

Gesture-based Visual Analytics in Virtual Reality
Mihai Pop

Technical University of Cluj-
Napoca

str. G. Barițiu 28, 400027,
Cluj-Napoca, România

 mihai.m.m.pop@gmail.com

Adrian Sabou
Technical University of Cluj-

Napoca
str. G. Barițiu 28, 400027,

Cluj-Napoca, România
adrian.sabou@cs.utcluj.ro

ABSTRACT
This paper presents an approach to dynamic data
visualization and manipulation using virtual reality as a
means of display and the Leap Motion controller in order to
interact with the virtual scene. The data and related APIs
provided to the virtual reality application are based on a
separate web application which provides REST APIs in
order to get and further manipulate existent data. The
algorithm pipeline is managed by using the Unity Game
Engine, which provides a means to express control and
logic over the sensory inputs of the Leap Motion controller.
The application is built by using the Unity Game Engine
and it is streamed on any Android phone through RiftCat
Vridge software solution for streaming application over Wi-
Fi, while interpreting the phone’s sensor input and
translating it into virtual head movements. The issues from
the standpoint of a corporate need for a more interactive
and natural experience in viewing and interacting with big
data.

Author Keywords
Visual Analytics; Virtual Reality; Leap Motion; Gestures
detection; RiftCat Vridge; Node server application;

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Virtual Reality; Data analytics.

INTRODUCTION
Over the last couple of years, the virtual reality scene has
become more and more popular. Part of the reason is that
computational power has become less expensive and
readily available to those who study and create projects
with such needs. From its early cumbersome beginnings,
Virtual Reality has become widely spread in the game
industry through simulation games using handheld
controllers and a head-mount for displaying the virtual
scene. Though this has been the main use case for virtual
reality applications, new use cases are emerging lately from
the corporate world.

When compared to the conventional means of analyzing big
data, virtual reality data analytics is more appealing and
visually pleasing than scrolling through endless table rows.
There are large datasets which need to be sorted, viewed,
compared, enhanced. A virtual reality solution would offer
the user a means of interacting with the data in a more
natural manner; through gestures, and physical user
interface objects which mimic the behavior of real-life
buttons, sliders and knobs.

As a response, this need of a more convenient and natural
way to approach data analytics has fueled the development
of an application designed to receive large sets of data and
display and manipulate them in order to fulfill the user’s
data queries and study.

The context for this virtual reality application is set by the
corporate need of a better data analytics visualization and
manipulation approach. Having this in mind, an auxiliary
server-side application has been developed in order to
substantiate real-world server behavior that we plug into
our analytics application. The server application provides a
basic REST API for querying and filtering data.

Then, the users queries data by requesting it with the
appropriate request URL. The requesting of data can be
done through the use of hand gestures in front of the Leap
Motion controller. For testing purpose, the data is currently
represented as a 3D array of cubes. This array of cubes is
generated at runtime through an instantiation algorithm
which takes into account all data from the server
application and maps it accordingly to Unity game objects
with attached data storing scripts for the server-side data.

So, by mapping the server-side data into compatible Unity
game objects, we can apply our desired logic onto the
virtual scene providing the user many features for an
interactive and immersive experience in order to suit his
goals through simple hand gestures.

The proposed solution makes use of the phone’s gyroscopic
information in order to track head movements and to supply
this information to the cameras in the virtual scene,
allowing them to rotate and translate with respect to the
tracked head movements. Also, we use the Leap motion
controller for its hand tracking and development library
which provides a toolkit for defining custom gestures to be

- 101 -

detected and many user interface functionalities which
make the application user friendly and smooth.

The chosen solution uses custom gestures built upon
predefined elements for certain actions which are all
described as Unity classes or logic gates between several
gesture detectors from the Leap Motion Controller library.

This paper elaborates on a dual application solution which
tries to solve the issue of big data manipulation using
natural gestures in order to achieve this goal.

RELATED WORK
A variety of techniques for virtual reality interaction
already exist, due to the high demand in the gaming market
for such applications and games. As a result, several
iterations of relevant libraries and APIs have been created
to suffice the development of virtual reality applications. As
virtual reality further matures, it will only get easier to start
developing and creating an interactive virtual reality
application due to the advances of previous developers and
the documentation of their features.

