
- 175 -

 Real-Time User Interaction within Socio-Physical Systems

Corina Bianca Alb

Technical University of Cluj-Napoca
Str. Memorandumului, nr.28, Cluj-Napoca

corina7bianca@gmail.com

Dorian Gorgan

Technical University of Cluj-Napoca
Str. Memorandumului, nr.28, Cluj-Napoca

dorian.gorgan@cs.utcluj.ro

ABSTRACT

In this sample paper you can find information regarding the

study of human interaction with a computer application that

manipulates massive amount of information in real-time.

Here are discussed the matters of assuring high

performance and responsiveness of the system when

interacting with a human user. It is also presents a way to

establish efficient communication between entities that

form crowds and the user input: how to apply external

forces to dynamic entities.

Author Keywords

Entity; GPU; interaction; atomic; obstacle; target; parallel

computation; User input; manipulation; cluster;

ACM Classification Keywords

HCI

General Terms

Human-Computer Interaction; Socio-physics; Clustering;

Entity; User input; GPU; Parallel and distributed

computations; Interface responsiveness;

INTRODUCTION

Human-Computer Interaction is a wide area of study that

brings together multiple disciplines, like: computer science,

behavioral science, design and media studies. Those are just

a few fields of interest that are also tangent to the subject of

this paper.

The need for a fast means of computation in case of

massive amounts of data is a matter of computer science

innovation. GPU uses parallel and distributed methods in

order to increase the computational performance. This

paper shows examples of calculus based on those GPU

methods of parallelism.

Another aspect is represented by the behavioral sciences.

This is a field that requires the analysis of huge quantities

of data. This is where GPU comes in handy. The analysis of

information is done real-time and the responsiveness of the

application assures a good user experience. Socio-physics is

a branch of behavioral sciences that also uses mathematical

and physical tools in order to understand the behavior of

human crowds.

Socio-physical systems are representations of complex, real

life interaction processes between diverse dynamic entities

The interactions can be abstracted into simple mathematical

operations. The individuals/entities are characterized by a

series of forces and relations, out of which we differentiate

in this study: (a) attraction towards a target or another

individual and (b) rejection between an individual and

another individual or obstacle. The study of those processes

requires a means of simulation and real time visualization

of scenarios; the interaction between entities must also

allow to be manipulated by a user.

This paper has as purpose the development and analysis of

some flexible and scalable solutions for real-time execution

of socio-physical scenarios using graphical processing units

(the GPU provides a good environment for real-time

manipulation of massive quantities of data by using parallel

computation mechanisms).

In order to achieve our purpose, we simulate generalized

functional patterns applied on entities. Those are described

as attraction forces, rejection forces, movement towards an

end point (objective point/target) and the concept of

obstacle and. Regarding crowd simulation, multiple entities

can be grouped in so-called clusters. Entities in the same

cluster are characterized by similar behaviors in response to

external events; see the figure 1 below for a graphical

representation. Each group is defined by one or more

atomic actions, just as the ones presented earlier (rejection,

attraction etc.). An entity can be part of multiple clusters or

none, thus the increasing diversity: there are multiple

possible combinations of atomic functions/actions resulting

in the creation of complex behaviors.

Figure 1. Entities grouped in clusters defining similar behaviors.

- 176 -

Another purpose of this paper is to include user input

responsiveness. That means that the user of an application

such as the one presented here can interact with the entities

and influence their behavior. This has great potential for

further development of socio-physical oriented studies: it

includes real-time and flexible manipulation of data. This

enables the possibility to study more complex scenarios

while maintaining a generalized pattern description for

basic actions. The main idea is that the way or order in

which the actions take place can be influenced by an

outside force – the user.

This paper presents some simple atomic operations that

form the basis of user interactivity. The approach improves

the usability of the system by enabling the creation and

manipulation of data into multiple scenarios. Visualization

of data is also described here as the interface and the means

of communication between the human user and the system:

this way, the evolution of the scenario is interactively

decided.

RELATED WORKS

The related works that have formed the motivation of this

analysis are based on socio-physics study and crowd

simulation. An important aspect is that those rely on the

applicability and simulation of a group dynamics on GPU.

Thus, one of the papers studies the simulation of crowd

dynamics as a socio-physical model using graphical

processing unit parallelism techniques [1]. The matter of

performance is an important aspect when having to deal

with diverse and interdependent computations on big

quantities of data. This requires a specialized type of

hardware architecture. The paper mentioned above is a

study that analyzes the techniques used by the GPU in order

to improve the performance of computations in comparison

with the CPU. It focuses on high level optimization of

parallel computations with application in graphical

simulations.

