

Contextual App’ification
 Christian Stary

University of Linz
Business Informatics –

Communications Engineering
Christian.Stary@jku.at

ABSTRACT
In this contribution, user-centered design and the generation
of human support systems based on apps as behavior
encapsulations are addressed from a conceptual and
engineering perspective. Specific ingredients, in particular
Complex Adaptive Systems (CAS) theory, a System-of-
Systems (SoS) perspective, semantic interoperability of
apps, and Subject-oriented Business Process Management
(S-BPM) are detailed with respect to user-centered
development. They allow the contextual alignment of
application behavior from a role perspective, based on
communication and interaction models that can be executed
automatically. Users can set up the design space, validate
specifications, and evaluate the context-sensitive alignment
of apps. They primarily detail communication flows to meet
their requirements and can experience the aligned apps
interactively.

Author Keywords
System(ic) Thinking, Complex Adaptive Systems; System-
of-Systems; Subject orientation; User-centered Design;
App’ification; Choreography.

ACM Classification Keywords
D.2.10 Design: Methodologies; H.4.m. Information
Systems Applications: Miscellaneous; H.5.m. Information
interfaces and presentation (e.g., HCI): Miscellaneous.

General Terms
Human Factors; Design.

INTRODUCTION
The design and development of interactive systems has
changed significantly in the last few years, due to
technological developments and resulting usage of
applications (cf. [1][2][3][4]). Development has been driven
by both, smart mobile devices, and dynamically adaptable
application architectures. Using apps on mobile devices as
intermediaries for accessing (cloud) services as standard
interaction scenario leads to an app’ification of these
services with a focus on user-specific needs. The term
‘app’ification’ or ‘app-fication’, respectively, has been used
in several contexts, such as

x Personalization of (interactive) services [5]

x Security and privacy issues concerning interactive
platforms (cf.[6])

x Speeding up of technology development and novel
segmentation of system landscapes [7]

x Facilitating of third party developments for IoT
(Internet of Things) platforms [8]

x Sustainability in a digital world and development of
humanity when replacing human conversations,
interactions and decisions through apps [9]

Gidey et al. [10] have been looking for architecturally
significant requirements and architectural design decisions
addressing several of the above mentioned issues. In their
systematic elicitation study based on grounded theory they
could identify ‘appification’ as ‘the development and
provision of smaller applications in a single feature set per
application to work on devices with varying sets of
platforms and form factors’ ([10], p.145). Following this
understanding, a user-centered app’ification design
approach requires dynamic composition and alignment
facilities to adjust small applications to situation-sensitive
needs and technological capabilities available in a specific
situation.

As the number of apps a user utilizes increases the
importance of contextual design involving various apps
increases [8]. Consider a train information app. It can be of
interest in the context of both, planning a trip, and being
delayed on an ongoing trip. The latter requires real-time
travel assistance in contrast to the first case which is based
on planned schedules. From a user perspective, any
difference in context should lead to different technical
system behavior. Situation- or task-sensitive support
requires dynamic design variants, albeit the need for
consistent user experience of particular apps across multiple
settings. Being able to adapt services in a context-
dependent manner results in end-user computing, providing
the capability to arrange apps according to an individual
flow of control and dynamically changing requirements.
Unlike the device-centric service computing the focus
hereby is on a context-centric service experience caused by
an app’ified design space. In such a space users should be
able to design their digital services in a seamless manner.

Several challenges of contextual app’ification can be
identified, when introducing a user-centered design
approach, among them dynamic systems’ thinking and

- 1 -

generating diagrammatic representations that can be
executed under user control. Dynamic systems’ thinking is
based on understanding interactive systems as Complex
Adaptive Systems which is introduced in the next section. It
allows considering app’ification as System-of-Systems
design process. Its structure is revealed in this section.
System-of-Systems thinking gives space to create
semantically interoperable designs which are populated
with apps, and thus, triggers a respective development
process (i.e. app’ification).

Semantic interoperability as essential part of app’ification is
discussed in the subsequent section. This part of the paper
also introduces process prototyping based on subject-
oriented design representations, as it features task-specific
user experience. Subject-oriented modeling allows mapping
app-specific and cross-app behavior to executable system
specifications, which in turn enables prototyping of
app’ified support systems. The approach is exemplified for
meeting specific needs from a user perspective. The final
section concludes the contribution, summarizing the
objectives and achievements, and providing inputs to
further research.

TAKING A SYSTEM-OF-SYSTEMS PERSPECTIVE
In order to capture the dynamics of evolving socio-technical
systems based on user needs, in this section relevant
perspectives and concepts, namely Complex Adaptive
Systems and System-of-Systems thinking, are provided.

