

Real-time Guided Procedural Terrain Generation
Sima Vlad Grigore

Technical University of Cluj-
Napoca

Str. G. Barițiu 28, 400027,
Cluj-Napoca, România
simavlad_10@yahoo.com

Adrian Sabou
Technical University of Cluj-

Napoca
Str. G. Barițiu 28, 400027,

Cluj-Napoca, România
adrian.sabou@cs.utcluj.ro

ABSTRACT
This paper presents an application that allows real-time
large terrain generation using crude user input regarding the
terrain’s height features. Our technique uses a
preprocessing phase to generate plausible terrain out of
crude bitmaps and achieves real-time performances by
splitting the large terrain into chunks and processing and
displaying only the chunks surrounding the user, while
maintaining the height features suggested in the original
crude input.

Author Keywords
Terrain synthesis; Real-time; Heightmap; Worley noise;
Perlin noise; Filters.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Algorithms; Terrain models.

INTRODUCTION
Creating and modeling realist environments, has become
over the last decades one of the most disputed and
discussed aspect in computer graphics. Given the fast
evolution that technology is facing these days, and the
significant hardware progress in graphics, more and more
detailed terrains are developed using a procedural approach.
Since 1982 when it found its first commercial use in the
well-known Star Track series by generating alien planets,
the concept of creating content based on algorithms or
rules, has faced a rapid and impressive growth, being used
in large and diverse areas nowadays.

Procedural content generation (PCG) represents the process
of creating content with limited or absent implication from
the user. This doesn't always mean that the user won't be
able to affect in anyway the result of the generation part,
but that this process will mainly relay on the randomness of
the algorithms involved. Based on the stage in which it is
created, we can distinguish two different types of
procedural content generation. The first one is offline PCG,
and it's called this way because all the content is generated
during the development stage and the result comes with all
the features already implemented. This is a method that is
very safe regarding faults, and has a lower demand for the
algorithm because, in both cases, all the errors or the results

that don't fit a particular expected model can be corrected
by hand.

The second type of PCG is the online version, which as the
name suggests, involves creating terrain at startup, also
referred to as real-time generation of content. Despite the
fact that in this scenario the algorithms are far more
complex, it can offer various opportunities for generating
infinite terrain, creating an unforgettable experience for the
users.

A common agreement in the field of PCG is that neither the
procedural nor the model base approach fulfill the needs of
the user in what concerns a realistic representation of the
environment. On one hand, using solely a procedural
approach will leave the terrain with uncharacteristic
features and, on the other hand, by employing the model-
based approach, terrain lacks realism. In order to solved this
drawback, a compromise is made between these two
possible approaches, leaving many windows of
opportunities for creating suitable content.

The same approach is utilized in this paper, relaying on
both the procedural method and the model based one in
order to obtain realistic output that follows the user's input.
In the context of our application, using only the user's input
would provide a terrain that lacks detail and, as there are no
pre-conditions for the level of detail for the initial bitmap,
there might be unrealistic transitions between adjacent
zones that is not normal in a natural environment. Using the
other approach, a purely procedural one, would result in a
terrain which might not meet the user's expectations and
also might developed uncharacteristic features.

RELATED WORKS
Olsen [1] created real time terrain, but the paper was not
fully focused on performance and how to obtain it, but
rather it was focused on presenting ways of using and
improving algorithms for erosion. His real-time generation
has a loading time, which can be an acceptable way of
developing a real-time application, as many games
nowadays have an allocated loading time, in which they
generate some pre-required data or just fetch them from
memory. Our application behaves in a similar way, in order
to generate the features points. In what concerns the
creation of terrain Olsen used a 1/n noise. Then he
combined this with Voronoi diagrams, which is similar to

- 159 -

Worley noise which we used as a base algorithm to develop
a suitable one for our needs. Lastly, he used improved
thermal erosion, modified to simulate the properties of
hydraulic erosion.

