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ABSTRACT 
This paper describes a statistical method to identify 
ontology components within natural language questions. 
The main purpose for this step is to improve question 
answering systems over linked data by reducing the 
ambiguity in the subsequent matching and query generation 
steps. To accomplish this task, we have trained a 
Conditional Random Field (CRF) classifier to label sentence 
tokens with the core data elements of the DBpedia ontology. 
The classifier was trained on a manually annotated corpus 
labelled with ontology elements for each token. Several 
features were investigated for the classifier and the results 
(F1=0.92) prove that this task can be successfully solved 
using the CRF tagger. 
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INTRODUCTION 
Knowledge bases are playing an increasingly important role 
in enhancing the intelligence of the Web. Such an example 
is DBpedia [1], which collects information from Wikipedia 
and organizes it in a machine-friendly manner.  The problem 
of question answering over linked data is not a trivial task, 
even with all the available information. One of its hardest 
sub-tasks is matching tokens with their corresponding 
elements in the ontology.  Having this done, processing the 
question intent and translating it into SPARQL queries will 
not be so far from reachable anymore. DBpedia organizes its 
data elements into 3 core categories: 

● Entities: the subjects of description within the ontology. 
Each one has a dedicated web page, and corresponds to a 
Wikipedia page from which the information has been 
aggregated. Descriptive data (literal dates, strings, 
numbers) or other entities are linked through properties. 

● Types: classes of entities structured hierarchically. The 
ontology by itself contains a limited number of types 
consisting of relatively vague nouns (e.g. Person, 
Religion, City) but types from multiple other sources have 
been added. For example, Yago [11] types usually 
represent more specific item categories such as President 
or American Lawyers, but they are considerably less 
regulated and consistent. 

● Properties: they are usually predicate-like structures that 
link additional data to entities. Their representation is the 
most unpredictable as they do not follow any obvious 
syntactic or semantic patterns. 

RELATED WORD 

Named Entity Recognition 
One popular example of a well-known and similar task to 
ours is called Named Entity Recognition (NER). It 
determines and classifies named entities from a text into 
predefined categories like persons, organizations, date, time, 
or money. For example, Stanford NER [5] uses the 
Maximum Entropy Markov Model algorithm [8]. Our task is 
a bit more complex because the difference between 
properties and types is not so obvious, but the approach to 
solve the problem should not be too different 

Question Answering over Linked Data 
Like we mentioned in the introduction, the ultimate goal of 
this model is integration within a question answering 
system, thus it is worth mentioning a few examples and 
what impact our algorithm could have. 

One example is QAnswer [10], which uses a pipeline 
architecture for processing the questions. The first and most 
crucial step in the algorithm is trying to detect the elements 
within the question (they used individuals, types and 
properties) and map them to their corresponding resource in 
the ontology. After this step is completed and relationships 
between elements are made, a SPARQL query is built and, 
using a Virtuoso-opensource endpoint (https://github.com/ 
openlink/virtuoso-opensource), their model can generate the 
answer. They have developed three separate mapping 
algorithms based on the characteristics of every ontology 
element and then picked the most appropriate sequence. 
Since they had no information about what the words could 
represent, they had to construct different interpretations of 
the questions and, based on some scoring algorithm, they 
picked the best one. This approach didn't produce the 
desired result all the time so, some questions were 
compromised. If they had additional information about the 
question (like our algorithm could provide), they would 
have probably had better results. 

Another question answering tool worth mentioning is Xser 
[12], which was ranked first in QALD-4 and QALD-5 (see 
https://qald.sebastianwalter.org/). They have a two-layered 
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architecture, where the first one tries to label all phrases 
with one of the following tags: entity, relation, type and 
variable. This is the part that interests us the most because, 
for doing this, they also had to train a classifier, more 
precisely a structured perceptron [3]. The algorithm shows 
good results but we believe that it could benefit from the use 
of a sequence labeling algorithm. Moreover, using 
additional features for the classifier could further improve 
the precision. The second step of their algorithm is to map 
the discovered elements to a knowledge base, like DBpedia 
and construct the query. 

PROPOSED SOLUTION 
The main challenge consists in finding correlations between 
the 3 core data elements described in the introduction and 
natural language patterns in questions. 

Labels 
Our algorithm should be able to classify every word as part 
of an ontology element (entity, type, property) or mark them 
as irrelevant. We needed to find a standard for doing this 
and, since the elements could contain more than one word 
(e.g. Barack Obama), we chose the IOB tagging standard 
(Inside, Outside, Beginning). We defined the following tags: 
EB (entity beginning), EI (entity inside), TB (type 
beginning), TI (type inside), PB (property beginning), PI 
(property inside) and N (none).  