Ridder et al. [1] used Virtual Reality and Augmented reality
coupled with gestures to create an immersive environment
for visualizing fMRI data. fMRI or Functional magnetic
resonance imaging consists of a functional neuroimaging
procedure using MRI technology in order to measure brain
activity by detecting changes related with blood flow. They
suggested that VR/AR can potentially allow a reduction in
visual clutter and lets users keep their focus on
visualizations by allowing them to navigate the data
abstractions in a natural way.

Moran et al. [2] used interactive Virtual Reality to
manipulate Twitter datasets and to visualize them in the
original geospatial domain. By using emerging
technologies, they created a fully immersive tool that
promotes visualization and interaction and that can help
ease the process of understanding and representing big data.

Olshannikova et al. [3] provide a multidisciplinary
overview of the research issues and achievements in the
field of Big Data and its visualization techniques and tools.
They discuss the impacts of new technologies, such as
Virtual Reality displays and Augmented Reality helmets on
the Big Data visualization as well as to the classification of
the main challenges of integrating the technology.

Hackathorn and Margolis [4] outline the objectives for
analytical reasoning and immersive data spaces, followed
by suggestions for the design and architecture of data
worlds. Finally, they describe current work for building
data worlds.

THE LEAP MOTION CONTROLLER
The Leap Motion Controller device [6] consists of two
cameras and three infrared LEDs. These track the infrared

light with a wavelength of 850 nanometers, which is of
course outside the visible light spectrum.

Thanks to its wide-angle lenses, the device has a large
interaction space of 0.226 cubic meters, which takes the
shape of an inverted pyramid – the intersection of the
binocular cameras’ fields of view (Figure 1).

With the Orion beta software (the current iteration of the
software development kit for the Leap Motion device), this
has been expanded to 2.6 feet (80 cm). This range is limited
by LED light propagation through space, since it becomes
much harder to infer your hand’s position in 3D beyond a

Figure 1. Leap motion interaction area [5]

certain distance.

At this point, the device’s USB controller reads the sensor
data into its own local memory and performs any necessary
resolution adjustments. This data is then streamed via USB
to the Leap Motion tracking software.

The data takes the form of a grayscale stereo image of the
near-infrared light spectrum, separated into the left and
right cameras. Typically, the only objects you’ll see are
those directly illuminated by the Leap Motion Controller’s
LEDs. However, incandescent light bulbs, halogens, and
daylight will also light up the scene in infrared. You might
also notice that certain things, like cotton shirts, can appear
white even though they are dark in the visible spectrum.

Once the image data is streamed to your computer, it is time
for complex mathematical computations. Despite popular
misconceptions, the Leap Motion Controller doesn’t
generate a depth map – instead it applies advanced
algorithms to the raw sensor data.

The Leap Motion Service is the software on your computer
that processes the images. After compensating for
background objects (such as heads) and ambient
environmental lighting, the images are analyzed to
reconstruct a 3D representation of what the device sees.

- 102 -

Next, the tracking layer matches the data to extract tracking
information such as fingers and tools. Our tracking
algorithms interpret the 3D data and infer the positions of
occluded objects. Filtering techniques are applied to ensure
smooth temporal coherence of the data. The Leap Motion
Service then feeds the results – expressed as a series of
frames, or snapshots, containing all the tracking data – into
a transport protocol.

NODE REST APPLICATION WITH MONGODB
DATABASE
As mentioned in the introduction, there is an auxiliary
application which interacts with the virtual reality
application, providing it with the dynamic data and
advanced query capabilities. In the following, there is a
brief description of the core concepts of such an
application.

One of the most used approaches is Representational State
Transfer – REST – because it is an open approach for lots
of conventions that are used for consumers of your API.
The way this transfer is made is determined by the
resources provided by your API.

RESTful applications use HTTP requests to perform four
operations termed as CRUD (C: create, R: read, U: update,
and D: delete). Create and/or update is used to post data, get
for reading/listing data, and delete to remove data.

MongoDB [7] is an open source database that uses a
document-oriented data model. MongoDB is one of several
database types to arise in the mid-2000s under the NoSQL
banner. Instead of using tables and rows as in relational
databases, MongoDB is built on an architecture of
collections and documents. Documents comprise of sets
key-value pairs and are the basic unit of data in MongoDB.
Collections contain sets of documents and function as the
equivalent of relational database tables.