Génevaux et al [2] generated content using the hydrological
erosion, and using a hydrology-based method in order to
represent it. The construction of the algorithm starts by
using the input provided by the user. The input is composed
of the following elements: terrain outline, river mouths and
other parts of the river. The aim of the algorithm is to form
a complete river network, kept under the form of a graph,
starting from some basic elements and sketch provided by
the user. When the algorithm is completed, blocks such as
junctions, springs, deltas, and river trajectories are created,
and later used to help rendering the final terrain.

Mangra et al [3] present an approach to terrain synthesis
from minimal-detail user-provided heightmaps. There is no
assumption regarding the level of detail provided, in order
to allow users without access to powerful heightmap tools
and/or resources to generate useable terrain based on a self-
provided crude feature plan. They present the issues
stemming from a lack of detail in user input, notably sharp
altitude increases and oversimplified feature edges, and
proceed to elaborate on using the terrain synthesis
algorithm to solve the issues and create a level of detail that
more closely resembles realistic terrain models. The
algorithm pipeline is presented and parametrized to show
how the user can influence the resulting model.

Zhou et al [4] present an example-based system for terrain
synthesis. In their approach, patches from a sample terrain
(represented by a height field) are used to generate a new
terrain. The synthesis is guided by a user-sketched feature
map that specifies where terrain features occur in the
resulting synthetic terrain. Both the example height field
and user's sketch map are analyzed using a technique from
the field of geomorphology. The system finds patches from
the example data that match the features found in the user's
sketch. Patches are joined together using graph cuts and
Poisson editing. The order in which patches are placed in
the synthesized terrain is determined by breadth-first
traversal of a feature tree and this generates improved
results over standard raster-scan placement orders. Their
technique supports user-controlled terrain synthesis in a
wide variety of styles, based upon the visual richness of
real-world terrain data.

Schneider et al [5] interactively synthesize artificial terrains
using procedural descriptions. They present a new GPU
method for real-time editing, synthesis, and rendering of
infinite landscapes exhibiting a wide range of geological
structures, building upon the concept of projected grids to
achieve near-optimal sampling of the landscape. They
describe the integration of procedural shaders for
multifractals into this approach, and propose intuitive
options to edit the shape of the resulting terrain. The
method is multi-scale and adaptive in nature, and it has

been extended towards infinite and spherical domains. In
combination with geo-typical textures that automatically
adapt to the shape being synthesized, a powerful method for
the creation and rendering of realistic landscapes is
presented.

REAL-TIME GUIDED TERRAIN GENERATION
While purely procedural terrains have a tremendous amount
of detail over terrains generated based on models, they still
lack the control the user can have over the final result of the
process. In order to overcome this issue, this paper proposes
a simple but efficient algorithm that would help the user
control the major elements from the terrain he wants to
create, by being able to offer as input a crude grayscale
bitmap where he can mark the main elements from the
landscape.

Regarding our application, we can divide it into two main
parts that are going to be discuss later on, in this paper.
First, we focus on the procedural part that will contain three
important steps: edge smoothing, adding detail using a type
of noise and then the process of smoothing the noise created
in the previous step. The second part of this paper focuses
on generating terrain in real time by creating new chunks of
terrain as the user moves thought the scene. This part will
apply the steps described in the first one, and as the user
moves, new chucks of terrain will be generated, while the
last ones will be delete from the scene, all of these steps
being controlled by a predefined range or radius.

Procedural Terrain Generation
We are going to explain step by step each of the
aforementioned steps, starting with edge smoothing. This
step is required because, as specified earlier, the user input
has not restrictions in what concerns the level of detail it
must provide. So, there is quite a chance that the
inexperienced user might provide a black image with a
white square in the middle. The problem here is that the
transition between the plain represented by the black color
and the mountains represented by the white color, would be
a 100% height transition and it would look extremely
unnatural. In order to avoid this, we use Worley Noise [6]
as a source of inspiration, an algorithm designed to help
smooth the boundaries (edges) of the input bitmap. The idea
of the algorithm is to generate uniformly distributed random
features points all over the map. In order to ensure this will
happen, the initial bitmap was split into equal grids and, in
each grid, a particular number of seed points was generated.
This way we ensure that they are distributed uniformly on
the surface. Then, in order to compute the actual height
value of the current pixel, we compute a weighted sum of
values from the closest N features points. Thus, each of the
feature points will contribute with a percent directly
proportional with the distance between it and the point
whose value is being computed.

