
A pipe-based approach for service-oriented UIs 
Mathias Kühn and Peter Forbrig 

University of Rostock 
Albert-Einstein-Str. 22 
18051 Rostock, Germany 

{mathias.kuehn, peter.forbrig}@uni-rostock.de 
 

ABSTRACT 
Service-oriented architectures as instruments for distributed 
applications can be used in contexts that are grounded on 
networked devices. Specifications of web service interfaces 
can be instantiated across different platforms. Combining 
this method with specifications of platform-independent 
user interface models would allow to access applications 
from various interactive devices. According to this, applica-
tion states and events need to be considered for individual 
consumers. Additionally, interpreters and generators need 
to be available for each consumer. 

The paper proposes an approach for consumer-specific 
configurations of mentioned tools that are based on models 
derived from the Cameleon Reference Framework. In the 
end, pipes are configured that allow using web services by 
generated user interfaces. Configuring these pipes with 
models for layouts and dialogs is focus of the paper. 

Author Keywords 
Model-based user interfaces, multi-path development, in-
teractive system design 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous. 

INTRODUCTION 
Software that is based on service-oriented architectures can 
be used together with various platforms. Web services can 
be addressed from consumers nearly with any platform. 
Related interfaces can be specified with Web Service Defi-
nition Language (WSDL) and need to be generated at 
runtime. Also user interfaces (UIs) can be specified with 
model-based languages that can be generated using meth-
ods which are grounded on the Cameleon Reference 
Framework. Combining both methods for generating inter-
faces would allow using functional cores together with UIs. 

Generated user interfaces need to be flexible due to the fact 
that user abilities can vary a lot. UIs for users that are able 
to see differ from UIs for users that are blind. UIs can for 
instance be graphical or vocal. However, needed tool sup-
port could apply methods for generating UIs on different 
levels of abstraction. UI events need to be reified and ab-
stracted at runtime. Additionally, domain data need to be 
communicated for any application. Especially web services 
are good to achieve this goal, because serialization & mar-
shalling are supported by default. 

 
Figure 1. Transformation paths for generated FUIs. 

 

Figure 1 shows a visualization of paths that generated final 
user interfaces (FUIs) can be transformed to when applying 
the Cameleon Reference Framework. Many FUIs can be 
generated from a specific concrete user interface (CUI), for 
instance for graphical UIs. Additionally, many CUIs can be 
transformed from specific abstract user interfaces (AUIs), 
for instance for graphical or vocal UIs. However, single 
FUIs have specific paths that they can be transformed to. 
These paths could be represented by pipes that are config-
ured by models which describe UIs at different levels of 
abstraction. Applying pipes would allow transforming AUI 
to FUI and FUI to AUI whenever platform-independent 
models are needed. These models allow a broader range of 
applications for interactive systems. 

Service-oriented architectures [9] are well-known in indus-
try these days. Implementations are independent of specific 
platforms, what makes them more usable for a variety of 
different consumer platforms. Providing services allows 
using functions of software systems by any consumer. Dif-
ferent services can be combined to achieve new functionali-
ty. However, services also can be used to provide functional 
cores of interactive systems. One application core can be 
used by many different consumers. According to this, soft-
ware architectures based on services would allow to use 
interactive systems together with any kind of UI. 

The Cameleon Reference Framework [3] considers UIs on 
different levels of abstraction. Specifications can be made 
at the level of tasks, abstract, and concrete UIs. Additional-
ly, UIs can be transformed to other levels of abstraction as 
well as to different contexts of use at the same level. Fol-
lowing that, the transformation types are translation, ab-
straction, and reification. In the end, final user interfaces 
can be generated from concrete UI specifications. These 
FUIs result from specific transformations along the differ-
ent levels of abstraction. Configuring pipes for performing 
transformations could help in applying the framework. 

 

PIM

PSM

AUI

CUI CUI

FUI FUI FUIFUI

- 131 -



The Arch model [1] separates interactive systems into dif-
ferent kinds of components that are depending on each 
other. The approach can also be seen as pipe, but it does not 
consider a parallel processing of data and events. Instead of 
this, it considers a sequence of components that assume 
certain relations between data and events. However, UI 
(presentation & interaction components) and data (domain 
adaptor & domain-specific component) also are considered 
on different levels of abstraction. Both kinds of components 
are related to each other on the level of dialog structure 
(dialogue component) that forces a sequential dependency. 

