

 - 1 -

Tower Defense with Augmented Reality
Bogdan-Mihai Păduraru

Faculty of Computer Science,
“Alexandru Ion Cuza” University of Iasi

General Berthelot, No. 16
bogdan.paduraru@info.uaic.ro

Adrian Iftene
Faculty of Computer Science,

“Alexandru Ion Cuza” University of Iasi
General Berthelot, No. 16
adiftene@info.uaic.ro

ABSTRACT
The current project presents the creation of a game where
the interaction is based on standard elements like
keyboard and mouse and also with cardboard drawings
used to represent the game map. The main aims of this
project were both to offer a better user experience for the
game players and to help students or interested persons to
understand better how the A* algorithm works. The idea
of this project came when Augmented Reality
applications started to appear on the mobile market,
offering a different experience than current standards.

Author Keywords
Augmented reality; Unity; A* algorithm.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces. H.3.2. Information Storage and Retrieval:
Information Storage.

General Terms
Human Factors; Design.

INTRODUCTION
We live in an era where stress affects us more and more
every day. Relaxation by playing video games has
become a normal activity for most of us. Most people
now own a smartphone or tablet which they carry it
everywhere [3]. These devices contain applications that
help them stay in touch with friends or family (Facebook,
Skype, chat apps), visualize multimedia content (movies,
music, online TV) and also video games that must be up
to date with the consumers need of relaxation and
spending small breaks time.

This project will present an application that was built with
the help of Augmented Reality with its purpose being to
offer a relaxation alternative for those who use it. Right
now the number of similar applications is pretty small, the
most popular one being AR Defender2.

In what follows, the paper is structured as follows: a state-
of-the-art section where similar application that use
Augmented Reality are presented, a section for system
architecture where it shown the basic elements of the
system we build, and a final part where it shows
conclusions and suggestions for future work.

STATE-OF-THE-ART
The world of Augmented Reality started to be more and
more present in applications for tablets or smartphones.
We will now present the most important applications that
are similar to our application.

AR Defender 2
This application was one of the first to come on the
mobile market, being developed and published by
Bulkypix at the beginning of 2013 [1]. By mixing
augmented reality components with 3D objects that
represent different structures and characters inside the
game this application immediately drew the attention of
users. One of the features that made this application so
successful was the networking that made it possible to
play together with friends at the same time.

PulzAR
Initially published as a single game by the existing
developer Exient Ltd, this application was later converted
into a package of games, all of them using Augmented
Reality technology [5]. One key feature this application
had when it launched was the platform where the games
could be played, PS Vita. Another interesting thing to
notice was the launch date, 12 June 2012, only four
months after the initial launch of the PS Vita console.

Toyota 86 AR
Another application that uses Augmented Reality
technology, Toyota 86 AR was developed by Toyota
Company in order to showcase the driving experience of
their newest car model [6]. Made for Android and IOS,
this application contains a single scenario where as soon
as one of the games drawing maps made by Toyota are
recognized, the user can start controlling the Toyota 86
car model in a virtual environment which serves as a real
simulator for those who want to inspect and test the form,
components, acceleration ratio, drifts etc.

SYSTEM ARCHITECTURE
In this section the main objective is to give a better
understanding of the events that occurs in the current
application, to familiarize with some of the used concepts
and to offer some details about their implementation.

- 113 -

 - 2 -

Game matrix

The first thing that must be prepared once the level starts
is to build the game map both visually on the screen and
internally in memory. Because in each scene there are
only two objects that must be recognized by the Vuforia
SDK [8], we can hold direct references to them. Once we
know the object on which the map will be build, we can
access its components and get details about the map size
with the GetSize method that return a bi-dimensional
vector where we find the width and height. Another
important thing that we must be aware of is the dimension
of a 1x1 piece of the matrix in relation with the world
space. For this we have created an enum structure for an
easier configuration, leaving the user to make the decision
before the game starts.

Once this is done, we must decide where to place the start
and finish point (represented in the image with “S” and
“F”) on the XY axis in our map from a visually point of
view. Let’s consider the rectangular shaped below as one
of our game drawings where we will build our map. One
more thing to remember is that each object in Unity is
represented by a position vector that describes the
coordinates of its center [7].

Figure 1. General representation of a game map

The only thing that remains is to create the matrix that
will correspond to the game map. Since the A* script
contains the functionality of finding an optimal path based
on a given map, it will be responsible with the matrix
creation and all its details.