So, the server-side application is a REST application which
uses Node [8] for server emulation, a server-side solution
for JavaScript, and in particular, for receiving and
responding to HTTP requests. The application is written in
JavaScript language, for a clean and rapid development.

LEAP MOTION GESTURES
The Leap motion software development library by itself
does not contain definition for complex gestures [9]. The
Leap motion API contains definitions for the mapped
human body parts (Hand, Arm, Bone, Finger, etc.) and also
definitions for concepts like Frame (the clipped viewport in
which a Leap object exists) or Controller (you can access
the actual controller attributes and methods) or other non-
physical control concepts.

So, in order to define more complex gestures, we can make
use of the Leap Motion Detection Utilities Module. The
detection utilities are a set of scripts in the core asset
package that provide a convenient way to detect what a

Figure 2. The configuration of the Extended Finger

Detector

user’s hand is doing. For example, you can detect when the
fingers of a hand are curled or extended, whether a finger or
palm are pointing in a particular direction, or whether the
hand or fingertip are close to one of a set of target objects.

Detectors can be combined in order to declare complex
gestures. This can be done by using a Logic Gate. The
Detector Logic Gate provided by this module is in itself a
detector which combines two or more detectors to
determine its own state.

Detectors ultimately dispatch standard Unity events upon
activation or deactivation. This provides a convenient
means to hook different function handlers.

For instance, when we would want to detect if the user has
his hand camera-facing and open we would assemble the
following detectors:

1. Extended Finger Detector (Figure 2) - configure
the component so that all fingers must be
extended.

2. Palm Direction Detector (Figure 3)

a. Pointing direction = (0, 0, -1)

b. Pointing type = Relative to Horizon

c. On and off angles: set as desired

Figure 3. The configuration of the Palm Direction

Detector

- 103 -

Figure 4. Detector Logic Gate configuration

After that, we can link these two detectors in the Detector
Logic Gate and link other C# scripts and functions to
further our desired logic or use case (Figure 4).

This minimal setup can facilitate powerful results. The
above example links the detection of a camera-facing open
hand to a function call from a separate file, which provides
an UI attachment to the left palm of the user (Figure 5).

Another such gesture is pinching which is defined similarly
through the use of detectors. The effects of pinching with
the left hand while looking at a given cube will cause it to
highlight and display a panel over it with its mapped data

Figure 5. The instantiation of UI components on camera-
facing open hand gesture

Figure 6. Pinching with left hand highlights cube and displays
its information

from the server-side application (Figure 6).

The data from the server-side application is parsed before
attaching it in the form of data scripts to Unity game
objects. The parsed JSON data is further integrated in the
application by being mapped as a custom list of
ResourceNode objects, which are a custom class linked to
the project namespace.

If the user would pinch with his right hand while looking at
any certain cube, that cube will change position in the Unity
scene hierarchy and shall be moved under the RTS node
which stands for Rotate Translate Scale node (Figure 7).

This Node has scripts attached to it which rotate, translate
and scale any mounted game object. It also has capabilities
for one and two-handed rotation.

SERVER APPLICATION IN DEPTH
The server application uses a MongoDB database on port
27017, the standard MongoDB port, this can obviously be
changed if conflicting settings. The application runs on port
3000 and has different URL mappings, in order to provide
consumption to its API.

Figure 7. Pinching with right hand mounts the looked at cube
in the RTS node

- 104 -

Figure 8. Main get URL for getting all database entries

Of course, in order to start the MongoDB local service on
port 27017 we would need to execute this statement in a
terminal: mongod --dbpath "C:\data". This statement just
starts the “mongod” process having as database path, the
above-mentioned path.

The server mappings are a collection of URLs for getting
information, which support search parameters. Examples of
the URL mappings are as follows:

1. http://localhost:3000/api/data

This is the main GET URL, which gets all data in
the database (Figure 8)

2. http://localhost:3000/api/data?name=Youfeed

This gets the node with the name Youfeed.

3. http://localhost:3000/api/data?influenceGt=20&inf
luenceLt=40

This gets the nodes with the influence key between
20 and 40 (Figure 9).