The context of use [8] for interactive systems is an infor-
mation space spanned by entities user (U), platform (P), and 
environment (E). It is defined as triple composed by U, P, 
and E. Relevant factors for users (U) are their physical 
abilities to see, hear, feel, smell, and taste. Relevant factors 
for platforms (P) are their potentials to externalize infor-
mation visual (e.g. with displays), acoustical (e.g. with 
speakers), haptic, olfactory, and gustatory. For instance, 
displays can only be used by users that (temporary) are able 
to see. Additionally, relevant factors for platforms can be to 
internalize information with different kinds of sensors that 
are related to environmental factors. Relevant factors for 
environments (E) are light, sound, texture, aroma, and fla-
vor. All factors are depending on information of space and 
time. 

 

 Visual Acoustical Haptic Olfactory Gustatory 
User See Hear Feel Smell Taste 
Platform (Ext.) Display Speakers Actuator Actuator Actuator 
Environment Light Sound Texture Aroma Flavor 
Platform (Int.) Camera Microphone Sensor Sensor Sensor 

Table 1. Relevant factors for the context of use. 

 

Table 1 summarizes factors that are considered for the con-
text of use. According to user-centered designs and as men-
tioned before, all stimuli that users physically can perceive 
with senses are listed here. Targeted platform components 
to internalize & externalize information as well as environ-
mental effects, which surely can be other users, also are 
listed here. 

RELATED WORK 
UIs based on models are beneficial for targeting the genera-
tion of individual user interfaces that depend on specific 
contexts of use [6]. Model-based user interfaces (MBUIs) 
are independent of concrete platforms, but can be trans-
formed so that they can be applied to specific exemplars. 

Widgets of programming languages can be addressed from 
UI specifications that are based on these models. For in-
stance, containers within MBUI specifications can be trans-
formed to JFrame objects in Java Swing or to Window 
objects in C#. However, using model-based UIs allows 
addressing different platforms that can fit the variety of 
different end-user groups. 

In [7] Paternò et al. propose an extension of WSDL that 
uses annotated specifications which can be combined with 
models for UIs. These annotations can be related to tasks of 
task model specifications in the end. By using this approach 
designers need to be aware of task model semantics and 
relations between tasks and web services. However, func-
tionality of web services also can be used directly together 
with UIs that were generated from abstract models. These 
UIs are strongly coupled to specific functional cores. 

In [2] Akiki et al. introduce the Cedar Architecture that uses 
web services for adapting UIs. Specifications of UIs also 
are communicated for making them context-specific then. 
Bindings to the application core are specified for individual 
clients and are not part of the UI model. Each consumer of 
functionality that is provided by web services need to adapt 
mappings to the application core by itself. However, UIs 
are context-specific and can be used by a variety of differ-
ent groups of end-user clients. 

The User Interface XML (UsiXML) [5] is one exemplar of 
model-based languages for UIs which is used for the pro-
posed approach. UIs can be specified at the level of tasks, 
AUIs, and CUIs. Additionally, models for mappings, trans-
formations, and contexts can be used for specifying de-
pendencies to their application in general. Models for speci-
fying behavior with state machine semantic is not covered 
by the language. However, UI layouts can be described in 
UsiXML and can be used for generating FUIs on any plat-
form at runtime. 

PROPOSED APPROACH 
The approach in general considers data and events for 
communication based on web services at runtime. Domain-
specific data need to be shared between service providers as 
well as consumers. Data continuously will be marshalled 
and de-marshalled for this reason. UI-specific data also 
need to be shared. UI-related events will consumer-sided be 
reified and abstracted. This is needed because only abstract 
events will be communicated between providers and con-
sumers. Events additionally need to be mapped to functions 
that are implemented on provider side and also need to be 
mapped e.g. to widgets of generated FUIs. 

 

- 132 -



 
Figure 2. Architectural structure of the proposed approach. 

 

Figure 2 shows a class diagram for the architectural struc-
ture of the proposed approach. The structure is separated 
into provider- and consumer-parts. Their intersection repre-
sents the structure which is used with web services. Class 
WebService uses instances of PIMData that are shared 
between consumers and providers. SerializedData 
only contains data and DomainData additionally contains 
functions. All instances of Function represent functional 
cores of applications. These functions are referred by web 
service instances. CUI models which consist of Con-
creteIU instances are generated from AUI models which 
consist of AbstractIU instances. Instances of both are 
mapped to each other after generating UIs. Events that can 
be triggered later also are mapped to functions of the core. 

 

 
Figure 3. Visualization of the pipe for the proposed approach. 