Detecting the map drawing
For the map drawing detection in a level we have used the
OnTrackingFound method that is found inside the
CustomEventHandler class which was made available by
the Vuforia SDK. This script is attached to an object that

will soon by detected and offers some details about the
object, like its name by using an instance of the class
TrackableBehaviour, called mTrackableBehaviour.

Sending the message when an augmentable object was
found is done like this:
MapCreator.instance.MapFound(mTrackableBeha
viour.TrackableName);

Once this message was sent, we continue with adding
obstacles for our current level and then, we search for the
optimal path for our enemies that will soon be
instantiated. We can see in Figure 2 how this map looks in
our application.

Figure 2. Map space object.

Adding obstacles for current level

When sending the message that our augmentable object
was found, we establish our current level index, after
which we start instantiating obstacles on the map.

Using two “for” instructions from 0 to the maximum
number of lines respectively columns, we will move
through each space of our game map. One important thing
while doing the obstacles initialization is to register them
on our map:

Astar.instance.RegisterObstacle(i, j);

- where i represents the index of our current line and j
the index of our current column. In order to
instantiate an object we used the Instantiate method
from the MonoBehaviour class:

Vector2 pos = GetWoorldCoordsFromMatrix
Coords(new Vector2(i,j));

GameObject c = Instantiate(obstacle, new
Vector3(pos.x, pos.y, 0), Quaternion.
identity) as GameObject;

- 114 -

 - 3 -

Figure 3. Showing the complete map of a level.

The map from each level is built according to the black
portions from the image (see Figure 3). In the matrix
representation of the level we say that a space is available
when its value is 0, and an occupied space has its value
equal to 1. Thus when the pathfinder algorithm will run
this representation will help it search for the optimal path
and avoid all obstacles.

Finding the optimal path using A* algorithm
A* is the most popular choice when it comes to
pathfinding since its very flexible and can be used in a big
range of contexts, which is the primary reason we used it.

The base idea of A* [4] comes from Dijkstra algorithm
[2] because it can find the shortest path, but it also
contains elements from Greedy algorithm since it is based
on a minimum constant function for guidance during the
search, called also a heuristic function. The success of this
algorithm consists in combining these two information’s
from Dijkstra algorithm [2] (which favors nodes that are
closer to the start node) and Greedy algorithm (that favors
the nodes that are closer to the end node). In the standard
terminology when we discuss this algorithm, g(n)
represents the function that computes the exact cost from
start to any node, and h(n) represents the heuristic
function that estimates the cost from a current node to the
end node. The logic behind this algorithm is to balance
these two function when moving towards the final node.
Thereby, at each iteration this algorithm will chose the
solution that has the smallest value which is associated to
the function f(n) = g(n) + h(n).

In a map represented as a matrix there are numerous
heuristic functions for movement, however we will
mention only two of them, the first one being used in this
project.

First the Manhattan distance that allows movement in four
direction in a matrix represented map: north, south, east,

and west. This choice is the most popular because it is
easy to compute with the following function:

function heuristic(node, goal){
 dx = abs(node.x - goal.x);
 dy = abs(node.y - goal.y);
 return D * (dx + dy);
}

An important thing to notice is the value D which is a
constant and must be assigned at the beginning. For a
shortest path computation and keeping the heuristic
function “admissible” it is recommended to assign a small
value for this. Besides, there are different proposals
related to this constant that take into consideration more
aspects of a map like different terrain that imply different
traversal costs or the number of the obstacles in a scene,
but mostly this constant variable is assigned with 1,
representing the simplest case scenario which was also
used in this project.

When we need a more detailed traversal of the map we
can use eight directions which implies a heuristically
function that takes into account diagonal computation.
This function has the same effect as the one mentioned
earlier when it receives the four classical directions, but it
can also support new directions: north-east, north-west,
south-east, and south-west. The function that computes
the distance between two given nodes with this type of
movement is:

function heuristic(node){
 dx = abs(node.x - goal.x);
 dy = abs(node.y - goal.y);
 return D * (dx + dy) + (D2 - 2 * D) *
min(dx, dy);
}

The constant variable D was discussed above, but we can
see a new variable, D2. The value assigned to this is
strictly connected to the value of D with the given
formula: D2 = sqrt(2) * D.