Examples 
To illustrate the labeling task, let us consider the following 
examples: 

● Which is the largest city in Australia? In this example, 
we have one entity: Australia, one type: city and one 
property: largest. The other words cannot be mapped to 
an element in the ontology so we can consider them as 
irrelevant. So, the tagging sequence for the above 
example becomes (N, N, N, PB, TB, N, EB). 

● What did Bruce Carver die from? In this question it is 
very clear that we should consider Bruce Carver as an 
entity, but it may be difficult to choose the property. Our 
goal for this algorithm is to identify ontology elements in 
phrases so that instantiating them afterwards is easier. In 
other words, the labels should ease the mapping of die 
from to dbo:deathCause. The problem here is that Bruce 
Carver has multiple other similar properties like 
dbo:deathDate, dbo:deathPlace or dbo:deathYear. By 
choosing die as the only word for the property, 
distinguishing between the four options might prove 
impossible. As a result, when prepositions offer 
additional contextual information, they should also be 
included. Concluding, the correct tagging sequence 
becomes (N, N, EB, EI, PB, PI). 

● Give me all video games published by Mean Hamster 
Software. This is a more complex example, containing all 
possible tags. Firstly, we can identify Mean Haster 

Software as an entity. It contains 3 words, so the tags 
should be EB, EI, EI. Additionally, we have one 
composite type: video game and one property: published 
by, constructed using the same rules as the above 
example. Then, the correct tagging sequence becomes: 
(N, N, N, TB, TI, PB, PI, EB, EI, EI). 

Our corpus consists of 600 questions which were manually 
annotated with the previously defined tags. We have used 
Gate [4] for simplifying the annotation process, while the 
questions were taken from multiple sources: QALD-6, 
QALD-7 and WebQuestions Semantic Parses Dataset 
(https://www.microsoft.com/en-us/download/details.aspx?id 
=52763). From this corpus, 400 questions were used for the 
training process, while the rest were kept for validation. 
 
Choice of Model 
We considered several algorithms used to solve labeling 
problems in Natural Language Processing (NLP), including 
Hidden Markov Models, Maximum Entropy Markov 
Models, Conditional Random Fields, and Neural Networks. 

The Hidden Markov Model (HMM) [9] is a well-known 
sequence labeling algorithm, but it's not the most reliable 
one because it has direct dependencies only between states 
and their direct observations. An improvement to this 
algorithm brings the Maximum Entropy Markov Model [8], 
which is inspired from the Hidden Markov Model and the 
Maximum Entropy theory. It models dependence between 
each state and the full observation sequence explicitly, but it 
suffers from the label bias problem (states with low entropy 
transition distributions tend to ignore their observations). 

 
Figure 1: Difference between HMM (first), MEMM (second) 
and CRF (last) graphical models. From Conditional Random 

Fields: Probabilistic Models for Segmenting and Labeling 
Sequence Data [7] 
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Conditional Random Fields (CRF) [7] were designed to 
overcome the label bias problem while also taking into 
consideration the full context for the predictions. The 
differences between those three models can be clearly 
observed in Figure 1. 

The other option that we considered was the Long Short-
Term Memory (LSTM) neural network [6]. Its obvious 
advantage is that it automatically extracts features and it has 
good results in many areas. What made this approach 
impracticable for us is the big corpus required, one that we 
don't have. So, considering the arguments presented above, 
we chose the Conditional Random Field classifier, a choice 
which was proven to be a good one. 

Choice of Features 
Various features have been tested both individually and in 
relation with others. The following section is a description 
of the tested features and their influence over the results. 

Considering entities are usually proper nouns (e.g. names of 
personalities, cities or organizations) within the ontology, 
identifying them is obviously similar with the Named Entity 
Recognition (NER) problem. Making use of thoroughly 
trained and tested NER models is definitely going to help at 
this stage. For this purpose, we have tested two popular 
models: 

● Stanford 3-class NER tagger [5]: trained on various data 
sets, with generic classes: Location, Person and 
Organization. Even though there are 4 and 7-class 
versions of this labeling model, for the purpose of simply 
identifying named entities, the further classification 
would only add unnecessary complexity. Using this 
feature by itself results 82% accuracy over entities. 
However, as suspected, it does not contribute to 
identifying types and properties very much (less than 10% 
accuracy).  

