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ABSTRACT 
In this contribution, user-centered design and the generation 
of human support systems based on apps as behavior 
encapsulations are addressed from a conceptual and 
engineering perspective. Specific ingredients, in particular 
Complex Adaptive Systems (CAS) theory, a System-of-
Systems (SoS) perspective, semantic interoperability of 
apps, and Subject-oriented Business Process Management 
(S-BPM) are detailed with respect to user-centered 
development. They allow the contextual alignment of 
application behavior from a role perspective, based on 
communication and interaction models that can be executed 
automatically. Users can set up the design space, validate 
specifications, and evaluate the context-sensitive alignment 
of apps. They primarily detail communication flows to meet 
their requirements and can experience the aligned apps 
interactively.  
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INTRODUCTION 
The design and development of interactive systems has 
changed significantly in the last few years, due to 
technological developments and resulting usage of 
applications (cf. [1][2][3][4]). Development has been driven 
by both, smart mobile devices, and dynamically adaptable 
application architectures. Using apps on mobile devices as 
intermediaries for accessing (cloud) services as standard 
interaction scenario leads to an app’ification of these 
services with a focus on user-specific needs. The term 
‘app’ification’ or ‘app-fication’, respectively, has been used 
in several contexts, such as 

x Personalization of (interactive) services [5] 

x Security and privacy issues concerning interactive 
platforms (cf.[6]) 

x Speeding up of technology development and novel 
segmentation of system landscapes [7] 

x Facilitating of third party developments for IoT 
(Internet of Things) platforms [8] 

x Sustainability in a digital world and development of 
humanity when replacing human conversations, 
interactions and decisions through apps [9] 

Gidey et al. [10] have been looking for architecturally 
significant requirements and architectural design decisions 
addressing several of the above mentioned issues. In their 
systematic elicitation study based on grounded theory they 
could identify ‘appification’ as ‘the development and 
provision of smaller applications in a single feature set per 
application to work on devices with varying sets of 
platforms and form factors’ ([10], p.145). Following this 
understanding, a user-centered app’ification design 
approach requires dynamic composition and alignment 
facilities to adjust small applications to situation-sensitive 
needs and technological capabilities available in a specific 
situation. 

As the number of apps a user utilizes increases the 
importance of contextual design involving various apps 
increases [8]. Consider a train information app. It can be of 
interest in the context of both, planning a trip, and being 
delayed on an ongoing trip. The latter requires real-time 
travel assistance in contrast to the first case which is based 
on planned schedules. From a user perspective, any 
difference in context should lead to different technical 
system behavior. Situation- or task-sensitive support 
requires dynamic design variants, albeit the need for 
consistent user experience of particular apps across multiple 
settings. Being able to adapt services in a context-
dependent manner results in end-user computing, providing 
the capability to arrange apps according to an individual 
flow of control and dynamically changing requirements. 
Unlike the device-centric service computing the focus 
hereby is on a context-centric service experience caused by 
an app’ified design space. In such a space users should be 
able to design their digital services in a seamless manner.  

Several challenges of contextual app’ification can be 
identified, when introducing a user-centered design 
approach, among them dynamic systems’ thinking and 

- 1 -



  

generating diagrammatic representations that can be 
executed under user control. Dynamic systems’ thinking is 
based on understanding interactive systems as Complex 
Adaptive Systems which is introduced in the next section. It 
allows considering app’ification as System-of-Systems 
design process. Its structure is revealed in this section. 
System-of-Systems thinking gives space to create 
semantically interoperable designs which are populated 
with apps, and thus, triggers a respective development 
process (i.e. app’ification).  

Semantic interoperability as essential part of app’ification is 
discussed in the subsequent section. This part of the paper 
also introduces process prototyping based on subject-
oriented design representations, as it features task-specific 
user experience. Subject-oriented modeling allows mapping 
app-specific and cross-app behavior to executable system 
specifications, which in turn enables prototyping of 
app’ified support systems. The approach is exemplified for 
meeting specific needs from a user perspective. The final 
section concludes the contribution, summarizing the 
objectives and achievements, and providing inputs to 
further research.  

TAKING A SYSTEM-OF-SYSTEMS PERSPECTIVE 
In order to capture the dynamics of evolving socio-technical 
systems based on user needs, in this section relevant 
perspectives and concepts, namely Complex Adaptive 
Systems and System-of-Systems thinking, are provided.  