Complex Adaptive Systems
According to Chan [11] Complex Adaptive Systems (CAS)
started in US to oppose the European “natural science”
tradition in the area of cybernetics and systems. Although
CAS theory shares the subject of general properties of
complex systems across traditional disciplinary boundaries
(like in cybernetics and systems) it relies on computer
simulations as a research tool (as pointed out by Holland in
1992 initially [12]), and considers less integrated or
“organized” systems, such as ecologies, in contrast to
organisms, machines, or enterprises. Many artificial
systems are characterized by apparently complex behaviors
due to often nonlinear spatio-temporal interactions among a
large number of component systems at different levels of
organization, they have been termed Complex Adaptive
Systems (CAS)

CAS are dynamic systems able to adapt in and evolve with
a changing environment. It is important to realize that there
is no separation between a system and its environment in
the idea that a system always adapts to a changing
environment. Rather, the concept to be examined is that of a
system closely linked with all other related systems making
up an ecosystem. Within such a context, change needs to be
seen in terms of co-evolution with all other related systems,
rather than as adaptation to a separate and distinct
environment ([11] p.2). CAS have several constituent
properties (ibid. p.3ff):

x Distributed Control: There is no single centralized
control mechanism that governs system behavior.
Although the interrelationships between elements of
the system produce coherence, the overall behavior
usually cannot be explained merely as the sum of
individual parts.

x Connectivity: A system does not only consist of
relations between its elements, but also of relations
with its environment. Consequently, a decision or
action by one part within a system influences all other
related parts.

x Co-evolution With co-evolution, elements in a system
can change based on their interactions with one
another and with the environment. Additionally,
patterns of behavior can change over time.

x Sensitive Dependence on Initial Conditions: CAS are
sensitive due to their dependence on initial conditions.
Changes in the input characteristics or rules are not
correlated in a linear fashion with outcomes. Small
changes can have a surprisingly profound impact on
overall behavior, or vice-versa, a huge upset to the
system may not affect it. … This means the end of
scientific certainty, which is a property of “simple”
systems (e.g., the ones used for electric lights, motors
and electronic devices). Consequently, socio-technical
systems, are fundamentally unpredictable in their
behavior. Long-term prediction and control are
therefore believed to not be possible in complex
systems.

x Emergent Order: Complexity in complex adaptive
systems refers to the potential for emergent behavior in
complex and unpredictable phenomena. Once systems
are not in an equilibrium they tend to create different
structures and new patterns of relationships. …
Complex adaptive systems function best when they
combine order and chaos in an appropriate measure –
this phenomenon has been termed Far from
Equilibrium. CAS in their dynamics combine both
order and chaos, and thus, stability and instability,
competition and cooperation, order and disorder –
being termed State of Paradox.

In Figure 1 a schema of complex socio-technical system as
a group of different types of elements is shown, existing far
from equilibrium, when forming interdependent, dynamic
evolutionary networks that are sensitive dependent and
fractionally organized (cf. [13]). Taking a CAS perspective
requires system thinking in terms of networked, however
modular elements acting in parallel (cf. [14]). In socio-
technical settings, these elements can be individuals,
technical systems or their features. Understood as CAS they
form and use internal models to anticipate the future,
basing current actions on expected outcomes. It is this
attribute that distinguishes complex adaptive systems from
other kinds of complex systems; it is also this attribute that

- 2 -

makes the emergent behavior of complex adaptive system
intricate and difficult to understand ([12], p.24). Figure 2
visualizes the behavior-specific dynamics of CAS.

Figure 1. A schema of a complex system.

Figure 2. A schema of a Complex Adaptive System.

According to CAS theory, in CAS settings each element
sends and receives signals in parallel, as the setting is
constituted by each element’s interactions with other
elements. Actions are triggered upon other elements’
signals. In this way, each element also adapts and thus,
evolves through changes over time. Self-regulation and
self-management have become crucial assets in
dynamically changing socio-technical settings, such as
organizations ([15][16]). Self-organization of concerned
stakeholders as system elements is considered key handling
requirements for change. However, for self-organization to
happen, stakeholders need to have access to relevant
information of a situation. Since the behavior of
autonomous stakeholders cannot be predicted, a structured
process is required to guide behavior management
according to the understanding of stakeholders and their
capabilities to change their situation individually [15] [17].

From the interaction of the individual system elements
arises some kind of global property or pattern, something
that could not have been predicted from understanding each
particular element [11]. A typical emergent phenomenon is
a Social Media momentum stemming from the interaction
of the users when deciding upon a certain behavior, such as
spontaneous meetings. Global properties result from the
aggregate behavior of individual elements. Although it is

still an open question how to apply CAS to engineering
systems with emergent behavior (cf. [14]), in case of socio-
technical system design pre-programmed behavior is a
challenging task, as humans may change behavioral
structures in response to external or internal stimuli. As
such, stakeholders in these systems (self-)organize
evolvement and adapt to a changing environment, usually
generating more complexity in the process.

