

A user-centric approach to test automation of web-based
applications

Ionuț PETRE
ICI Bucharest

8-10 Averescu Avenue
ionut.petre@ici.ro

Dragoș-Marian SMADA
ICI Bucharest

8-10 Averescu Avenue
dragos.smada@ici.ro

Radu-Marius BONCEA
ICI Bucharest

8-10 Averescu Avenue
radu@rotld.ro

ABSTRACT
Modern society is imposing a faster rhythm in most of the
life aspects, with software development being in the front
line. Business requirements are stressing development
teams for faster releases of new features and functionalities
of the applications. The software developers adapted to the
market demands by migrating from traditional development
models to what is known as “continuous delivery”. This
implies short cycles of software development to ensure a
higher degree of reliability for application releases. The use
of this approach leads to a frequent building, testing and
releasing of the software. Modern web applications offer a
wide palette of user interactions and reached the level
where their behavior is very similar to native applications.
As a result, automation of the tests on the app behavior on
the client side should be a priority for software
development teams. For web-based apps, the client-side
experience is the most important factor, as it is the most
important factor deciding the application success. Frequent
releases can induce many errors in the app’s source code
and can affect the functioning on the user side; tests
automation is the solution that can prevent flaws in the app
behavior at the user.

Author Keywords
continuous delivery; user-centric test; automatic web tests;
app behavior tests; continuous deployment

ACM Classification Keywords
Software and its engineering

INTRODUCTION

In a fast-pacing society in which technologies are emerging
continuously, software development is a continuous task for
every business or institution that wants to maintain a high
level of quality. Organizations need unprecedented velocity
and agility to seize new opportunities and software
development teams are under pressure to deliver high-
quality software at a faster rate than ever before. Drawn-out
development projects are no longer acceptable in the
conditions of the modern business demands. The
development team must stand up to this challenge while
facing the most diverse technology ecosystem in the history
of computing [5]. The creation of software is a team effort,
with a wide range of aspects that require integration and
conflict solving. The number of web-based applications is

increasing, and so are the levels of reliability and
complexity required to develop the apps. Scalable,
instantly-accessible multi-user, multi-component, multi-tier
systems are being required to perform mission-critical tasks
in an environment of continuous delivery and operation,
with an expectation of zero downtime and easy
maintenance and administration [3]. A poor communication
between team members or a poor planning of tasks can lead
to major failures. In global software engineering,
communication and coordination become more challenging,
and that fact affects the quality of the product [1].

A proper test automation solution reduces the time and
resources required to adequately test software, while also
increasing the level of quality of the application under test
[2].

CONTINUOUS SOFTWARE DELIVERY
Continuous delivery represents a software engineering
approach in which teams produce software in short cycles,
ensuring that the software can be reliably released at any
time [4]. The goal is to build, test, and release software
application versions at a frequent rate. Continuous delivery
is different than the concept of continuous deployment,
where any change is automatically deployed to the
production environment. Continuous delivery means that
the team ensures every change can be deployed to
production but may choose not to do it, usually due to
business reasons. In order to do continuous deployment,
one must be doing continuous delivery [10]. Continuous
delivery and tests automation are two symbiotic concepts
with the goal of providing a faster release of new versions
of the application.

Agile development
Facing business demands to accelerate time for software
release, developers are switching from traditional
development models to continuous delivery based on Agile
development methods. Agile development is appealed to
be an innovative and receptive effort to address users’
needs concentrated on the prerequisite to distribute
applicable working business applications faster and
inexpensive [6]. Through this approach, software is
developed in short cycles, thereby ensuring reliability for
timely releases. This results in building, testing and
releasing the software faster and more frequently. The
approach has proven to reduce cost, time and the risk of
delivering critical changes to production, thereby allowing

- 49 -

incremental updates to the production system [7]. For
development teams to take application agility and
efficiency to the level required by the modern society, three
major concepts must be followed [5]:

• Focus on modern software architecture paradigms and
frameworks. These are the new trend in software
development and can reduce considerably the time to
launch an application.

• If possible, replace heavyweight platforms with
lightweight application infrastructure. This can bring
scalability to the system while maintaining fast
development.

• Invest in automation and strive for increased agility
across the life cycle. Automation is a necessity due to the
fact that modern architecture and lightweight
infrastructure are characterized by changes which cannot
be manually managed.