Complex Adaptive Systems 
According to Chan [11] Complex Adaptive Systems (CAS) 
started in US to oppose the European “natural science” 
tradition in the area of cybernetics and systems. Although 
CAS theory shares the subject of general properties of 
complex systems across traditional disciplinary boundaries 
(like in cybernetics and systems) it relies on computer 
simulations as a research tool (as pointed out by Holland in  
1992 initially [12]), and considers less integrated or 
“organized” systems, such as ecologies, in contrast to 
organisms, machines, or enterprises. Many artificial 
systems are characterized by apparently complex behaviors 
due to often nonlinear spatio-temporal interactions among a 
large number of component systems at different levels of 
organization, they have been termed Complex Adaptive 
Systems (CAS)  

CAS are dynamic systems able to adapt in and evolve with 
a changing environment. It is important to realize that there 
is no separation between a system and its environment in 
the idea that a system always adapts to a changing 
environment. Rather, the concept to be examined is that of a 
system closely linked with all other related systems making 
up an ecosystem. Within such a context, change needs to be 
seen in terms of co-evolution with all other related systems, 
rather than as adaptation to a separate and distinct 
environment ([11] p.2). CAS have several constituent 
properties (ibid. p.3ff): 

x Distributed Control: There is no single centralized 
control mechanism that governs system behavior. 
Although the interrelationships between elements of 
the system produce coherence, the overall behavior 
usually cannot be explained merely as the sum of 
individual parts.  

x Connectivity: A system does not only consist of 
relations between its elements, but also of relations 
with its environment. Consequently, a decision or 
action by one part within a system influences all other 
related parts.  

x Co-evolution With co-evolution, elements in a system 
can change based on their interactions with one 
another and with the environment. Additionally, 
patterns of behavior can change over time.  

x Sensitive Dependence on Initial Conditions: CAS are 
sensitive due to their dependence on initial conditions. 
Changes in the input characteristics or rules are not 
correlated in a linear fashion with outcomes. Small 
changes can have a surprisingly profound impact on 
overall behavior, or vice-versa, a huge upset to the 
system may not affect it. … This means the end of 
scientific certainty, which is a property of “simple” 
systems (e.g., the ones used for electric lights, motors 
and electronic devices). Consequently, socio-technical 
systems, are fundamentally unpredictable in their 
behavior. Long-term prediction and control are 
therefore believed to not be possible in complex 
systems.  

x Emergent Order: Complexity in complex adaptive 
systems refers to the potential for emergent behavior in 
complex and unpredictable phenomena. Once systems 
are not in an equilibrium they tend to create different 
structures and new patterns of relationships. … 
Complex adaptive systems function best when they 
combine order and chaos in an appropriate measure – 
this phenomenon has been termed Far from 
Equilibrium. CAS in their dynamics combine both 
order and chaos, and thus, stability and instability, 
competition and cooperation, order and disorder – 
being termed State of Paradox. 

In Figure 1 a schema of complex socio-technical system as 
a group of different types of elements is shown, existing far 
from equilibrium, when forming interdependent, dynamic 
evolutionary networks that are sensitive dependent and 
fractionally organized (cf. [13]). Taking a CAS perspective 
requires system thinking in terms of networked, however 
modular elements acting in parallel (cf. [14]). In socio-
technical settings, these elements can be individuals, 
technical systems or their features. Understood as CAS they 
form and use internal models to anticipate the future, 
basing current actions on expected outcomes. It is this 
attribute that distinguishes complex adaptive systems from 
other kinds of complex systems; it is also this attribute that 

- 2 -



  

makes the emergent behavior of complex adaptive system 
intricate and difficult to understand ([12], p.24). Figure 2 
visualizes the behavior-specific dynamics of CAS. 

 

 
Figure 1. A schema of a complex system. 

 

 
Figure 2. A schema of a Complex Adaptive System. 

According to CAS theory, in CAS settings each element 
sends and receives signals in parallel, as the setting is 
constituted by each element’s interactions with other 
elements. Actions are triggered upon other elements’ 
signals. In this way, each element also adapts and thus, 
evolves through changes over time. Self-regulation and 
self-management have become crucial assets in 
dynamically changing socio-technical settings, such as 
organizations ([15][16]). Self-organization of concerned 
stakeholders as system elements is considered key handling 
requirements for change. However, for self-organization to 
happen, stakeholders need to have access to relevant 
information of a situation. Since the behavior of 
autonomous stakeholders cannot be predicted, a structured 
process is required to guide behavior management 
according to the understanding of stakeholders and their 
capabilities to change their situation individually [15] [17].  