The second phase is represented by the addition of detail to
the equalized bitmap. This step is absolutely necessary

- 160 -

because the user's input might not provide enough details
for the map to be relevant and look like a real environment.
As presented in the last step, if the user decides to introduce
a crude bitmap with only two colors and some random
geometrical figure, then the terrain will look unnaturally
flat. To overcome this limitation, a type of coherent noise
must be used in order to obtain suitable results that also
respect the users input. For this task, we picked Perlin
Noise [7], a type of coherent noise capable of adding new
and significant details. Perlin Noise uses a gradient
approach, by computing gradient vectors in each corner of
the square, if we refer to the 2D version, or cube, if we refer
to the 3D version, then uses linear interpolation between
these gradient vectors in order to compute the height value
of the current point.

Last, but not least, the step that we are going to discuss is
the smoothing we will apply to the height map that was
generated so far, by using two different types of digital
filters, the mean and median filters [8][9]. This step is
extremely important, as Perlin Noise might have made
some unwanted changes with a particular point, meaning it
could have assigned it a greater value than expected or a
lower one. In this case the value of the point will be
recomputed based on his neighbors’ heights by using these
two types of filters. For the mean filter, we use a kernel of
size 3x3, computing the mean of all surrounding neighbors’
height values as the current height. The other type of digital
filter used is the median filter, which sorts neighbors and
then picks the value that lays at the center of the interval.
After this step is completed the height map is ready to be
rendered, and this happens by applying it to multiple terrain
game object.

Real time guided generation
The second step of our method is represented by the real-
time generation, which involves the creation of new terrain
as the user moves though the environment. The algorithm
works as follows: it places the user in the scene’s origin and
it crops 9 chunks from the input provided by the user,
transforming them into terrain later. The main idea is to use
a tile base approach, by utilizing 3x3 matrix of chunks,
placing the user in the middle and updating it as the user
moves thought the scene. The initial position in the input
provided by the user is in the center of the crude bitmap. In
order to achieve this functionality, we use the center of the
image as a pointer, that will be later on updated based on
users’ decisions.

Then, on the chunks that were just taken from the bitmap,
we apply the first step of the algorithm in order to create a
viable height map that still respects the input that the user
provided. At this point we have a height map that represents
part of the terrain that the user wanted. Now, as this
application offers the possibility for the user to experiment
real time generation, if the user decides to move in a
random direction on the X and Z axes, the application will
intercept this. It uses a function that checks in each frame

the current position of the user and, if the user travels a
certain distance from the starting point, the pointer that
indicates the user's position in the bitmap will be updated
using a predefined value and taking into account the
direction in which the user chose to walk. As mentioned in
the previous sections, the application is not meant to
generate infinite terrain, the size of the result being directly
influenced by the size of the bitmap given by the user.
When the user reaches the end of the environment, it means
that the user has reached the edge of the input he provided
so the application won't generate any more terrain and the
user will have to either move in another direction or get
stuck as a collision detection will be implemented to
prevent the user from falling,

EXPERIMENTS

Validating results
Initial testing was done to prove that the algorithm does
indeed successfully provide a detailed model of plausible
terrain. Our real-time generation algorithm was applied
both using a pre-refined heightmap and a crude user created
bitmap to guide it.

Figure 1 shows the result when applying our algorithm
using a pre-refined heightmap as a source. The red square
represents the area of terrain that is generated around the
user’s position and the screen captures illustrate what the
user sees when pointing north, south and west. As the user
moves around the scene, the generated landscape will
change accordingly, but still preserve all the height
characteristics in the heightmap.