Another work continues the analysis of performance by

means of hardware improvement. Architecture for real time

crowd simulation using multiple GPUs [2] relies on

dividing the amount of data to be manipulated between

multiple GPU units. The architectural aspect plays an

important role when it comes to realistic representation of

situations that require huge number of entities. Multiple

GPUs on the same machine or organized as a cluster are

used for creating realistic crowd simulation application. It is

one of the first studies to approach this method. Even

though this last presented paper describes a major

performance improvement, the current study does not

mainly rely on it. The major focus is the analysis of the

forces that influence the behavior of entities and how it can

be manipulated by the end user (the human interaction).

The next study, Social force model for pedestrian dynamics

[3] has as purpose the analysis of the physical concepts that

describe behaviors. It formulates a social force model using

concepts on which the human behavior is based. The main

focus is the study of pedestrians’ motion. Just as this paper

wants to emphasize and analyze, this publication concludes

that pedestrian motion can be classified according to

environment and other pedestrians’ movement. A certain

subject has a goal, a location on the map he/she wants to

arrive to. If her/his movement is not disturbed, the motion is

simple and takes the shortest path. If on the other hand, the

motion of a subject is influenced by another subject, there

appears what we describe in our paper, a rejection force

towards an entity: their positions on the map cannot

overlap. There has to be implemented a mechanism/pattern

of avoidance: an alternative path has to be found. The

Social force model for pedestrian dynamics study mentions

also the concept of border. Those are represented by

buildings, streets, walls, or in a general term, obstacles.

Here, a repulsive effect is described. The pedestrian needs

to acknowledge the presence of such an obstacle and avoid

it; this is presented here as rejection force towards an

obstacle. Another possible action is the attractive effect.

Pedestrians can be attracted by other pedestrians. The

correlated action in our study is the attraction force towards

another entity. This related work describer mathematical

formulas for each type of effect in order to create a

generalized pattern that can be applied in similar situations

for a large number of subjects/pedestrians.

Our study has a similar purpose: studying alternative

methods of efficient pattern generation for entities

interaction between each other and between them and other

objects classified as obstacles.

TYPE OF INTERACTIONS

As presented in the introductory part, the entities in the

system are influenced by a number of forces, for all of

which we want to describe a functional pattern. In addition

to those (the attractive effect and the repulsive effect) the

user input is introduced. It can be classified as a special

kind of influence because it is an outside force that can

manipulate the existing patterns in order to create new

specific scenarios.

We also want to take advantage of the GPU’s specialized

architecture for massive data representation and parallel

computation capability for performance improvement

purposes.

Attraction towards a target

The first and most basic type of force that influences an

entity is the attraction towards an already known target

when there is no obstacle or other entity to influence the

trajectory. Refer to figure 2 for an example of how this is

represented graphically.

Figure 2. Attraction force of an entity towards a fixed target.

TARGET

POSITION
ENTITY

- 177 -

For visualization, the position of the moving entity is

updated at each frame until it reaches the destination.

When a single entity is involved, the performance of the

computations on the CPU is comparable with the one on the

GPU. The real advantage is observed when there are a huge

number of entities reaching their targets. Figure 3

represents symbolically the possibility of having multiple

entities moving toward different targets.

Figure 3. Scalability of the number of entities performing

computations in order to reach their targets.

For a CPU implementation this kind of scenario produces

glitches at visualization because of the massive amount of

computations that need to be done.

The attraction towards a target gets more complicated when

obstacles are involved. This is presented in further sections,

as it involves more complex analysis of the environment

that surrounds the entity.

Attraction towards an entity

The next type of attraction is the attraction towards another

entity. This is a more complex type of force because,

despite the case of a target -which is a fixed point, the

subject A has to deal with a moving entity B, as suggested

in figure 4. This means that at each frame the attracted

entity A considers as target the current position of the entity

B, which in turn is updated at every frame. The subject B

could be following its own path towards a target.

Figure 4. Entity A is attracted to the moving entity B.