System-of-Systems
System-of-Systems (SoS) is considered an effective way of
handling CAS, in particular when developing complex
artefacts in a structured way [18]. According to IEEE’s
Reliability Society, thereby a system is a group of
interacting elements (or subsystems) having an internal
structure which links them into a unified whole. The
boundary of a system is to be defined, as well as the nature
of the internal structure linking its elements (physical,
logical, etc.). Its essential properties are autonomy,
coherence, permanence, and organization ([19], p.1). A
System-of-Systems (SoS) is a system that involves several
systems that are operated independently but have to share
the same space and somehow cooperate (ibid, p.2).

As such, they have several properties in common:
operational and managerial independence, geographical
distribution, emergent behavior, evolutionary development,
and heterogeneity of constituent systems (ibid.). These
properties affect setting the boundaries of SoS and the
internal behavior of SoS, and thus, influences
methodological SoS developments ([20], p. 206). SoS are
distinct with respect to

(1) autonomy where constituent systems within SoS can
operate and function independently and the capabilities of
the SoS depends on this autonomy,

(2) belonging (integration), which implies that the
constituent systems and their parts have the option to
integrate to enable SoS capabilities,

(3) connectivity between components and their
environment,

(4) diversity (different perspectives and functions),

(5) emergence (foreseen or unexpected) (ibid.)

Several structures and categorization schemes have been
used when considering complex systems as System-of
Systems, ranging from closed coupling (systems within
systems) to loosely coupling (assemblage of system). They
constitute embodied systems cooperating in an
interoperable way (cf. [21]), allowing for autonomous
behavior of each system while contributing through
collaboration with other systems, in order to achieve the
objective of the networked systems (SoS) [22] – see also
next section.

Referring to structural and dynamic complexity, structural
complexity derives from i) heterogeneity of components

- 3 -

across different technological domains due to increased
integration among systems and ii) scale and dimensionality
of connectivity through a large number of components
(nodes) highly interconnected by dependences and
interdependences. Dynamic complexity manifests through
the emergence of (unexpected) system behavior in response
to changes in the environmental and operational conditions
of its components ([19], p.1).

A typical SoS example are contextualized apps available on
a smartphone. Each of them can be considered as a system.
When adjusting them along a workflow, e.g., to raise alert
and guide a patient to the doctor, in case certain thresholds
with respect to medical conditions are reached for a specific
user, several of these systems, such as blood pressure app,
calendar app, and navigation app, need to be coordinated
and aligned for personal healthcare, updating the task
manager of the involved users. In this case, the smartphone
serves as SoS carrier, supporting the patient-oriented
redesign of the workflow, and thus, the SoS structure. The
apps of the smartphone can still be used stand-alone, while
the smartphone serves as a communication infrastructure
and provider of networked healthcare-relevant subsystems.
It is the latter property qualifying the smartphone as carrier
of a SoS.

APP’IFIED SYSTEM DESIGN
In order to align apps to meet user or situation requirements
they need to be interoperable from a semantic perspective.
In the following semantic interoperability is discussed in
the context of System-of-Systems and dynamic adaptation.
As subject-oriented models allow for CAS-specific
behavior representations of apps, a corresponding
development process can be defined. It is given in the
second subsection, demonstrating modeling and process-
driven prototyping.

Semantically Interoperable Systems
We recognize appi’fication from a System-of-Systems
(SoS) perspective, which requires recognizing context of
app use to scope the SoS and the process of adaptation.
Stakeholders need to understand the whole system beyond
its elements, sub-systems, assemblies and components, and
recognize how each element / sub-system / assembly /
component functions as part of the entire system. They are
multifaceted, able to consider issues from a wide range of
perspectives and points of view and possess a generalist's
perspective ([23], p.276). They also need to understand the
interconnections and the mutual influences and
interrelations among system elements. Systems thinking
involves thinking about the system's interactions,
interrelationships, and interdependencies of a technical,
social, socio-technical or multi-level nature (ibid.).

In doing so, developers lay ground for emergent properties
of systems, effecting perspectives beyond engineering an
isolated system. A systemic representation, such as a SoS

specification, enables designing user-specific systems.
Thereby, several constellations may occur ([24], p. 28).

x Integrated Systems (not interoperable): The systems
functionally depend on each other. Once one of the
systems fails, the overall system fails.

x Integrated Interoperable Systems: The systems share
the same meta-model. While remaining independent
systems, the syntax and semantics of the exchanged
information are well defined and may be exchanged
seamlessly.

x Unified Interoperable Systems: Here an abstract layer
is introduced in the communication. Referring to
elements on that layer requires abstracting from
individual details. However, the individual systems are
free to modify their own syntax or semantics as long as
it is possible to relate information to the abstraction
layer commonly agreed upon.

x Federated Interoperable Systems: This is the loosest
interoperable approach. It allows, but at the same time
also requires, negotiating in an ad-hoc manner with
respect to exchanged information syntax and
semantics.

x Compatible but not interoperable Systems: Com-
patible systems exist next to each other, but no
meaningful information is exchanged between them.
These systems do not interfere with the other system.
However, it is not possible to provide larger
functionality through a meaningful combination of the
individual system’s functions.