Guided terrain generation
Since one key aspect of this application is the possibility to
guide the algorithm using crude user generated bitmaps, the
second test case was built around such input. Figure 2
shows the resulting terrain when applying our technique
using a crude bitmap as a source. Again, the red square
represents the area of terrain that is generated around the
user’s position and the screen captures illustrate what the
user sees when pointing north, south and west. As the user
moves around the scene, the generated landscape will
change accordingly, but still preserve all the height
characteristics suggested in the original crude bitmap
source.

 Performance considerations
Performance is directly connected with the size of the
image, because the feature points algorithm divides the
image into smaller grids of size 4x4 and generates a fixed
number of random samples that are later used to compute
the height values for each pixel. The experiments made
were with a 128x128 size pixel image, followed by
256x256 and we even used a 512x512 image to test the
output data. Regarding processing time, when using a
128x128 image there is no distinguishable delay introduced
by the process. When using a bigger size as the input, there

- 161 -

Figure 1. Terrain generation using a pre-refined heightmap as
a source

is a slightly delay when employing a 256x256 image size,
while using a 512x512 image size would bring a delay
equal to 10-15 seconds at most. The results are acceptable
as this part represents a pre-processing stage for the real-
time generating method.

The second aspect when assessing the application’s
performances is to experiment various sizes of a chunk. In
the current version of the application there is a 64x64
dimension size, so each time user reaches a certain distance,
a new chunk of this size is generated in the direction of the
user’s movement. In this current implementation, it runs
smoothly and without a visible delay when generating new
chunks of terrain. Growing the dimension of the kernel used
will definitely affect the run time of the algorithm. A size of
128x128 or 256x256 would not bring catastrophic results
but thinking of a 1024x1024 or even bigger size would
definitely introduce a delay that would affect the user's
experience.

CONCLUSION
As mentioned before, the purpose of this paper was to
describe the functionality of an application that aims to
create procedural terrain in real-time, being guided by the
user's input. The user's input has no restriction in what
concerns the level of detail, so a preprocessing algorithm
had to be applied in order to obtain a viable height map
used to create the mesh that would be rendered later. The
real-time generation algorithm works by splitting the mesh
into chunks and processing and displaying only those
around the user’s position. Future developments include
porting the real-time computation to the GPU in order to
improve performance.

Figure 2. Terrain generation using a crude bitmap as a source

REFERENCES
1. Jacob Olsen. Realtime procedural terrain generation -

realtime synthesis of eroded fractal terrain for use in
computer games, (2004).

2. Jean-David Génevaux, Éric Galin, Eric Guérin, Adrien
Peytavie, and Bedrich Benes. 2013. Terrain generation
using procedural models based on hydrology. ACM
Trans. Graph. 32, 4, Article 143 (July 2013), 13 pages.

3. Alexandre Philippe Mangra, Adrian Sabou, Dorian
Gorgan. Terrain Synthesis from Crude Heightmaps.
RoCHI 2016, 113-118

4. H. Zhou, J. Sun, G. Turk and J. M. Rehg. Terrain
Synthesis from Digital Elevation Models. IEEE
Transactions on Visualization and Computer Graphics
13, 4 (2007), 834-848.

5. J. Schneider, T. Boldte, R. Westermann. Real-Time
Editing, Synthesis, and Rendering of Infinite Landscapes
on GPUs. Conference on Vision, Modeling, and
Visualization (VMV), (2006)

6. S. Worley. A Cellular Texture Basis Function.
SIGGRAPH '96 Proceedings of the 23rd annual
conference on Computer graphics and interactive
techniques, (1996)

7. K. Perlin. Making Noise. (2002).
www.noisemachine.com/talk1/

8. R. Fisher, S. Perkins, A. Walker and E. Wolfart. Spatial
filters - Median filter. (2003)
http://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm

9. R. Fisher, S. Perkins, A. Walker and E. Wolfart. Spatial
filters - Mean filter. (2003)
http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm

- 162 -