Once these details have been discussed we can move on
to present the A* algorithm. There are two data sets,
OPEN and CLOSED. In the first set we add nodes that are
possible candidates when computing the path. Initially
this set contains only the start node. The CLOSED set
contains nodes that have already been examined. Initially
this set is empty. If we had to give a visual representation
of these sets we could say that the first represents the
frontier and the second shows the inside area of the
visited zones. Also each node will have a reference to its
parent or better said to the node through we reached it in

- 115 -

 - 4 -

our search, being able to determine the path by going
recursively through each parent of a node once we found
the final node.

The algorithm consists of a while loop that will pop out at
each step the best node from the OPEN set (the node with
the lowest value of its f function). If that node is the final
one, the algorithm will stop. Otherwise, the node will be
deleted from the OPEN set and added to CLOSED. Then
we examine all its neighbors. In any of these neighbors is
in the CLOSED set, they will be skipped. Also, if one of
them is in the OPEN set we skip them, avoiding a double
check. If none of these conditions are met, the node will
be added to the OPEN set and we will set its parent
reference with the current node and compute its cost equal
to f(n) = g(n) + h(n, n’), where n’ represents the extracted
node.

OPEN = priority queue containing START
CLOSED = empty set
while lowest rank in OPEN is not the GOAL:
 current = remove lowest rank item from
OPEN
 add current to CLOSED
 for neighbors of current:
 cost = g(current) +
movementcost(current, neighbor)
 if neighbor in OPEN and cost less than
g(neighbor):
 remove neighbor from OPEN, because
new path is better
 if neighbor in CLOSED and cost less
than g(neighbor): **
 remove neighbor from CLOSED
 if neighbor not in OPEN and neighbor
not in CLOSED:
 set g(neighbor) to cost
 add neighbor to OPEN
 set priority queue rank to
g(neighbor) + h(neighbor)
 set neighbor's parent to current
reconstruct reverse path from goal to start
by following parent pointers

In this project the OPEN and CLOSED set have been
represented as simple generic lists that contains element
of type AstarNode, which is a data structure create by us
with the following representation:
 public int x;
 public int y;
 public AstarNode parrent;
 public double g;
 public double rank;

where “x” and “y” represent the coordinates from the
game matrix, “rank” represents the value of the function
f(n) = g(n) + h(n), the rest of them being easily to figure
out from their name.

In order to help the players of the game, all details of this
algorithm can be presented to the students in class before
using this application. In the future we intend to add an
option to the application, where the players can see these
details of the A* algorithm.

Starting the game and details about the game
mechanics
Once the first six activities from the beginning of this
chapter have been successful, in the top left corner of the
screen a button named “Start” will appear, its role being
to start the game (See Figure 3).

Since the last activities refer to the start and end of the
game, something that is knows through the
EnemyController class, this one will be responsible the
send messages to the UIManager class to update the
screen interface according to the game state. Once the
game has been started the EnemyController class will
handle the instantiation and management of the enemies.
When an enemy has been created he will receive a
confirmation message that will initialize all of its data,
and after that it will be registered in a list of active objects
of the class that created it. After all this setup has been
done for an enemy, the class will launch the enemy
activity. Each enemy contains two main components,
UnitMovement and EnemyStats.

The first component will send a request to the A* script
for the optimal path from the starting point to end point,
and it will received a list of Vector2 objects that contains
the coordinates that must be followed step by step. Once
this list is obtained the object will start moving from its
initial position to the next point from the list. For the
object movement we have used a function which is found
in the MonoBehaviour class, Vector3.MoveTowards()
which has the following signature:

public static Vector3 MoveTowards(Vector3
current, Vector3 target, float
maxDistanceDelta);

The first parameter represents the initial position from
which we start, the second represents the final position
that we want to reach, and the third parameter represents a
measuring unit that will point the object towards to
destination, or for a better understanding it can be viewed
as a speed that dictates how fast the object reaches its
destination. In order to move an object with this function

- 116 -

 - 5 -

we must use it inside the Update function (function that is
being called at the beginning of each game frame).

The second component, EnemyStats, contains details
about the object life time. When an enemy is attacked it
will lose points from its current health and once this value
reaches below zero he will autodestruct, but not before
sending a message to the script that is responsible for the
enemy management.