From the interaction of the individual system elements 
arises some kind of global property or pattern, something 
that could not have been predicted from understanding each 
particular element [11]. A typical emergent phenomenon is 
a Social Media momentum stemming from the interaction 
of the users when deciding upon a certain behavior, such as 
spontaneous meetings. Global properties result from the 
aggregate behavior of individual elements. Although it is 

still an open question how to apply CAS to engineering 
systems with emergent behavior (cf. [14]), in case of socio-
technical system design pre-programmed behavior is a 
challenging task, as humans may change behavioral 
structures in response to external or internal stimuli. As 
such, stakeholders in these systems (self-)organize 
evolvement and adapt to a changing environment, usually 
generating more complexity in the process.  

System-of-Systems 
System-of-Systems (SoS) is considered an effective way of 
handling CAS, in particular when developing complex 
artefacts in a structured way [18]. According to IEEE’s 
Reliability Society, thereby a system is a group of 
interacting elements (or subsystems) having an internal 
structure which links them into a unified whole. The 
boundary of a system is to be defined, as well as the nature 
of the internal structure linking its elements (physical, 
logical, etc.). Its essential properties are autonomy, 
coherence, permanence, and organization ([19], p.1). A 
System-of-Systems (SoS) is a system that involves several 
systems that are operated independently but have to share 
the same space and somehow cooperate (ibid, p.2).  

As such, they have several properties in common: 
operational and managerial independence, geographical 
distribution, emergent behavior, evolutionary development, 
and heterogeneity of constituent systems (ibid.). These 
properties affect setting the boundaries of SoS and the 
internal behavior of SoS, and thus, influences 
methodological SoS developments ([20], p. 206). SoS are 
distinct with respect to 

(1) autonomy where constituent systems within SoS can 
operate and function independently and the capabilities of 
the SoS depends on this autonomy,  

(2) belonging (integration), which implies that the 
constituent systems and their parts have the option to 
integrate to enable SoS capabilities,  

(3) connectivity between components and their 
environment, 

(4) diversity (different perspectives and functions),  

(5) emergence (foreseen or unexpected) (ibid.) 

Several structures and categorization schemes have been 
used when considering complex systems as System-of 
Systems, ranging from closed coupling (systems within 
systems) to loosely coupling (assemblage of system). They 
constitute embodied systems cooperating in an 
interoperable way (cf. [21]), allowing for autonomous 
behavior of each system while contributing through 
collaboration with other systems, in order to achieve the 
objective of the networked systems (SoS) [22] – see also 
next section.  

Referring to structural and dynamic complexity, structural 
complexity derives from i) heterogeneity of components 
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across different technological domains due to increased 
integration among systems and ii) scale and dimensionality 
of connectivity through a large number of components 
(nodes) highly interconnected by dependences and 
interdependences. Dynamic complexity manifests through 
the emergence of (unexpected) system behavior in response 
to changes in the environmental and operational conditions 
of its components ([19], p.1). 

A typical SoS example are contextualized apps available on 
a smartphone. Each of them can be considered as a system. 
When adjusting them along a workflow, e.g., to raise alert 
and guide a patient to the doctor, in case certain thresholds 
with respect to medical conditions are reached for a specific 
user, several of these systems, such as blood pressure app, 
calendar app, and navigation app, need to be coordinated 
and aligned for personal healthcare, updating the task 
manager of the involved users. In this case, the smartphone 
serves as SoS carrier, supporting the patient-oriented 
redesign of the workflow, and thus, the SoS structure. The 
apps of the smartphone can still be used stand-alone, while 
the smartphone serves as a communication infrastructure 
and provider of networked healthcare-relevant subsystems. 
It is the latter property qualifying the smartphone as carrier 
of a SoS. 

APP’IFIED SYSTEM DESIGN 
In order to align apps to meet user or situation requirements 
they need to be interoperable from a semantic perspective. 
In the following semantic interoperability is discussed in 
the context of System-of-Systems and dynamic adaptation. 
As subject-oriented models allow for CAS-specific 
behavior representations of apps, a corresponding 
development process can be defined. It is given in the 
second subsection, demonstrating modeling and process-
driven prototyping. 