Although with respect to semantic interoperability, the state
of the art is to use ontologies (cf. [25]), in app’ification
systemic relationships require a more dynamic protocol
[26]. It needs also to go beyond Domain Specific
Languages (DSL) (cf. [27]), to become more agile and
proactive. App’ified SoSs need to be described and
represented as being autonomous while being
interconnected with each other in order to contribute to a
goal at a higher level.

Interoperability is required on the one hand to recognize
autonomous system nature and on the other hand, at the
same time to recognize emergent behavior due to systems’
connectivity to other systems [28]. In case of autonomous
systems kept isolated, neither connectivity nor
diversification of behavior is enabled. As such, these
system cannot be aligned explicitly according to a common
goal, as required for designing semantically interoperable
system [18]. The involved systems need to have the ability
to cooperate with each other, in particular agreeing upon a
common way of interaction in order to collaborate and
share information (cf. [29]).

For instance, in case of interoperable home health care, task
manager app entries can represent both, links to other apps

- 4 -

including transfer of data, e.g., blood pressure to be sent,
and individual action items, e.g., reminders to perform a
certain activity such as a yoga session. Interoperability is
essential not only to overcome system isolation, but also to
enable systems to be diverse and emergent in behavior.
Hence, both, interaction patterns, behavior requires
representation and are subject to structural change. Changes
may occur on the level of individual systems, as well as on
the level of interaction of systems, affecting the overall SoS
behavior (cf. [30][31][21]). From the perspective of sharing
data, a blog entry referring to blood pressure may be
relevant not only for individual reflection on individual
healthcare development, but also for adjusting medical
treatment with physicians. As such, the blog entry could be
part of a patient’s individual knowledge repository, and of a
medical record of the patient.

Dynamic arrangements require knowing the structure and
behavior of a system. Hence, in case blog entries should be
shared with other systems, blogging does not only require a
data format for entries and some structure to inherently
arrange them for blogging, but also facilities for editing
both to adapt to SoS, e.g., sorting along SoS categories like
all tasks referring to blood pressure data.

The integrated representation of the structure and behavior
of systems including their environmental conditions can
either take into account tasks and related processes, e.g.,
Kolb et al. [32], Stary et al. [33], allowing for automated
creation and adaptation of user interfaces for specific user
roles. In case of mapping interaction sequences to
workflow, e.g., as proposed by Franke et al. [34] deviations
between modeled and actual behavior can be identified,
triggering the re-design of technically systems in SoS. In
any case, semantic interoperability requires context-
sensitive understanding and representations (cf. [35][36]).
Different contexts of use leads to different requirements
induce a federated approach to SoS engineering. Context-
relevant but implementation-independent representations
allow capturing and resolving interoperability issues at
design time [21].

Subject-oriented Engineering
In this section we first provide the subject-oriented
perspective on SoS development before discussing its
application for contextual app’ification.

Subject-oriented modeling and execution support
Subject-orientation is rooted in perceiving the world as
parallel processes, each of which encapsulating a certain
behavior and being able to trigger other processes and being
triggered by other processes [37][38]. In subject-oriented
SoS design systems are viewed as emerging from both the
interaction between systems (represented as subjects) and
their specific behaviors encapsulated within the individual
systems [39]. According to this perspective, systems
operate in parallel and can exchange messages, with the
latter establishing a SoS.

The relations between systems of the SoS represent their
context and scope the SoS. In that SoS, the systems operate
autonomously and concurrently. When they are represented
in a subject-oriented way systems are termed subjects. As
behavior encapsulations they can be assigned to an entity
that is capable of performing the encapsulated actions, from
an organizational and/or technological perspective. This
entity can be a human, an app, a machine (e.g., a robot), a
device (e.g., a sensor), or a combination of these. Subject-
oriented systems execute two different types of actions:

x System-specific actions: They correspond to self-
contained activities and do not involve interacting with
other systems, such as checking the blood pressure of a
patient.

x Communication with other systems: These actions are
concerned with exchanging messages between systems,
i.e. sending and receiving messages, e.g., connecting a
medical information system to the blood pressure
measurement system of a patient, in order to receive
medical feedback after collecting blood pressure data.

In subject-oriented representations, systems are represented
as one of five core symbols listed in Figure 3. In Figure 4
subjects (i.e. systems) are Customer, Order Handling, and
Shipment. Subject-oriented design requires two types of
diagrams:

x Subject Interaction Diagrams (SIDs). They provide a
global view of a SoS, comprising its systems and the
messages they exchange. The SID of a simple ordering
setting is shown in Figure 4.

x Subject Behavior Diagrams (SBDs). They provide an
internal view on individual systems through sequences
of states representing local actions (functions) and
communicative actions (sending and receiving
messages). State transitions are represented as arrows,
with labels indicating the outcome of the preceding
state (see Figure 5).

