is finished.
However, in certain circumstances it makes sense to
distinguish between iteration and instance iteration.
Instance iteration allows the beginning of the next iteration
before the preceding iteration ended.

The next paragraph will present some details of instance
creation and instance iteration.

Dynamic Instances and Instance Iteration
The environment CoTaSE allows the creation of task model
instances during runtime, in our case simulation time. Fig.
14 shows the simulation state after the presentations of Paul
and Penny (all presenters). Fig. 15 presents the states of the
model instances after creating the presenter Peter. Chair
Chris cannot open the discussion anymore because there is
the constraint that all presenters ended their talks. However,
he can introduce a presenter. This was not possible without
the new presenter. The team model changes as well. The
management of presentations becomes active again and
“Introduce talks” is not finished anymore.

Figure 13. State after start of the first presentation with
context binding

- 40 -

Experimenting with task models resulted in some further
needs related to instances. From our point of view it is
necessary to provide support for instance iterations.
Sometimes it makes sense to start with the next iteration
before the first one is finished. For the domain of
conference session it might be possible that a chair manages
several online presentations in parallel. In this case the
second presentation can start before the first one finishes. It
is assumed that at most four presentations can run in
parallel. Fig. 16 presents the situation after the first
presenter was introduced and started and the second one
was introduced. Instance iterations (marked with a “#”
followed by up to two integers specifying optional
minimum and maximum instance numbers) are used in the
team model and in the model of the chair. Instances of the
tasks within the iterations are executed in parallel. The
interleaving operator (|||) is used to visualize this fact.

One can see in the team model of Fig. 16 that two
presentations were introduced. The same fact can be
concluded for the model of the chair Phil. He is able to

introduce the third presentation. While Paula already
introduced her talk and explains slides, Jan is able to
introduce his talk. The third presenter Peter is not included
in Fig. 16 because his state is identical to that of Fig. 15. He
cannot introduce his talk because the chair did not introduce
the third talk of the conference session.

SUMMARY
It was suggested in this paper that models for describing
activities of users help to integrate HCD into agile software
development. A process model was presented that suggests
HCD activities in one sprint ahead to the development.

The language CoTaSL was introduced as a domain specific
language for task models. The language allows very precise
specifications, allows context bindings and instance
iterations. Additionally, CoTaSL allows abstract and
human-centered specifications.

In [10] one can see how the principles of such a language (it
was CoTaL there) allow subject-oriented business process
specifications. A kind of workflow system based on this
concept is presented in [3]. It allows distributed
collaborative simulation of activities over the Internet.

Currently, tool support is provided for CoTaSL by a syntax-
driven editor and a generator to CoTaL. The generated code
can be simulated within the environment CoTaSE.
However, the language can be transformed into a CTT
specification or the notation of HAMSTERS.

For the future, the inclusion of more features into the
language might be useful. In this way, it can become a
general programming language for task models. It might
even be possible to find another even more abstract domain
specific language that can be translated to CoTaSL.

Figure 15. Situation after creating presenter Peter in
the state provided in Fig. 14.

Figure 16. Task model instances with instance iteration.

Figure 14. Situation after all two presentations

- 41 -

ACKNOWLEDGMENTS
The work was supported by DFG graduate school 1424
Multimodal Smart Appliance Ensembles for Mobile Applications
(MuSAMA) at the University of Rostock, Germany.

 REFERENCES
1. Agile manifest:

http://agilemanifesto.org/iso/en/principles.html, last
visited, July 5th 2017.

2. Anett, J.: Hierarchical Task Analysis. In Diaper D.,
Stanton N. (Eds), The Handbook of Task Analysis for
Human-Computer Interaction (pp. 67-82). Lawrence
Erlbaum Associates, 2004.

3. Buchholz, G., and Forbrig, P: Extended Features of
Task Models for Specifying Cooperative Activities,
accepted for EICS 2017, Lisbon.