● Spacy NER tagger (see https://spacy.io/docs): a more 
modern model that shows minor improvements (about 
5%) over the previous one. 

On the other hand, types and properties do not follow such 
predictable patterns, making their identification less trivial. 
Analyzing DBpedia types reveals that they are usually 
vague common nouns (e.g. person, football player, athlete) 
and they are in close relation with entities or WH question 
words (e.g. Where, What, Who). Additionally, properties are 
usually predicate-like structures, connecting a subject to an 
object. Both types and properties are highly flexible 
regarding formulation and they are prone to polysemy, 
making string matching techniques less effective. This 
implies that part of speech and syntactic dependency 
information is essential to their identification. Again, this 
knowledge is available as widely-popular models in form of 
Part-of-Speech (POS) tagging and dependency parsing 
algorithms. The most promising models we considered are: 

● Stanford POS tagger part of the NLTK package [2]: 
individual tests show an average of 43% labeling 
precision. 

● Spacy POS tagger: this tagger offers two format variants, 
a coarse-grained one, based on the 12-class Google 
Universal POS Tags, and a fine-grained one, based on the 
36-class Penn Treebank specification. Considering the 
relatively small train set, the lower detail specification 
shows minor improvements over the fine-grained one, 
averaging at 49% accuracy. However, upon future train 
set expansion, the more detailed one should be 
considered. 

● Spacy Dependency Parser: used to extract the phrase type 
and the graph direction (whether tokens are the governing 
or the dependant part of a relation). This feature by itself 
shows modest results (average of 23%) However in 
relation to the others, it adds a considerable contribution. 

Additionally, adding the following string based features 
showed significant improvements over the average 
precision. 

● Lemmatized tokens: reducing words to their lemmatized 
version implied the emergence of more common text 
patterns, essential indicator for property and type 
recognition. 

● Token index within sentence divided by the length of the 
sequence: types have the tendency to appear at the 
beginning of questions (excepting syntactic inversions, 
which are quite common in interrogative sentences) while 
properties and entities exhibit less regular positions. 

● Word suffixes: similar words tend to have the same 
suffixes. For example, son is a suffix that appears mainly 
in person names (e.g. Johnson, Anderson, Jackson, 
Dawson), while ies commonly appears in tokens defining 
types (e.g. cities, movies or countries) 

● Capital first letter: every word that starts with an 
uppercase letter has a great chance to be an entity. This 
helps the algorithm to be more confident about entity 
predictions. 

Considering the highly context-dependent nature of the 
discussed elements, the relationship between the above-
mentioned indicators is preserved and enforced using 
various templates, illustrated in formulas (1), (2), and (3). 

● Unigrams: 

                                                          (1) 

● Bigrams: 

                                                          (2) 

● Trigrams: 

       (3) 
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Tag Precision Recall F1-Score Support 

EB 0.97 0.90 0.93 125 

EI 0.90 0.86 0.88 73 

N 0.96 0.97 0.97 369 

PB 0.89 0.91 0.90 99 

PI 0.83 0.89 0.85 53 

TB 0.82 0.85 0.83 84 

TI 0.81 0.73 0.75 13 

Table 1. Precision and recall for each labeled tag from the test 
set. Average overall F1-score is 0.9 

 

RESULTS 
After a thorough analysis of feature combinations and 
templates, we finally settled on using mainly n-grams of 
Spacy POS, NER and dependency labels together with the 
above-mentioned string-based features. The model results 
are illustrated in Table 1. As can be observed, the highest 
confidence is achieved for entities with over 90% accuracy, 
result which was expected due to their predictable structure 
(almost every entity starts with a capital letter, for example). 
Types and properties can be easily confused, but the 
accuracy doesn't drop below 80%. Features like the POS 
tags and the dependency type returned by the dependency 
parser were essential in obtaining these results. 

CONCLUSIONS 
In this paper, we have proposed to use a Conditional 
Random Field (CRF) model to label question tokens as core 
data elements from the DBpedia ontology in order to 
improve question answering systems over linked data, such 
as DBpedia. The features we used are mostly generated by 
widely-popular Natural Language Processing tools such as 
POS taggers, NER taggers and dependency parsers. The 
ultimate goal of this method is to remove ambiguity and 
improve further matching in the context of question 
answering over linked data. Even though training and testing 
were done over a relatively small manually annotated 
corpus, the model shows good results with average labeling 
accuracy of 92%. 
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