These filtering operations can essentially be endless
because MongoDB offers rich functionality for collection
manipulation.

Server Data Mapping
In order to represent the server-side data as cubes, there
must be defined some transitory objects between the
primitive cube game objects and the actual raw data.

The typical pipeline of processing server data in our
application is:

1. Execute Start void function from Instantiation
Service script

This function calls another function which does the actual
request.

2. Check if erroneous response from the function
which made the server call. If everything is ok, we
call a function which builds the data

Figure 9. Nodes between influence range [20, 30]

3. The function which builds the data does the
parsing of the JSON server response. Each value is
parsed as the appropriate data type it should have.
A list of Resource Nodes is created, which aid in
mapping the JSON data. Resource Node is a
custom class which belongs to the project
namespace After parsing, call a function which
creates nodes.

4. The function which creates the nodes loops over
the list of Resource Nodes and creates new Cube
object which is also a custom class that has
attributes for parsed values and methods for setting
them and also a render method which adds a game
object to the scene with mapped properties

5. The position of each cube is computed by the
place cubes function which basically tries to
construct a cube of cubes

IMPLEMENTATION

The Unity game engine
For the implementation, there was an extensive research as
to how to assure compatibility the many components at play
in this project. The final versions chosen for the
components are:

1. Leap Motion SDK 3.1.2

2. Leap Motion Core SDK 4.1.4

3. Leap Motion Attachments Module 1.0.4

4. Leap Motion UI input module 1.0.0

5. Unity Game Engine 5.3.4f1

6. RiftCat Vridge 1.3.3

7. Oculus Runtime 0.8

- 105 -

The reasoning for choosing these compatible versions was
in order to stream the application on any android phone and
make use of its sensors by not faking sensor input and using
the actual phone’s sensor information.
CONCLUSION
In the world of virtual reality, technology is advancing
drastically and new implementations and solutions to
problems we do not know we have arrive every day. The
rise of the virtual reality world has fueled other industries to
peer down and indulge into the advantages this industry
brings.

Therefore, the use cases associated with virtual reality got
more complex and more ‘big players’ got into the virtual
reality game. In consequence, there is a fueled need in the
corporate world for a solution to common reporting
problems through the means of virtual reality.

Trying to provide a user friendly and straightforward
solution, this application could be the start of the modern
way to visualize and manipulate data analytics by using
virtual reality.

This paper presented a dual application solution in order to
give a user the opportunity to do his queries and tasks
through a virtual interface in which everything is controlled
by gestures and intuitive design.

Future work includes a better user experience and
integrating with email and text-to-speech APIs.

REFERENCES
1. M. de Ridder, Y. Jung, R. Huang, J. Kim and D. D. Feng.
Exploration of Virtual and Augmented Reality for Visual
Analytics and 3D Volume Rendering of Functional

Magnetic Resonance Imaging (fMRI) Data. 2015 Big Data
Visual Analytics (BDVA), TAS (2015), 1-8

2. A. Moran, V. Gadepally, M. Hubbell and J. Kepner.
Improving Big Data visual analytics with interactive virtual
reality. 2015 IEEE High Performance Extreme Computing
Conference (HPEC), (2015), 1-6.

3. Ekaterina Olshannikova, Aleksandr Ometov, Yevgeni
Koucheryavy and Thomas Olsson. Visualizing Big Data
with augmented and virtual reality: challenges and research
agenda. Journal of Big Data 2, 1 (2015), 22.

4. R. Hackathorn and T. Margolis. Immersive analytics:
Building virtual data worlds for collaborative decision
support. 2016 Workshop on Immersive Analytics (IA),
(2016), 44-47.

5. Alex Colgan. How Does the Leap Motion Controller
Work?. Leap Motion Blog. (2014).
http://blog.leapmotion.com/hardware-to-software-how-
does-the-leap-motion-controller-work/
6. Leap Motion Inc. Leap Motion. (2017).
https://www.leapmotion.com/
7. MongoDB Inc. MongoDB. (2017)
https://www.mongodb.com/
8. Node.js® JavaScript runtime (2017)
https://nodejs.org/en
9. Leap Motion Inc. Using the Tracking API. Leap Motion
Developer (2017).
https://developer.leapmotion.com/documentation/python/de
vguide/Leap_Guides2.html

- 106 -

