

Mapping Questions to Ontology Components for Question
Answering over Linked Data

Marius Valeriu Stanciu, Eugen Vasilescu, Stefan Ruseti, Traian Rebedea
University Politehnica of Bucharest, Faculty of Automatic Control and Computers

Bucharest, Romania
{marius.stanciu1710, eugen.vasilescu}@cti.pub.ro, {stefan.ruseti, traian.rebedea}@cs.pub.ro

ABSTRACT
This paper describes a statistical method to identify
ontology components within natural language questions.
The main purpose for this step is to improve question
answering systems over linked data by reducing the
ambiguity in the subsequent matching and query generation
steps. To accomplish this task, we have trained a
Conditional Random Field (CRF) classifier to label sentence
tokens with the core data elements of the DBpedia ontology.
The classifier was trained on a manually annotated corpus
labelled with ontology elements for each token. Several
features were investigated for the classifier and the results
(F1=0.92) prove that this task can be successfully solved
using the CRF tagger.

Author Keywords
Natural Language Processing; Question Answering; CRF
Tagger; Ontology; DBpedia

ACM Classification Keywords
I.2.7 Artificial Intelligence: Natural Language Processing

INTRODUCTION
Knowledge bases are playing an increasingly important role
in enhancing the intelligence of the Web. Such an example
is DBpedia [1], which collects information from Wikipedia
and organizes it in a machine-friendly manner. The problem
of question answering over linked data is not a trivial task,
even with all the available information. One of its hardest
sub-tasks is matching tokens with their corresponding
elements in the ontology. Having this done, processing the
question intent and translating it into SPARQL queries will
not be so far from reachable anymore. DBpedia organizes its
data elements into 3 core categories:

● Entities: the subjects of description within the ontology.
Each one has a dedicated web page, and corresponds to a
Wikipedia page from which the information has been
aggregated. Descriptive data (literal dates, strings,
numbers) or other entities are linked through properties.

● Types: classes of entities structured hierarchically. The
ontology by itself contains a limited number of types
consisting of relatively vague nouns (e.g. Person,
Religion, City) but types from multiple other sources have
been added. For example, Yago [11] types usually
represent more specific item categories such as President
or American Lawyers, but they are considerably less
regulated and consistent.

● Properties: they are usually predicate-like structures that
link additional data to entities. Their representation is the
most unpredictable as they do not follow any obvious
syntactic or semantic patterns.

RELATED WORD

Named Entity Recognition
One popular example of a well-known and similar task to
ours is called Named Entity Recognition (NER). It
determines and classifies named entities from a text into
predefined categories like persons, organizations, date, time,
or money. For example, Stanford NER [5] uses the
Maximum Entropy Markov Model algorithm [8]. Our task is
a bit more complex because the difference between
properties and types is not so obvious, but the approach to
solve the problem should not be too different

Question Answering over Linked Data
Like we mentioned in the introduction, the ultimate goal of
this model is integration within a question answering
system, thus it is worth mentioning a few examples and
what impact our algorithm could have.

One example is QAnswer [10], which uses a pipeline
architecture for processing the questions. The first and most
crucial step in the algorithm is trying to detect the elements
within the question (they used individuals, types and
properties) and map them to their corresponding resource in
the ontology. After this step is completed and relationships
between elements are made, a SPARQL query is built and,
using a Virtuoso-opensource endpoint (https://github.com/
openlink/virtuoso-opensource), their model can generate the
answer. They have developed three separate mapping
algorithms based on the characteristics of every ontology
element and then picked the most appropriate sequence.
Since they had no information about what the words could
represent, they had to construct different interpretations of
the questions and, based on some scoring algorithm, they
picked the best one. This approach didn't produce the
desired result all the time so, some questions were
compromised. If they had additional information about the
question (like our algorithm could provide), they would
have probably had better results.