Once an enemy started its activity the only interaction he
will have will be with the tower components and their
projectiles represented through the TowerLogic and
BulletLogic classes. These contain functionality for
physical interaction between object with the help of the
OnTriggerEnter and OnTriggerExit functions.

Another activity, that takes place after the game is started,
is the tower placement in one of the free spaces of the
map (see Figure 4). For this we have used another
function from MonoBehaviour class, OnClikc(). This
function gets called each time the user physically presses
the click button of the mouse and the cursor is over the
object that contains a script that has this function and a
collision component, which in our case is a BoxCollider.
For this we have built a new class called AvailableSpot
that is attached to each object that represents a piece of
our game map. Once the obstacles have been added and
the enemy path is known, the collision component will be
disabled for the objects that meet these conditions so that
the player can no longer interact with them since they are
occupied spaces. As we can see from the picture below
that the green spaces are available for building towers and
by selecting one of the occupied spaces we find the
collision component (BoxCollider) inactive.

Figure 4. Displaying available spots and a tower

At this step, we can use different possible configurations
for the added towers, which can help the students to
understand better how the algorithm A* works. There are
cases when after adding a tower it is possible not to find a
path from the start point to the end point, there are cases
when the added tower doesn’t influence the initial
solution of the A* algorithm, or there are cases when A*
algorithm build another solution. All these cases must be
analyzed and discussed with the students.

Description of a level and necessary steps to finish

In this section we will present one of the built levels and
all the steps that are necessary in order to finish it.

The top-left and bottom-right corners represent the start
and end point of the level. By pressing the Start button the
enemies will be instantiated, and their main purpose is to
reach the end point. Our goal is to prevent them from
doing this. By activating the “Pause & Place a tower” the
game will be paused and the user can select one of the
available spaces, represented by green, where he can
place towers that will destroy the enemies. Once a spot
has been selected, a confirmation button will appear
bellow, after which the game can be resumed or return to
the state where it waits for the user to repeat the action we
just mentioned.

Once all enemies have been eliminated, a message will be
displayed on the screen and we can return to the main
menu scene by pressing the “Escape” key (See Figure 5).

Figure 5. Finishing a level

CONCLUSIONS
As mentioned in introduction, the aim of this project was
to create an educative game including elements of
Augmented Reality. Matter of our using Unity, the
Vuforia SDK’s and developed algorithms we managed to

- 117 -

 - 6 -

develop an app that offer the possibility of transforming a
part of it in real world game space. Thus users can
increase interest since the board on real interaction
represents a degree of novelty for attracting Player. Also,
the user can add obstacles on the map and create different
possible configurations, and in this way he will
understand better how the A* algorithm works.

This application can be extended to other platforms, but
also we can add new features such as connecting multiple
participants to the same game session, creating new game
mechanics such as upgrading towers, creating multiple
terrain types, each with a cost different to be covered,
adding new models for representing objects in scene and
even the ability to add their own drawings with easy to
use editing interface obstacles.

When we first started this project, we did not have in plan
a different interaction for the players, but as we continued
working we soon realized that this type of interaction
would give the game a better feel and experience.

ACKNOWLEDGMENT
This work is partially supported by POC-A1-A1.2.3-G-
2015 program, as part of the PrivateSky project
(P_40_371/13/01.09.2016).

REFERENCES
1. AR Defence 2: https://itunes.apple.com/en/ app/ar-

defender-2/id559729773?mt=8 (Last time accessed on
29 May 2017).

2. Dial, R. B. Algorithm 360: Shortest-path forest with
topological ordering. Communications of the ACM. 12
(11), (1969), 632–633.

3. Digital Marketing Megatrends 2017:
http://www.smartinsights.com/mobile-marketing/
mobile-marketing-analytics/mobile-marketing-
statistics/ (Last time accessed on 30 June 2017).

4. Hart, P. E., Nilsson, N. J., Raphael, B. A Formal Basis
for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and
Cybernetics SSC4, 4 (2), (1968), 100–107.

5. PulzAR: https://goo.gl/3FWM8n. (Last time accessed
on 29 May 2017).

6. Toyota 86 AR: http://www.toyota86ar.com/. (Last
time accessed on 29 May 2017).

7. Unity: https://unity3d.com/ (Last time accessed on 29
May 2017).

8. Vuforia: https://developer.vuforia.com/ (Last time
accessed on 29 May 2017).

- 118 -