Figure 3. Diagrammatic elements of subject-oriented

specifications.

- 5 -

Figure 4. Handling orders – a SoS view via a Subject Interaction

Diagram (SID).

Figure 5. System interaction for handling orders between

Customer (SBD) and Order handling system (SBD).

Given these notational capabilities SoS designs are
characterized by

x a simple communication protocol (using SIDs) to relate
systems

x standardized system interfaces (enabled by SBDs
encapsulating system behavior)

x scalability in terms of complexity and scope, since each
system can be decomposed according to functional or
interaction patterns.

Subject-oriented representations allow representing each
system’s context in terms of communication relations to
other systems. Hence, context-specific requirements, e.g.,
when creating a SoS for home health care, need to be
mapped to relevant patterns of interactions between
systems. The approach scales when SoS can be defined
through dynamic and situation-sensitive system formations
of systems in the sense of Complex Adaptive Systems (see
section on CAS).

Since the communication relations between systems define
a control flow for SoSs, validated subject-oriented
specifications can be executed without further
transformation (see Figure 6). In this way, users and
stakeholders can be involved in modeling, refining, and
implementing their SoS specifications.

Their modular structure is compatible with similar
implementation approaches, such as service-oriented
architectures and agent-oriented software systems [40].

Figure 6. Interactive experience when executing subject-

oriented system specifications.

Supporting context-sensitive SoS app’ification
Subject-oriented SoS design seeks to assist user-centered
system development by providing a methodology that
presents behavior-relevant information encoded in apps.
These characteristics enable users to be engaged more
effectively via behavior representations. The SoS-based
app’ification procedure has been designed according to the
principles of subject-oriented system modeling and is
structured as follows (cf. [41], Appendix):

(1) An app is a system which is represented by its behavior.
(1.1) A specification of an app as system does not imply

any actor or technology that could be used to execute
the described behavior. It is implementation-
independent.

(1.2) Apps can communicate with each other by exchanging
messages (2).

(2) A Message has a name and a payload.
(2.1) The name should express the meaning of a message

informally.
(2.2) The payload corresponds to the data transported.

(3) Apps have behavior representations. Internally,
(3.1) an app executes local activities
(3.2) an app sends messages to other apps
(3.3) an app expects messages from other apps
(3.4) an app performs all these activities in sequence – they

are defined in an app's behavior specification.

(4) Subject-oriented SoS specifications concern a specific
behavior embedded in some context.
(4.1) Context is defined by the needs of users and properties

of the situation at hand, including a set of apps (1,3).
(4.2) Context is expressed in terms of messages (2) for each

app (1).
(4.3) Context is also provided by the technological

infrastructure by which a system is technical part of,
allowing to execute a specified app behavior (3).

Hence, contextual app’ification is based on the behavioral
entities or abstract resources involved in a user-relevant
setting. It is enabled and set up by systems termed subjects.

- 6 -

The behavior of a resulting SoS is determined by the
subjects’ exchanges of messages (i.e. system interactions).

(5) Modeling requires several activities, namely, the
specification of
(5.1) the scope of modeling
(5.2) the apps to be processed for task completion
(5.3) interactions the apps are part of
(5.4) the messages they send or receive through each

interaction
(5.5) the behavior of each app encapsulating functions and

interactions

(6) Subject Interaction Diagram (SID)
(6.1) (5.2) to (5.4) constitutes a Subject Interaction Diagram

representing an app’ified SoS.
(6.2) A Subject Interaction Diagram is the most abstract

diagrammatic level of describing how task are
completed

(6.3) For each subject of a Subject Interaction Diagram a
Subject Behavior Diagram (7) needs to be constructed
for a complete and coherent app’ified SoS model.

(7) Subject Behavior Diagram (SBD)
(7.1) (5.5) for each subject constitutes a Subject Behavior

Diagram.
(7.2) Once a app has been identified in (6), the behavior of

each app can be defined in a subject-oriented way.
(7.3) An app’s behavior is described by three states (send,

receive, internal function) and transitions between these
states. Hence, when specifying the behavior of each
subject, a sequence of sending and receiving messages,
and activities to be set for task accomplishment need to
be represented.

(7.4) The subject-oriented description of an app defines the
sequence of sending and receiving messages, or the
processing of internal functions, respectively.

(7.5) A Subject Behavior Diagram is the most concrete
diagrammatic level of adjusting apps, thus establishing a
subject-oriented SoS.

(8) The states of a Subject Behavior Diagram represent
operations.
(8.1) They are active elements of the subject description.
(8.2) States are implemented by functions or services.
(8.3) State transitions are necessary to exchange and

manipulate data objects.