 

Figure 3 shows a visualization of the proposed approach for 
context-specific UI instances. Events of generated FUIs will 
be abstracted, communicated via web service interfaces 
(WS) together with relating domain data, and computed on 
provider side (Core), afterwards. Resulting events of the 
Core also will be communicated via the same WS interface 
together with domain data, reified on consumer side, and 
their effects will be presented on FUIs at last. Platform-
specific models (PSMs) are used on provider and consumer 
side, but communication of events and domain data is made 
via platform-independent models (PIMs), what benefits the 
approach in general. Additionally, communication based on 
web services as well as serialized data are platform-
independent, what makes the approach usable for any ap-
plication of context-specific UIs with interactive systems. 

However, transformations of AUIs to FUI instances also 
need to be specified depending on corresponding applica-
tions. 

Simple Example 
This section introduces the approach at the example of a 
simple specification. The pipe will be configured by values 
that match the consumer-specific context of use for the UI. 

 

 
Figure 4. Example of a UsiXML specification. 

 

Figure 4 shows a specification of a model-based UI that can 
be used for configuring pipes which allow reifications and 
abstractions of UI-specific events at runtime. A single AUI 
model specification (id="011") can be transformed to 
CUI model specifications either for graphical (id="021") 
or vocal (id="031") UIs depending on the consumer-
specific context of use. The FUI is generated from the CUI 
afterwards. However, events that are triggered on context-
specific FUIs are transformed to their abstract representa-
tions in AUI for use with web services. 

FUICUIAUIAUICore WS

PIM PSMPSM

<uiModel id="0">
<auiModel id="01">

<abstractIU id="011">
<trigger id="0111"/>
<!-- etc. -->

</abstractIU>
</auiModel>
<cuiModel id="02">

<concreteIU id="021">
<button id="0211"/>
<!-- etc. -->

</concreteIU>
</cuiModel>
<cuiModel id="03">

<concreteIU id="031">
<voiceCommand id="0311"/>
<!-- etc. -->

</concreteIU>
</cuiModel>
<!-- etc. -->

</uiModel>

- 133 -



CONCLUSION AND FUTURE WORK 
The paper proposes an approach that allows using web 
services with context-specific UIs which individually will 
be generated for consumers. A pipe allows abstracting and 
reifying events that are relating to generated UIs. The pipe 
also supports serializing and marshalling data that need to 
be communicated between consumers and providers. It is 
assumed that functional cores of applications are provided 
by web services. These can be used by any UI that is gener-
ated. The pipe prepares events and data especially for con-
sumer- or provider-side. Functions of the functional core 
only take events at the AUI level into account. However, 
the approach in general can only be used if sensors are 
available on consumer-side. It is assumed that end-user 
abilities can be detected by those sensors. 

Next investigations need to be made on giving tool support 
for making specifications. The web service interface acts as 
façade [4] to the application core. It would be nice to gener-
ate this façade from an existing core. However, contexts of 
use are only considered when starting the application. It 
would be nice to react on changes at runtime so that gener-
ated UIs can always depend on the current context of use. 
For instance, a graphical user interface can be shown if end-
users look at a display. If not, a vocal UI can be used for 
interacting with the application. 

REFERENCES 
1. A metamodel for the runtime architecture of an interac-

tive system: the UIMS tool developers workshop. In 
ACM SIGCHI Bulletin, vol. 24 no. 1 (1992), 32-37. 

2. Akiki, P. A., Bandara, A. K., and Yu, Y. Engineering 
Adaptive Model-Driven User Interfaces. IEEE Trans-
actions on Software Engineering, vol. 42 (2016), 1118-
1147. 

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A unifying refer-
ence framework for multi-target interfaces. Interacting 
with computers, vol. 15 (2003), 289-308. 

4. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: 
Design Patterns: Elements of Reusable Object-Oriented 
Software. Prentice Hall, 1st ed. (1994). 

5. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouil-
lon, L., and López-Jaquero, V. UsiXML: a language 
supporting multi-path development of user interfaces. 
In Proc. of EHCI-DSVIS 2004, Springer (2005), 200-
220. 

6. Paternò, F and Santoro, C. One model, many interfac-
es. In Proc. of CADUI, Springer (2002), 143-154. 

7. Paternò, F., Santoro, C., and Spano, L. D. Engineering 
the authoring of usable service front ends. Journal of 
Systems and Software, vol. 84 (2011), 1806-1822. 

8. The Context of Use: 
http://www.w3.org/2005/Incubator/model-based-
ui/XGR-mbui/#the-context-of-use 

9. Yuan, Y., Li, B., and Kreger, H. SOA Reference Archi-
tecture: Standards and Analysis. In Proc. of SmartCom 
2016, Springer (2017), 469-476.

 

- 134 -