Semantically Interoperable Systems 
We recognize appi’fication from a System-of-Systems 
(SoS) perspective, which requires recognizing context of 
app use to scope the SoS and the process of adaptation. 
Stakeholders need to understand the whole system beyond 
its elements, sub-systems, assemblies and components, and 
recognize how each element / sub-system / assembly / 
component functions as part of the entire system. They are 
multifaceted, able to consider issues from a wide range of 
perspectives and points of view and possess a generalist's 
perspective ([23], p.276). They also need to understand the 
interconnections and the mutual influences and 
interrelations among system elements. Systems thinking 
involves thinking about the system's interactions, 
interrelationships, and interdependencies of a technical, 
social, socio-technical or multi-level nature (ibid.).  

In doing so, developers lay ground for emergent properties 
of systems, effecting perspectives beyond engineering an 
isolated system. A systemic representation, such as a SoS 

specification, enables designing user-specific systems. 
Thereby, several constellations may occur ([24], p. 28).  

x Integrated Systems (not interoperable): The systems 
functionally depend on each other. Once one of the 
systems fails, the overall system fails. 

x Integrated Interoperable Systems: The systems share 
the same meta-model. While remaining independent 
systems, the syntax and semantics of the exchanged 
information are well defined and may be exchanged 
seamlessly. 

x Unified Interoperable Systems: Here an abstract layer 
is introduced in the communication. Referring to 
elements on that layer requires abstracting from 
individual details. However, the individual systems are 
free to modify their own syntax or semantics as long as 
it is possible to relate information to the abstraction 
layer commonly agreed upon. 

x Federated Interoperable Systems: This is the loosest 
interoperable approach. It allows, but at the same time 
also requires, negotiating in an ad-hoc manner with 
respect to exchanged information syntax and 
semantics.  

x Compatible but not interoperable Systems: Com-
patible systems exist next to each other, but no 
meaningful information is exchanged between them. 
These systems do not interfere with the other system. 
However, it is not possible to provide larger 
functionality through a meaningful combination of the 
individual system’s functions.  

Although with respect to semantic interoperability, the state 
of the art is to use ontologies (cf. [25]), in app’ification 
systemic relationships require a more dynamic protocol 
[26]. It needs also to go beyond Domain Specific 
Languages (DSL) (cf. [27]), to become more agile and 
proactive. App’ified SoSs need to be described and 
represented as being autonomous while being 
interconnected with each other in order to contribute to a 
goal at a higher level.  

Interoperability is required on the one hand to recognize 
autonomous system nature and on the other hand, at the 
same time to recognize emergent behavior due to systems’ 
connectivity to other systems [28]. In case of autonomous 
systems kept isolated, neither connectivity nor 
diversification of behavior is enabled. As such, these 
system cannot be aligned explicitly according to a common 
goal, as required for designing semantically interoperable 
system [18]. The involved systems need to have the ability 
to cooperate with each other, in particular agreeing upon a 
common way of interaction in order to collaborate and 
share information (cf. [29]).  

For instance, in case of interoperable home health care, task 
manager app entries can represent both, links to other apps 
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including transfer of data, e.g., blood pressure to be sent, 
and individual action items, e.g., reminders to perform a 
certain activity such as a yoga session. Interoperability is 
essential not only to overcome system isolation, but also to 
enable systems to be diverse and emergent in behavior. 
Hence, both, interaction patterns, behavior requires 
representation and are subject to structural change. Changes 
may occur on the level of individual systems, as well as on 
the level of interaction of systems, affecting the overall SoS 
behavior (cf. [30][31][21]). From the perspective of sharing 
data, a blog entry referring to blood pressure may be 
relevant not only for individual reflection on individual 
healthcare development, but also for adjusting medical 
treatment with physicians. As such, the blog entry could be 
part of a patient’s individual knowledge repository, and of a 
medical record of the patient.  

Dynamic arrangements require knowing the structure and 
behavior of a system. Hence, in case blog entries should be 
shared with other systems, blogging does not only require a 
data format for entries and some structure to inherently 
arrange them for blogging, but also facilities for editing 
both to adapt to SoS, e.g., sorting along SoS categories like 
all tasks referring to blood pressure data.  