(9) Data objects are
(9.1) data affected by operations of an app.
(9.2) exchanged between apps by sending and receiving

messages
(9.3) processed through services.

In the following we exemplify a scheme how context-
sensitive app’ification develops. We consider a home
healthcare setting, as this kind of settings is under research
increasingly from a socio-technical perspective (cf. [42]).

Consider the following case: An elder patient needs
particular home healthcare support. Her blood pressure
needs to be checked every other day. The patient needs to
be reminded to trigger the measurement. Based on the
results of the blood pressure check medical advice could be
consulted. Three apps need to be aligned for effective
monitoring and consultancy: (i) blood pressure
measurement, (ii) medical expert consultancy, (iii)
medication reminder & scheduling. In case the blood
pressure reaches a certain threshold, medical experts need
to be consulted, and eventually individual medication needs
to be adjusted, triggering the reminder & scheduling
system.

Figure 7. SBD-home healthcare app’ification example involving

Patient and Blood Pressure Management.

In line with the subject-oriented SoS modeling each app is
represented as individual system (subject), leading to a
Subject Interaction Diagram involving 4 different systems
and exchanging messages - in addition to the listed apps the
patient also needs to be represented, in order to capture her
behavior. As shown in the SBD interactions in Figure 7, the
patient triggers the blood pressure measurement by sending
a message to the corresponding subject (app), and receives
a data set for interpretation.

Activating the medical advice could be modeled in a SBD
through standard send-receive pattern with a medical
consultancy system. The decision making procedure could
also be added later, and the development requires CAS
capabilities for app’ified SoSs. Putting the patient in control
of triggering medical advice as dynamically occurring
requirement means she triggers medical consultancy after
checking her blood pressure, providing an up-to-date data
set.

In order to mark such behavioral changes, and even adapt
them further according to changing requirements,
Fleischmann et al. [43,44] suggested the message guard
concept for exception (i.e. non-routine behavior) and event
handling. Events in subject-oriented representations occur

- 7 -

in a particular domain, such as home health care, and
represent a novel need or a change in requirements. Events
are interpreted as messages that can contain structured (data
objects) or unstructured data (attachments).

The message guard reacting to the new behavior request is
specified in Figure 8. Event producer, sending events in that
case is the patient, requesting to decide by herself on a case-
by-case basis. The event consumer is the message guard
extending behavior capabilities. It receives events and
processes them. In the example it may lead to involving
medical advice, when the patient feels not comfortable with
her interpretation of blood pressure date (see right branch).
A function of a SBB allowing for behavior extension is
marked with a triangle – see ‘interpret data set’ in Figure 8.

Figure 8. Capturing dynamic user control on medical advice.

Figure 9. The Behavioral Interface enabling cross-app and

cross-platform communication.

Utilizing subject-orientation, message exchange is the core
feature for SoS app’ification including dynamic adaptation.
For cross-app and cross-platform communication a
message-based middleware could provide effective runtime
support. Meyer et al. [45, 46] have developed a
corresponding framework as shown in Figure 9. Each app

has an external and internal interface. The external one
could be part of a routing component allowing to interact
with other apps while the internal behavior is not visible to
other apps. The Behavioral Interface keeps track, in which
sequence messages are exchanged between apps, even
across platforms. In this way also events can be exchanged,
triggering behavior modifications, and thus, ad-hoc changes
while maintaining semantic interoperability of the involved
apps (cf. [47]).

CONCLUSION
Digitalization of goods and processes enables informed
design of services and systems by involved stakeholders,
once they are provided with user-centered design
instruments. Following a communication-driven
perspective, system specifications can not only encapsulate
behavior of apps, but also capture their context in terms of
message exchanges. The underlying adaptive system-of-
systems concept enables contextual app’ification of
interactive systems, including the behavior of situation-or
task-relevant actors, such as doctors, care takers,
administration, and patients involved in home healthcare.

Subject-oriented representations contain functional and
interactional aspects, and thus, contextual parameters to
capture a situation relevant for system use. They can be
used to generate interactive experience without touching the
functionality of involved apps, rather extending their scope
due to interactional alignment. At design and runtime
semantic interoperability of involved systems can be
ensured by context-sensitive behavioral interfaces.

Future research will, on the one hand focus on usability and
acceptance of model-based design instruments for potential
users, since, so far situation- or task-sensitive information
has been captured. On the other hand, future work will
focus on increasing the intelligence of appi’fied systems, as
the existing structure of aligned apps can be changed
dynamically. Activities could then be proposed by system-
of-systems, in particular referring to re-occurring behaviors
or reference models. The more digital footprints become
available, the more context can be considered for re-
designing complex systems, such as Internet of Things or
cyber-physical systems (cf. [48]).

REFERENCES
1. Burroughs, B. YouTube kids: The app economy and

mobile parenting. Social Media+Society 3, 2 (2017),
DOI: https://doi.org/10.1177/2056305117707189.