Another question answering tool worth mentioning is Xser
[12], which was ranked first in QALD-4 and QALD-5 (see
https://qald.sebastianwalter.org/). They have a two-layered

- 155 -

architecture, where the first one tries to label all phrases
with one of the following tags: entity, relation, type and
variable. This is the part that interests us the most because,
for doing this, they also had to train a classifier, more
precisely a structured perceptron [3]. The algorithm shows
good results but we believe that it could benefit from the use
of a sequence labeling algorithm. Moreover, using
additional features for the classifier could further improve
the precision. The second step of their algorithm is to map
the discovered elements to a knowledge base, like DBpedia
and construct the query.

PROPOSED SOLUTION
The main challenge consists in finding correlations between
the 3 core data elements described in the introduction and
natural language patterns in questions.

Labels
Our algorithm should be able to classify every word as part
of an ontology element (entity, type, property) or mark them
as irrelevant. We needed to find a standard for doing this
and, since the elements could contain more than one word
(e.g. Barack Obama), we chose the IOB tagging standard
(Inside, Outside, Beginning). We defined the following tags:
EB (entity beginning), EI (entity inside), TB (type
beginning), TI (type inside), PB (property beginning), PI
(property inside) and N (none).

Examples
To illustrate the labeling task, let us consider the following
examples:

● Which is the largest city in Australia? In this example,
we have one entity: Australia, one type: city and one
property: largest. The other words cannot be mapped to
an element in the ontology so we can consider them as
irrelevant. So, the tagging sequence for the above
example becomes (N, N, N, PB, TB, N, EB).

● What did Bruce Carver die from? In this question it is
very clear that we should consider Bruce Carver as an
entity, but it may be difficult to choose the property. Our
goal for this algorithm is to identify ontology elements in
phrases so that instantiating them afterwards is easier. In
other words, the labels should ease the mapping of die
from to dbo:deathCause. The problem here is that Bruce
Carver has multiple other similar properties like
dbo:deathDate, dbo:deathPlace or dbo:deathYear. By
choosing die as the only word for the property,
distinguishing between the four options might prove
impossible. As a result, when prepositions offer
additional contextual information, they should also be
included. Concluding, the correct tagging sequence
becomes (N, N, EB, EI, PB, PI).

● Give me all video games published by Mean Hamster
Software. This is a more complex example, containing all
possible tags. Firstly, we can identify Mean Haster

Software as an entity. It contains 3 words, so the tags
should be EB, EI, EI. Additionally, we have one
composite type: video game and one property: published
by, constructed using the same rules as the above
example. Then, the correct tagging sequence becomes:
(N, N, N, TB, TI, PB, PI, EB, EI, EI).

Our corpus consists of 600 questions which were manually
annotated with the previously defined tags. We have used
Gate [4] for simplifying the annotation process, while the
questions were taken from multiple sources: QALD-6,
QALD-7 and WebQuestions Semantic Parses Dataset
(https://www.microsoft.com/en-us/download/details.aspx?id
=52763). From this corpus, 400 questions were used for the
training process, while the rest were kept for validation.

Choice of Model
We considered several algorithms used to solve labeling
problems in Natural Language Processing (NLP), including
Hidden Markov Models, Maximum Entropy Markov
Models, Conditional Random Fields, and Neural Networks.

The Hidden Markov Model (HMM) [9] is a well-known
sequence labeling algorithm, but it's not the most reliable
one because it has direct dependencies only between states
and their direct observations. An improvement to this
algorithm brings the Maximum Entropy Markov Model [8],
which is inspired from the Hidden Markov Model and the
Maximum Entropy theory. It models dependence between
each state and the full observation sequence explicitly, but it
suffers from the label bias problem (states with low entropy
transition distributions tend to ignore their observations).

Figure 1: Difference between HMM (first), MEMM (second)
and CRF (last) graphical models. From Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data [7]

- 156 -

Conditional Random Fields (CRF) [7] were designed to
overcome the label bias problem while also taking into
consideration the full context for the predictions. The
differences between those three models can be clearly
observed in Figure 1.