Figure 1 - Continuous Delivery[7]

Most organizations follow a software development cycle
plan to develop, maintain, modify or enhance their
software. The development cycle is a complex job that
allows team managers to estimate development costs, to set
timeframes and plan tasks. Developing quality applications
require teamwork and complex planning of development
cycle. Given the volume of work and tasks that must be
performed by the development team, the appearance of
flaws can hardly be avoided.
Continuous delivery is driven by continuous integration,
where the code is logged-in several times a day and then re-
compiled, leading to frequent deployments, which mandates
greater levels of process automation. For a successful
project, automation of the build and deployment process is
critical; this ensures a self-testing build and makes the
entire process transparent and agile system [7].
Basic considerations on user-centric tests
The web-based applications are written to run in a browser,
therefore testing these applications in an automated manner
must involve the simulation of browser behavior. The
testing automation from a user-centric perspective involves
the usage of software tools that perform tests repeatedly on

the application by simulating the actions of an operator or
user in a browser. The automation tests for a web-based
application must be focused on the user experience, having
the goal to raise the users’ confidence in the quality of the
application. The user-centric approach also provides
advantages for the development team and for the clients.
The developers can identify and solve issues, and the clients
can verify that the application fulfills specifications and
requirements.

Test automation is not appropriate in all cases of software
development. There are times when manual testing is more
suitable to test an application – such is the case when the
application interface is changing frequently. Therefore the
user-centric automation is the solution when the interface is
stable and provides key elements that are rarely or never
changed. The alteration of the interface implies the
reconstruction of test-cases and an analysis on costs-
benefits must be done by the organization prior to the
decision of automation.

USE CASE OF USER-CENTRIC TEST AUTOMATION
Solutions and environments

The use case presented in the article represents the test
automation of a complex web application used by the
operators at the Romanian Top Level Domain registry. The
authentication in the application is done by username and
password, with users being already set.

The web application functions over a middleware
architecture, meaning that this provides ways to connect the
various software components into an application so that
they can exchange information with relatively easy-to-use
mechanisms. Middleware deals with component
communication modes and can be used in a wide range of
domains. The application is written in PHP while the
middleware is written in Python. The middleware provides
a set of commands that can be integrated into the test
scripts. The application is under continuous development
and integration with a stable interface, therefore, tests
automation was considered a proper solution for the
development team.

Selenium is an open-source solution consisting of a suite of
tools for automating the behavior of web browsers across
various platforms. It provides support for several
programming languages, such as Java, Python, C#, Ruby. It
has two options for usage [8]:

• Selenium IDE – an add-on for Firefox browser to record-
and-playback interactions with the browser;

• Selenium WebDriver – a collection of language-specific
bindings, to create browser-based regression automation
suites and tests. The scripts can be used in different
environments.

Selenium Python bindings provide a simple API to write
functional/acceptance tests using Selenium WebDriver.

- 50 -

Through Selenium Python API the functionalities of
Selenium WebDriver can be accessed for widely-used
browsers such as Firefox, Internet Explorer, Chrome,
Safari, phantomjs, etc [8].

Tests automation implementation

The starting point is represented by the elaboration of a
document containing all the operations that the user can
perform on the app. The test assertions in the document
were derived from the OASIS Test Assertions Guidelines
Version 1.0 [9] that describes best practices in applying a
general test assertion model, what test assertions are, their
benefits, and how they are created. The main purpose of the
test assertions is to remove the ambiguities or statements
that can lead to impractical or unnecessary development
efforts. The document can be used whenever there is the
need for a test change or for creating new tests. If not
developed by the specification authors, test assertions
should be reviewed and approved by them which will
improve both the quality and time-to-deployment of the
specification. Therefore, best results are achieved when
assertions are developed in parallel with the specification.
An alternative is to have the leader of the team that is
creating test suites to write the test assertions as well and to
provide feedback to the specification authors [9]. In this
case, the document was elaborated by the authors of the
application specifications in collaboration with the team of
operators. The document is updated through the test
development process with situations and test cases that the
operators missed

Selenium IDE comes with an interface for developing
automated tests, with a recording feature which records user
actions as they are performed. Each user action is translated
into a Selenium command that can be personalized. The
recording can be exported as a reusable script written in a
programming language that can be later executed on a
server. Selenium IDE was the tool used for translating into
user behavior on the browser for the assertion tests
specified in the document. Each test recorded user actions
in various key elements – authentication, application menu,
links, buttons, or confirmation/warning messages. The
records were exported as Python2 WebDriver script files.
The recording was done in Firefox browser, on a Windows
platform.

The script files of tests must run headlessly on a continuous
integration server, running with Linux Centos 6, which does
not provide a display output to launch a browser. The issue
is that Selenium requires simulating a web browser in order
to run the python files exported from IDE. The solution to
this problem was Xvfb, an X server for machines without
hardware display which emulates a virtual framebuffer
using the virtual memory of the machine and in our case is
used to simulate the display needed for the browser. To link
the tests from scripts to Firefox, another tool is required:
Geckodriver. This, in fact, is a proxy for the W3C
WebDriver-compatible clients to interact with Firefox.

The commands for the installation of Selenium, Xvfb, and
Geckodriver on the application’ server:

> yum install Xvfb firefox

> pip2.7 install -U selenium==2.53.2

>wget geckodriver-v0.11.0-linux64.tar.gz

> tar -xvzf geckodriver-v0.11.0-linux64.tar.gz

The work procedure followed by the team was to perform
the test in Selenium IDE, installed in Firefox. The
assertions were made for elements considered stable on the
web page, such as <h> elements, action buttons, menu
links, alert messages, confirmation messages, user-
interaction alert windows:

Figure 2 - Use of Selenium IDE for recording web activity

After recording the operator actions in the web application,
we run the test from Selenium IDE to ensure proper
assertion of the saved record.