2. Mansour, E., Sambra, A.V., Hawke, S., Zereba, M.,
Capadisli, S., Ghanem, A., Aboulnaga, A. and Berners-
Lee, T. A demonstration of the solid platform for social
web applications. Proc. of the 25th International
Conference Companion on World Wide Web,
International World Wide Web Conferences Steering
Committee (2016), 223-226.

- 8 -

3. Manresa-Yee, C. and Amengual, E. Tailoring ISO/IEC
12207 for Usability Engineering. International Journal
of Engineering Education 32, 2 (2016), 886-893.

4. Magües, D.A., Castro, J.W. and Acuña, S.T.
Requirements Engineering related Usability Techniques
adopted in Agile Development Processes. Proc. SEKE
2016, Knowledge Systems Institute (2016), 537-542.

5. Shelley, C. Social agendas. In Design and Society:
Social Issues in Technological Design. Springer
International Publishing (2017), 105-124.

6. Fahl, S., Harbach, M., Perl, H., Koetter, M., and Smith,
M. Rethinking SSL development in an appified world.
Proc. of the 2013 ACM SIGSAC conference on
Computer & communications security, ACM Press
(2013), New York, 49-60.

7. Batran, A., Erben, A., Schulz. R., and Sperl,
F. Procurement 4.0: A survival guide in a digital,
disruptive world. Campus Verlag, Frankfurt (2017).

8. Jia, Y. J., Chen, Q.A., Wang, S., Rahmati, A.,
Fernandes, E., Morley, M. and Prakash, A. ContexIoT:
Towards providing contextual integrity to appified IoT
platforms. Proc. of the 21st Network and Distributed
System Security Symposium (NDSS'17), Internet Society
(2017), 1-15.

9. Leonhard, G. and von Kospoth, C.A.G. Exponential
technology versus linear humanity: Designing a
sustainable future. In Sustainability in a Digital World,
Springer International Publishing (2017), 77-83.

10. Gidey, H. K., Marmsoler, D. and Eckhardt, J. Grounded
Architectures: Using Grounded Theory for the design of
software architectures. Proc. IEEE International
Conference on Software Architecture Workshops
(ICSAW), IEEE Computer Society (2017), IEEE
Computer Society Press, New York, 141-148.

11. Chan, S. Complex adaptive systems. ESD 83 Research
Seminar in Engineering Systems, 31 (2001).

12. Holland, J.H. Complex adaptive systems. Daedalus 121,
1 (1992), 17-30.

13. Fichter, Lynn S., Pyle, E.J. and Whitmeyer, S.J.
Expanding Evolutionary Theory Beyond Darwinism
with Elaborating, Self-Organizing, and Fractionating
Complex Evolutionary Systems. Journal of Geoscience
Education 58, 2 (2010), 58-64.

14. Holland, J. H. (2006). Studying complex adaptive
systems. Journal of Systems Science and
Complexity, 19(1), 1-8.

15. Allee, V. Value-creating networks: organizational issues
and challenges. The learning organization 16, 6 (2009),
427-442.

16. Firestone, J.M. and McElroy, M.W. Key issues in the
new knowledge management. Routledge, New York
(2003).

17. Stary, C. Non-disruptive knowledge and business
processing in knowledge life cycles–aligning value
network analysis to process management. Journal of
Knowledge Management 18, 4 (2014), 651-686.

18. Jamshidi, M. (Ed.) System of systems engineering:
innovations for the twenty-first century (Vol. 58). John
Wiley & Sons, New York (2011).

19. IEEE-Reliability Society. Technical Committee on
‘Systems of Systems’. Systems-of-Systems, White Paper,
5p., IEEE, IEEE Society Press (2014).

20. Jaradat, R. M., Keating, C. B. and Bradley, J. M. A.
histogram analysis for system of systems. International
Journal of System of Systems Engineering 5, 3 (2014),
193-227.

21. Stary, C. and Wachholder, D. System-of-systems
support—A bigraph approach to interoperability and
emergent behavior. Data & Knowledge Engineering 105
(2016), 155-172.

22. Maier, M. W. Research challenges for systems-of-
systems. Proc. International Conference on Systems,
Man and Cybernetics, Vol. 4, IEEE, IEEE Society Press
(2005), 3149-3154.

23. Frank, M. (2012). Engineering Systems Thinking:
Cognitive Competencies of Successful Systems
Engineers. Procedia Computer Science 8 (2012), 273-
278.

24. Weichhart, G. and Stary C. Traceable pedagogical
design rationales for personalized learning technologies:
an interoperable system-to-system
approach. International Journal of People-Oriented
Programming 3, 2 (2014), 25-55.

25. Weichhart, G., Stary, C. and Vernadat, F.B. Enterprise
Modeling for the interoperable and knowledge-based
enterprise. International Journal on Production
Research 55 (2017), in press.