4. BPMN: http://www.bpmn.org/ last visited, July 5th
2017.

5. CTTE: http://giove.cnuce.cnr.it/ctte.html, last visited
January 6th 2017.

6. Fleischmann, A., Schmidt, W., Stary, C., Obermeier,
S., and Börger, E., 2012: Subject-Oriented Business
Process Management. Springer, ISBN 978-3-642-
32391-1, pp. I-XV, 1-375

7. Forbrig, P.: Interactions in Smart Environments and the
Importance of Modelling, Proceedings of the National
Conference on Human-Computer-Interaction -
Romanian Journal of HCI, 2012,
http://rochi.utcluj.ro/rrioc/articole/RoCHI-
2012/RoCHI-2012-Forbrig.pdf

8. Forbrig, P., and Herczeg, M.: Managing the Agile
Process of Human-Centred Design and Software
Development, IFIP WG 13.2 Workshop proceedings:
User Experience and User-Centered Development
Processes. INTERACT 2015. Bamberg.

9. Forbrig, P: When Do Projects End? - The Role of
Continuous Software Engineering. Prc. BIR 2016: 107-
121

10. Forbrig, P., and Buchholz, G.: Subject-Oriented
Specification of Smart Environments, Proc. 9th
Conference on Subject-oriented Business Process
Management, S-BPM ONE 2017, Darmstadt,
Germany, March 30-31, 2017. ACM 2017, ISBN 978-
1-4503-4862-1,
http://dl.acm.org/citation.cfm?id=3040570

11. HAMSTERS:
https://www.irit.fr/recherches/ICS/softwares/hamsters/,
last visited January 6th 2017.

12. HCD: https://www.iso.org/standard/52075.html, last
visited May 20th, 2017

13. Johnson, P., Johnson, H., Waddington, R., and Shouls,
A.: Task-Related Knowledge Structures: Analysis,
Modelling and Application. BCS HCI 1988: 35-62.

14. Martinie, C., Barboni, E., Navarre, D., and Palanque, P.
A., Fahssi, R., Poupart, E., and Cubero-Castan, E.:
Multi-models-based engineering of collaborative
systems: application to collision avoidance operations
for spacecraft. EICS 2014: 85-94

15. OCL: http://www.omg.org/spec/OCL/, last visited
January 6th 2017.

16. Paelke, V. and Nebe, K. Integrating Agile Methods for
Mixed Reality Design Space Exploration. In
Proceedings of the 7th ACM conference on Designing
interactive systems (DIS '08). ACM, New York, NY,
USA, 240-249.
http://doi.acm.org/10.1145/1394445.1394471

17. Paternò, F.: Model-Based Design and Evaluation of
Interactive Application, Springer Verlag, ISBN 1-
85233-155-0.

18. Penichet, V. M. R., Lozano, M. D., Gallud, J. A., and
Tesoriero, R.: Task Modelling for Collaborative
Systems. TAMODIA 2007: 287-292

19. SCRUM:
https://en.wikipedia.org/wiki/Scrum_(software_develo
pment), last visited May 20th 2017.

20. Solano, A., Toni Granollers, T., Collazos, C. A., and
Rusu, C.: Proposing Formal Notation for Modeling
Collaborative Processes Extending HAMSTERS
Notation. WorldCIST (1) 2014: 257-266

21. Sy, D.: Adapting usability investigations for agile user-
centered design. J. Usability Stud. 2 (3), pp. 112-132,
2007.

22. UML: http://www.uml.org/, last visited January 6th
2017.

23. Wurdel, M., Sinnig, D. and Forbrig, P. 2008. CTML:
Domain and Task Modeling for Collaborative
Environments. In: Journal of Universal Computer
Science 14(19) (Special Issue on Human-Computer
Interaction), 3188-3201.

24. Xtend: http://www.eclipse.org/xtend/, last visited May
20th, 2017.

25. Xtext: https://eclipse.org/Xtext/documentation/, last
visited May 20th, 2017.

- 42 -