Each test is exported as Python2 unit test WebDriver in a
CentOS platform. Running the test under Python led to the
appearance of errors due to the insufficient transition time
between the page and any messages or alerts that appeared.
This required the manual setting of additional pauses of 1 or
2 second between the launching and closing of any
messages that require user interaction.

Tests automation server

For a complete automation process, the tests must run
without user assistance. Jenkins, a Java-based open source
solution to deliver continuous build, is the tool to complete
this task. It has the capability to monitor any job defined as
a cron, SVN or GIT. A continuous integration server is
designed to automatically or manually trigger complex
workflows to build, test, and deploy software components.
Although it is a platform focused on building software
systems, Jenkins-CI can easily be expanded with over 800
extensions for complex computational tasks. To create,
organize and discuss, the development team uses Atlassian
Stash, a Git repository management solution for enterprise

- 51 -

teams. It allows everyone to easily collaborate on your Git
repositories. To ensure code stability, good collaboration
between developers and fast release cycles, the developers
integrated Jenkins to build tests automatically on every pull
requests made on the Stash Server.

Stash Webhook was configured on the Stash server to
trigger Jenkins automatically. In the workflow, a developer
creates a branch on his local repository, completes its task,
then commits and pushes the changes to Stash and creates a
pull request. When the pull request is merged, Jenkins is
triggered automatically to make the build and run the
Selenium tests.

Disadvantages
The development and maintenance of tests automation
imply considerable effort on the development team and
costs on the client when it comes to complex web
applications, especially when the user interface changes
frequently. In these cases, it can prove a hard task to create
and maintain automated tests for dynamic contents.

The assertion document must be elaborated considering all
the aspects, including different account types in case the
displayed content or the client interface is different. These
situations require additional effort.

CONCLUSION
The decision on whether to perform automated tests varies
from one organization to another, but in times where Agile
development is spreading for faster software development,
the automation of tests becomes a requirement for a
successful implementation.

User-centric tests automation presents major advantages:

• Better experience for the users on the client side, as the
automation increases the application’s reliability;

• Reduces the load on the development team. Code review
is performed faster as the reviewers only verify the code
that passes the client-side tests;

• Faster integration of new developers in a team. The tests
assertions document leads to a better understanding of the
application for new-comers;

• In the event of committing bad code, the committed code
fails the tests, is automatically denied so the code flaws
do not reach the production environment

Besides the development of the tests, there are virtual
machines that need to be provisioned and configured, and
testing environments must be set and deployed. But in a
long-term vision, tests automation reduces the development

time and decrease the risk of bugs that might interfere with
the application behavior and raises the users’ confidence.

ACKNOWLEDGMENTS
This work has been supported by a Romanian grant,
financed by ANCS under COGNOTIC 1609 0802 / 2016.
We thank all the colleagues who participated in the tests
automation development and also provided helpful
comments on previous versions of this document.

REFERENCES
1. DeFranco, J.F., Laplante, P.A. An Integrative Review

and Analysis of Software Development Team
Communication Research. IEEE Transactions on
Professional Communication PP(99) · June 2017

2. Dustin, E., Rashka, J., Paul, J. Automated Software
Testing: Introduction, Management, and Performance,
1999

3. Hearn, J.E., The Development of an Automated Testing
Framework for Data-Driven Testing Utilizing the UML
Testing Profile, 2016

4. Lianping, C. "Continuous Delivery: Overcoming
Adoption Obstacles", Continuous Software Evolution
and Delivery (CSED) IEEE/ACM International
Workshop on, pp. 84-84, 2016

5. Knoernschild, K., Knipp, E., Watson, R., Kenefick, S.,
Brian, D., Olliffe, G., Holz, B., Dayley, B., Cheetham,
L., Modernize Application Development to Succeed as a
Digital Business, Gartner, March 30, 2016
https://www.gartner.com/doc/3270018?refval=&pcp=m
pe

6. Saleh, S.M., Rahman, A.M., Asgor,K.A. Comparative
Study on the Software Methodologies for Effective
Software Development. International Journal of
Scientific & Engineering Research, Volume 8, Issue 4,
April-2017

7. Sitaraman, S., Bar, R., Test Automation Strategies in a
Continuous Delivery Ecosystem, Cognizant, 2016

8. http://www.seleniumhq.org/, accessed in May 2017
9. Test Assertions Guidelines Version 1.0, 2013

http://docs.oasis-
open.org/tag/guidelines/v1.0/cn02/guidelines-v1.0-
cn02.pdf

10. https://martinfowler.com/bliki/ContinuousDelivery.html
, accessed in May 2017

- 52 -