The other option that we considered was the Long Short-
Term Memory (LSTM) neural network [6]. Its obvious
advantage is that it automatically extracts features and it has
good results in many areas. What made this approach
impracticable for us is the big corpus required, one that we
don't have. So, considering the arguments presented above,
we chose the Conditional Random Field classifier, a choice
which was proven to be a good one.

Choice of Features
Various features have been tested both individually and in
relation with others. The following section is a description
of the tested features and their influence over the results.

Considering entities are usually proper nouns (e.g. names of
personalities, cities or organizations) within the ontology,
identifying them is obviously similar with the Named Entity
Recognition (NER) problem. Making use of thoroughly
trained and tested NER models is definitely going to help at
this stage. For this purpose, we have tested two popular
models:

● Stanford 3-class NER tagger [5]: trained on various data
sets, with generic classes: Location, Person and
Organization. Even though there are 4 and 7-class
versions of this labeling model, for the purpose of simply
identifying named entities, the further classification
would only add unnecessary complexity. Using this
feature by itself results 82% accuracy over entities.
However, as suspected, it does not contribute to
identifying types and properties very much (less than 10%
accuracy).

● Spacy NER tagger (see https://spacy.io/docs): a more
modern model that shows minor improvements (about
5%) over the previous one.

On the other hand, types and properties do not follow such
predictable patterns, making their identification less trivial.
Analyzing DBpedia types reveals that they are usually
vague common nouns (e.g. person, football player, athlete)
and they are in close relation with entities or WH question
words (e.g. Where, What, Who). Additionally, properties are
usually predicate-like structures, connecting a subject to an
object. Both types and properties are highly flexible
regarding formulation and they are prone to polysemy,
making string matching techniques less effective. This
implies that part of speech and syntactic dependency
information is essential to their identification. Again, this
knowledge is available as widely-popular models in form of
Part-of-Speech (POS) tagging and dependency parsing
algorithms. The most promising models we considered are:

● Stanford POS tagger part of the NLTK package [2]:
individual tests show an average of 43% labeling
precision.

● Spacy POS tagger: this tagger offers two format variants,
a coarse-grained one, based on the 12-class Google
Universal POS Tags, and a fine-grained one, based on the
36-class Penn Treebank specification. Considering the
relatively small train set, the lower detail specification
shows minor improvements over the fine-grained one,
averaging at 49% accuracy. However, upon future train
set expansion, the more detailed one should be
considered.

● Spacy Dependency Parser: used to extract the phrase type
and the graph direction (whether tokens are the governing
or the dependant part of a relation). This feature by itself
shows modest results (average of 23%) However in
relation to the others, it adds a considerable contribution.

Additionally, adding the following string based features
showed significant improvements over the average
precision.

● Lemmatized tokens: reducing words to their lemmatized
version implied the emergence of more common text
patterns, essential indicator for property and type
recognition.

● Token index within sentence divided by the length of the
sequence: types have the tendency to appear at the
beginning of questions (excepting syntactic inversions,
which are quite common in interrogative sentences) while
properties and entities exhibit less regular positions.

● Word suffixes: similar words tend to have the same
suffixes. For example, son is a suffix that appears mainly
in person names (e.g. Johnson, Anderson, Jackson,
Dawson), while ies commonly appears in tokens defining
types (e.g. cities, movies or countries)

● Capital first letter: every word that starts with an
uppercase letter has a great chance to be an entity. This
helps the algorithm to be more confident about entity
predictions.

Considering the highly context-dependent nature of the
discussed elements, the relationship between the above-
mentioned indicators is preserved and enforced using
various templates, illustrated in formulas (1), (2), and (3).