26. Zacharewicz, G., Diallo, S., Ducq, Y., Agostinho, C.,
Jardim-Goncalves, R., Bazoun, H., Wang, Z. and
Doumeingts, G. Model-based approaches for
interoperability of next generation enterprise
information systems: state of the art and future
challenges. Information Systems and e-Business
Management (2016).

27. Weichhart, G. and C. Stary. A Domain Specific
Language for Organisational Interoperability. Proc. On
The Move Conferences and Workshops, Springer
(2015), 117-126.

28. Bezerianos, A. and McEwan, G. Presence Disparity in
Mixed Presence Collaboration. Ext. Abstracts CHI
2008, ACM Press (2008), 35–37.

29. Curry, E. System of systems information
interoperability using a linked dataspace. Proc. 7th
International Conference on System of Systems

- 9 -

Engineering, IEEE, IEEE Society Press (2012), 101-
106.

30. Boardman, J. and Sauser, B. System of systems — the
meaning of. Proc. International Conference on System
of Systems Engineering, IEEE, IEEE Society Press
(2006), 118-123.

31. Baldwin, W.B. and Sauser B. Modeling the
characteristics of system of systems, Proc. International
Conference on System of Systems Engineering, IEEE,
IEEE Society Press (2009), 1–6.

32. Kolb, J., Hübner, P. and Reichert, M. Automatically
Generating and Updating User Interface Components in
Process-Aware Information Systems. Proc. On the
Move to Meaningful Internet Systems, Springer 7565
Lecture Notes in Computer Science (2012), 444–454.

33. Stary, C. and Wachholder, D. Context Control of
Interoperable Interactive Systems. Proc. 17th
Conference on Business Informatics vol. 1, IEEE, IEEE
Society Press (2015), 232-241.

34. Franke, J., Charoy, F. and El Khoury, P. Framework for
coordination of activities in dynamic situations. Enterp.
Inf. Syst. 7, 1 (2013), 33–60.

35. Panetto, H. and Cecil, J. Information systems for
enterprise integration, interoperability and networking:
theory and applications. Enterp. Inf. Syst. 7, 1 (2013), 1–
6.

36. Vernadat, F.B. Technical, semantic and organizational
issues of enterprise interoperability and networking.
Ann. Rev. Control 34, 1 (2010), 139–144.

37. Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S.
and Börger, E. Subject-oriented business process
management. Springer Publishing Company,
Incorporated (2012).

38. Fleischmann, A., Schmidt, W. and Stary, C. Subject-
oriented business process management. In Handbook on
Business Process Management 2, Springer, Berlin
(2015), 601-621.

39. Stary, C. System-of-Systems Design Thinking on
Behavior. Systems 5(1), 3 (2017).

40. Fleischmann, A., Kannengiesser, U., Schmidt, W. and
Stary, C. Subject-oriented modeling and execution of
multi-agent business processes. Proc. of the 2013
IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technologies
Volume 02. IEEE, Computer Society (2013), 138-145.

41. Fleischmann, A., Schmidt, W. and Stary, C. S-BPM in
the wild: Practical value creation. Springer Publishing
Company, Incorporated (2015).

42. Ackerman, M.S., Goggins, S.P., Herrmann, T., Prilla,
M. and Stary, C. Designing Healthcare that Works. A
Socio-technical Approach. Academic Press, Cambridge,
MA (2017).

43. Fleischmann, A., Schmidt, W., Stary, C. and Strecker, F.
Nondeterministic events in business processes. Proc.
International Conference on Business Process
Management. Springer (2012), 364-377.

44. Fleischmann, A., Schmidt, W. and Stary, C. Complex
Event Processing in e-Services. Proc. 9th IEEE
International Conference on Developments in eSystems
Engineering (DeSE). IEEE Computer Society Press
(2016), 251-259.

45. Meyer, N., Feiner, T., Radmayr, M., Blei, D.,
Fleischmann, A. Dynamic catenation and execution of
cross organisational business processes-the jCPEX!
approach. Proc. International Conference on Subject-
Oriented Business Process Management. Springer
(2010), 84-105.

46. Meyer, N., Radmayr, M., Heininger, R., Rothschädl, T.,
and Fleischmann, A. Platform for Managing and
Routing Cross-Organizational Business Processes on a
Network Router. Proc. S-BPM ONE-Learning by
Doing-Doing by Learning, ed. Schmidt, W., Springer
(2011), 175-189.

47. Rothschädl, T. Ad-hoc adaption of subject-oriented
business processes at runtime to support organizational
learning. Proc. S-BPM ONE–Scientific Research, ed.
Stary, C., Springer, 104 Lecture Notes in Business
Information Processing (2012), 22-32.

48. Neubauer, M. and Stary, C. S-BPM in the Production
Industry. Springer International Publishing (2017).

- 10 -