The integrated representation of the structure and behavior 
of systems including their environmental conditions can 
either take into account tasks and related processes, e.g., 
Kolb et al. [32], Stary et al. [33], allowing for automated 
creation and adaptation of user interfaces for specific user 
roles. In case of mapping interaction sequences to 
workflow, e.g., as proposed by Franke et al. [34] deviations 
between modeled and actual behavior can be identified, 
triggering the re-design of technically systems in SoS. In 
any case, semantic interoperability requires context-
sensitive understanding and representations (cf. [35][36]). 
Different contexts of use leads to different requirements 
induce a federated approach to SoS engineering. Context-
relevant but implementation-independent representations 
allow capturing and resolving interoperability issues at 
design time [21]. 

Subject-oriented Engineering 
In this section we first provide the subject-oriented 
perspective on SoS development before discussing its 
application for contextual app’ification.  

Subject-oriented modeling and execution support 
Subject-orientation is rooted in perceiving the world as 
parallel processes, each of which encapsulating a certain 
behavior and being able to trigger other processes and being 
triggered by other processes [37][38]. In subject-oriented 
SoS design systems are viewed as emerging from both the 
interaction between systems (represented as subjects) and 
their specific behaviors encapsulated within the individual 
systems [39]. According to this perspective, systems 
operate in parallel and can exchange messages, with the 
latter establishing a SoS.  

The relations between systems of the SoS represent their 
context and scope the SoS. In that SoS, the systems operate 
autonomously and concurrently. When they are represented 
in a subject-oriented way systems are termed subjects. As 
behavior encapsulations they can be assigned to an entity 
that is capable of performing the encapsulated actions, from 
an organizational and/or technological perspective. This 
entity can be a human, an app, a machine (e.g., a robot), a 
device (e.g., a sensor), or a combination of these. Subject-
oriented systems execute two different types of actions: 

x System-specific actions: They correspond to self-
contained activities and do not involve interacting with 
other systems, such as checking the blood pressure of a 
patient. 

x Communication with other systems: These actions are 
concerned with exchanging messages between systems, 
i.e. sending and receiving messages, e.g., connecting a 
medical information system to the blood pressure 
measurement system of a patient, in order to receive 
medical feedback after collecting blood pressure data. 

In subject-oriented representations, systems are represented 
as one of five core symbols listed in Figure 3. In Figure 4 
subjects (i.e. systems) are Customer, Order Handling, and 
Shipment. Subject-oriented design requires two types of 
diagrams:  

x Subject Interaction Diagrams (SIDs). They provide a 
global view of a SoS, comprising its systems and the 
messages they exchange. The SID of a simple ordering 
setting is shown in Figure 4. 

x Subject Behavior Diagrams (SBDs). They provide an 
internal view on individual systems through sequences 
of states representing local actions (functions) and 
communicative actions (sending and receiving 
messages). State transitions are represented as arrows, 
with labels indicating the outcome of the preceding 
state (see Figure 5). 

 
Figure 3. Diagrammatic elements of subject-oriented 

specifications. 
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Figure 4. Handling orders – a SoS view via a Subject Interaction 

Diagram (SID). 

 
Figure 5. System interaction for handling orders between 

Customer (SBD) and Order handling system (SBD). 

Given these notational capabilities SoS designs are 
characterized by  

x a simple communication protocol (using SIDs) to relate 
systems   

x standardized system interfaces (enabled by SBDs 
encapsulating system behavior) 

x scalability in terms of complexity and scope, since each 
system can be decomposed according to functional or 
interaction patterns. 

Subject-oriented representations allow representing each 
system’s context in terms of communication relations to 
other systems. Hence, context-specific requirements, e.g., 
when creating a SoS for home health care, need to be 
mapped to relevant patterns of interactions between 
systems. The approach scales when SoS can be defined 
through dynamic and situation-sensitive system formations 
of systems in the sense of Complex Adaptive Systems (see 
section on CAS).  

Since the communication relations between systems define 
a control flow for SoSs, validated subject-oriented 
specifications can be executed without further 
transformation (see Figure 6). In this way, users and 
stakeholders can be involved in modeling, refining, and 
implementing their SoS specifications.  

Their modular structure is compatible with similar 
implementation approaches, such as service-oriented 
architectures and agent-oriented software systems [40]. 