● Unigrams:

 (1)

● Bigrams:

 (2)

● Trigrams:

 (3)

- 157 -

Tag Precision Recall F1-Score Support

EB 0.97 0.90 0.93 125

EI 0.90 0.86 0.88 73

N 0.96 0.97 0.97 369

PB 0.89 0.91 0.90 99

PI 0.83 0.89 0.85 53

TB 0.82 0.85 0.83 84

TI 0.81 0.73 0.75 13

Table 1. Precision and recall for each labeled tag from the test
set. Average overall F1-score is 0.9

RESULTS
After a thorough analysis of feature combinations and
templates, we finally settled on using mainly n-grams of
Spacy POS, NER and dependency labels together with the
above-mentioned string-based features. The model results
are illustrated in Table 1. As can be observed, the highest
confidence is achieved for entities with over 90% accuracy,
result which was expected due to their predictable structure
(almost every entity starts with a capital letter, for example).
Types and properties can be easily confused, but the
accuracy doesn't drop below 80%. Features like the POS
tags and the dependency type returned by the dependency
parser were essential in obtaining these results.

CONCLUSIONS
In this paper, we have proposed to use a Conditional
Random Field (CRF) model to label question tokens as core
data elements from the DBpedia ontology in order to
improve question answering systems over linked data, such
as DBpedia. The features we used are mostly generated by
widely-popular Natural Language Processing tools such as
POS taggers, NER taggers and dependency parsers. The
ultimate goal of this method is to remove ambiguity and
improve further matching in the context of question
answering over linked data. Even though training and testing
were done over a relatively small manually annotated
corpus, the model shows good results with average labeling
accuracy of 92%.

ACKNOWLEDGMENTS
This research was partially supported by University
Politehnica of Bucharest through the Excellence Research
Grants Program UPB–GEX 13/30.09.2016.

REFERENCES
1. Soren Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, and Zachary Ives. 2007. DBpedia: A Nucleus
for a Web of Open Data. In In 6th Int’l Semantic Web
Conference, Busan, Korea. Springer, 11–15.

2. Steven Bird. 2006. NLTK: the natural language toolkit.
In Proceedings of the COLING/ACL on Interactive
presentation sessions. Association for Computational
Linguistics, 69–72.

3. Michael Collins. 2002. Discriminative training methods
for hidden markov models: Theory and experiments with
perceptron algorithms. In Proceedings of the ACL-02
conference on Empirical methods in natural language
processing-Volume 10. Association for Computational
Linguistics, 1–8.

4. Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian Roberts,
Genevieve Gorrell, Adam Funk, Angus Roberts, Danica
Damljanovic, Thomas Heitz, Mark A. Greenwood,
Horacio Saggion, Johann Petrak, Yaoyong Li, and Wim
Peters. 2011. Text Processing with GATE (Version 6).

 http://tinyurl.com/gatebook
5. Jenny Rose Finkel, Trond Grenager, and Christopher

Manning. 2005. Incorporating non-local information into
information extraction systems by gibbs sampling. In In
ACL. 363–370.

6. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9, 8 (1997),
1735–1780.

7. John Lafferty, Andrew McCallum, Fernando Pereira, and
others. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
Proceedings of the eighteenth international conference
on machine learning, ICML, Vol. 1. 282–289.

8. Andrew Mccallum and Dayne Freitag. 2000. Maximum
entropy markov models for information extraction and
segmentation. Morgan Kaufmann, 591–598.

9. Lawrence R Rabiner. 1989. A tutorial on hidden Markov
models and selected applications in speech recognition.
Proc. IEEE 77, 2 (1989), 257–286.

10. Stefan Ruseti, Alexandru Mirea, Traian Rebedea, and
Stefan Trausan-Matu. 2015. QAnswer-Enhanced Entity
Matching for Question Answering over Linked Data.. In
CLEF (Working Notes)

11. Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge. In
Proceedings of the 16th international conference on
World Wide Web. ACM, 697–706.

12. Kun Xu, Sheng Zhang, Yansong Feng, and Dongyan
Zhao. 2014. Answering natural language questions via
phrasal semantic parsing. In Natural Language
Processing and Chinese Computing. Springer, 333–344.

- 158 -