 

 
Figure 6. Interactive experience when executing subject-

oriented system specifications. 

Supporting context-sensitive SoS app’ification  
Subject-oriented SoS design seeks to assist user-centered 
system development by providing a methodology that 
presents behavior-relevant information encoded in apps. 
These characteristics enable users to be engaged more 
effectively via behavior representations. The SoS-based 
app’ification procedure has been designed according to the 
principles of subject-oriented system modeling and is 
structured as follows (cf. [41], Appendix): 

(1) An app is a system which is represented by its behavior.  
(1.1) A specification of an app as system does not imply 

any actor or technology that could be used to execute 
the described behavior. It is implementation-
independent.  

(1.2) Apps can communicate with each other by exchanging 
messages (2).  

(2) A Message has a name and a payload.  
(2.1) The name should express the meaning of a message 

informally. 
(2.2) The payload corresponds to the data transported.  

(3) Apps have behavior representations. Internally, 
(3.1) an app executes local activities 
(3.2) an app sends messages to other apps 
(3.3) an app expects messages from other apps 
(3.4) an app performs all these activities in sequence – they 

are defined in an app's behavior specification. 

(4) Subject-oriented SoS specifications concern a specific 
behavior embedded in some context.  
(4.1) Context is defined by the needs of users and properties 

of the situation at hand, including a set of apps (1,3). 
(4.2) Context is expressed in terms of messages (2) for each 

app (1). 
(4.3) Context is also provided by the technological 

infrastructure by which a system is technical part of, 
allowing to execute a specified app behavior (3). 

Hence, contextual app’ification is based on the behavioral 
entities or abstract resources involved in a user-relevant 
setting. It is enabled and set up by systems termed subjects. 
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The behavior of a resulting SoS is determined by the 
subjects’ exchanges of messages (i.e. system interactions).  

(5) Modeling requires several activities, namely, the 
specification of  
(5.1) the scope of modeling   
(5.2) the apps to be processed for task completion  
(5.3) interactions the apps are part of 
(5.4) the messages they send or receive through each 

interaction 
(5.5) the behavior of each app encapsulating functions and 

interactions 

(6) Subject Interaction Diagram (SID) 
(6.1) (5.2) to (5.4) constitutes a Subject Interaction Diagram 

representing an app’ified SoS. 
(6.2) A Subject Interaction Diagram is the most abstract 

diagrammatic level of describing how task are 
completed 

(6.3) For each subject of a Subject Interaction Diagram a 
Subject Behavior Diagram (7) needs to be constructed 
for a complete and coherent app’ified SoS model. 

(7) Subject Behavior Diagram (SBD) 
(7.1) (5.5) for each subject constitutes a Subject Behavior 

Diagram. 
(7.2) Once a app has been identified in (6), the behavior of 

each app can be defined in a subject-oriented way.  
(7.3) An app’s behavior is described by three states (send, 

receive, internal function) and transitions between these 
states. Hence, when specifying the behavior of each 
subject, a sequence of sending and receiving messages, 
and activities to be set for task accomplishment need to 
be represented.  

(7.4) The subject-oriented description of an app defines the 
sequence of sending and receiving messages, or the 
processing of internal functions, respectively. 

(7.5) A Subject Behavior Diagram is the most concrete 
diagrammatic level of adjusting apps, thus establishing a 
subject-oriented SoS. 

(8) The states of a Subject Behavior Diagram represent 
operations. 
(8.1) They are active elements of the subject description.  
(8.2) States are implemented by functions or services. 
(8.3) State transitions are necessary to exchange and 

manipulate data objects.  

(9) Data objects are 
(9.1) data affected by operations of an app. 
(9.2) exchanged between apps by sending and receiving 

messages 
(9.3) processed through services. 

In the following we exemplify a scheme how context-
sensitive app’ification develops. We consider a home 
healthcare setting, as this kind of settings is under research 
increasingly from a socio-technical perspective (cf. [42]). 

Consider the following case: An elder patient needs 
particular home healthcare support. Her blood pressure 
needs to be checked every other day. The patient needs to 
be reminded to trigger the measurement. Based on the 
results of the blood pressure check medical advice could be 
consulted. Three apps need to be aligned for effective 
monitoring and consultancy: (i) blood pressure 
measurement, (ii) medical expert consultancy, (iii) 
medication reminder & scheduling. In case the blood 
pressure reaches a certain threshold, medical experts need 
to be consulted, and eventually individual medication needs 
to be adjusted, triggering the reminder & scheduling 
system.  

 
Figure 7. SBD-home healthcare app’ification example involving 

Patient and Blood Pressure Management. 

In line with the subject-oriented SoS modeling each app is 
represented as individual system (subject), leading to a 
Subject Interaction Diagram involving 4 different systems 
and exchanging messages - in addition to the listed apps the 
patient also needs to be represented, in order to capture her 
behavior. As shown in the SBD interactions in Figure 7, the 
patient triggers the blood pressure measurement by sending 
a message to the corresponding subject (app), and receives 
a data set for interpretation.  

Activating the medical advice could be modeled in a SBD 
through standard send-receive pattern with a medical 
consultancy system. The decision making procedure could 
also be added later, and the development requires CAS 
capabilities for app’ified SoSs. Putting the patient in control 
of triggering medical advice as dynamically occurring 
requirement means she triggers medical  consultancy after 
checking her blood pressure, providing an up-to-date data 
set. 

In order to mark such behavioral changes, and even adapt 
them further according to changing requirements, 
Fleischmann et al. [43,44] suggested the message guard 
concept for exception (i.e. non-routine behavior) and event 
handling. Events in subject-oriented representations occur 
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in a particular domain, such as home health care, and 
represent a novel need or a change in requirements. Events 
are interpreted as messages that can contain structured (data 
objects) or unstructured data (attachments).  

The message guard reacting to the new behavior request is 
specified in Figure 8. Event producer, sending events in that 
case is the patient, requesting to decide by herself on a case-
by-case basis. The event consumer is the message guard 
extending behavior capabilities. It receives events and 
processes them. In the example it may lead to involving 
medical advice, when the patient feels not comfortable with 
her interpretation of blood pressure date (see right branch). 
A function of a SBB allowing for behavior extension is 
marked with a triangle – see ‘interpret data set’ in Figure 8.  

 
Figure 8. Capturing dynamic user control on medical advice. 

 
Figure 9. The Behavioral Interface enabling cross-app and 

cross-platform communication. 

Utilizing subject-orientation, message exchange is the core 
feature for SoS app’ification including dynamic adaptation. 
For cross-app and cross-platform communication a 
message-based middleware could provide effective runtime 
support. Meyer et al. [45, 46] have developed a 
corresponding framework as shown in Figure 9. Each app 

has an external and internal interface. The external one 
could be part of a routing component allowing to interact 
with other apps while the internal behavior is not visible to 
other apps. The Behavioral Interface keeps track, in which 
sequence messages are exchanged between apps, even 
across platforms. In this way also events can be exchanged, 
triggering behavior modifications, and thus, ad-hoc changes 
while maintaining semantic interoperability of the involved 
apps (cf. [47]).   

CONCLUSION 
Digitalization of goods and processes enables informed 
design of services and systems by involved stakeholders, 
once they are provided with user-centered design 
instruments. Following a communication-driven 
perspective, system specifications can not only encapsulate 
behavior of apps, but also capture their context in terms of 
message exchanges. The underlying adaptive system-of-
systems concept enables contextual app’ification of 
interactive systems, including the behavior of situation-or 
task-relevant actors, such as doctors, care takers, 
administration, and patients involved in home healthcare.  

Subject-oriented representations contain functional and 
interactional aspects, and thus, contextual parameters to 
capture a situation relevant for system use. They can be 
used to generate interactive experience without touching the 
functionality of involved apps, rather extending their scope 
due to interactional alignment. At design and runtime 
semantic interoperability of involved systems can be 
ensured by context-sensitive behavioral interfaces. 

Future research will, on the one hand focus on usability and 
acceptance of model-based design instruments for potential 
users, since, so far situation- or task-sensitive information 
has been captured. On the other hand, future work will 
focus on increasing the intelligence of appi’fied systems, as 
the existing structure of aligned apps can be changed 
dynamically. Activities could then be proposed by system-
of-systems, in particular referring to re-occurring behaviors 
or reference models. The more digital footprints become 
available, the more context can be considered for re-
designing complex systems, such as Internet of Things or 
cyber-physical systems (cf. [48]). 
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