To make the study more complex, let’s consider the motion

of B follow the model of a bouncing ball that is dropped

from a distance X from the ground. There is a gravitational

force that attracts it to the ground, as well as a rejection

force coming from the ground and walls: this makes the ball

bounce. For a more realistic visualization, there is also a

speed modifier variable that makes the ball slow down as it

touches the ground and walls. This effect is achieved by

adjusting the velocity of the ball using the Verlet

integration [4]; see in figure 5 the mathematical expression

of the Verlet integration: the variable t represents the time, v

is the velocity and a represents the acceleration; this is the

physical interpretation of the formula. The method is often

used in computer graphics for performance reasons, as it

uses simple computations only: additions and subtractions

functions of time. Programmatically, the velocity, time and

acceleration have slightly different meanings: time is

expressed as frames that are to be displayed; the velocity is

actually the position of the entity at a given frame, while the

acceleration represents the difference between the previous

positions of the entity. As an example, at frame F1 (time

t1), entity E has position P1, at frame F2 (time t2) it has

position P2 and at frame F3 (time t3) it has position P3.

Acceleration a is equal at frame F2 with P2-P1 and at frame

F3 with P3-P2. Considering that time variance (delta t)

represents one frame, Verlet integration uses the mean on

the previous and current accelerations in order to determine

the current velocity.

Figure 5. The mathematical expression of Verlet integration.

To summarize, there are three physical forces that act

towards entity B: (1) the gravitational force, (2) the

repulsive/rejection reaction of the ground and walls and (3)

the bouncing slowing down force.

Coming back to entity A, it has to adjust its position taking

into consideration entity B. The result is a mirrored

bouncing effect: A follows the pattern that B’s movement

describes.

Figure 6. Entity B (simulation of a ball) is bouncing to the

wall. The wall is an obstacle that reverses B’s direction of

movement.

ENTITY

A

ENTITY

B

ENTITY

C

TARGET

POSITION B

TARGET

POSITION A

TARGET

POSITION C

ENTITY

A

ENTITY

B

TARGET

POSITION B

ENTITY

B

- 178 -

Figure 7. Rejection force between multiple entities following the same moving target.

Rejection force between an entity and an obstacle

Before going on to the obstacle concept, notice that in the

previous paragraph we have talked about the bouncing

effect of the entity B when it comes in contact with the

walls. Figure 6 depicts this scenario. This is actually a

rejection force where the walls are obstacles: they reverse

B’s direction of movement: the walls don’t let the ball

(entity B) pass through it.

Another kind of obstacle is represented by static objects

that might interfere with the trajectory of moving entities.

In this case, the moving subjects must find alternative ways

to reach their target by avoiding the obstacles. A more

complex mathematical approach is needed, thus the

justification of GPU performance.

Rejection force between entities

Rejection can also take place between subjects of the same

type: moving entities. Let’s consider the bouncing ball use-

case presented earlier. This time, instead of having a single

subject that is attracted to entity B, there are more. We have

to take into consideration the fact that all entities that are

attracted to the same point might overlap. In a 2D

environment, this is not a realistic representation of motion.

This is why we need to find a way to implement the

rejection between entities at the same time as attraction

towards the same bouncing subject B. This is done just like

in the case of static obstacles, only this time each entity is

an obstacle for all the others. At each frame, all entities

change positions, but for each current position, all subjects

adjust their coordinates in the 2D space they move in. Refer

to figure 7 presented above in order to observe the

evolution of such a scenario.

This use-case is fit for observing and analyzing some

scalability performance. As also mentioned previously, the

computations’ complexity is high. A CPU implementation

does introduce glitches and a poor visualization. On the

other hand, the GPU memory and computation capacity are

high enough to not only ensure a smooth visualization, but

also scalability. Depending on the hardware specifications,

the quality of the visualization remains unaltered for a

certain number X of entities. When this threshold X is

outrun, the system becomes slower due to the amount of

time it takes to complete all the computations for all data

(the amount of time to complete all the computations

necessary for displaying a frame); the level of parallelism is

limited by the hardware.

The system has been implemented and analyzed in order to

objectively study the scalability of this scenario. The use-

case relies on increasing the number of entities that are

attracted to the bouncing ball B (see table 1): for a number

of 10 entities, it takes approximately 400 microseconds to

render a frame in GPU. The same number of entities is

rendered on CPU in only 100 microseconds. For 100

entities, the amount of time on GPU slightly increases,

reaching approximately 500 microseconds per frame.

Operations on CPU take 400 microseconds. It takes 800

microseconds to perform all computations for 500 subjects

on a GPU, while on a CPU it takes 4500 microseconds.

From this point on, the advantage in performance

introduced by the parallelism implemented on the graphical

processing unit is evident: see table 1 for a representation of

the scalability with regard to time performance (some errors

might be introduces due to approximations). For a further

analysis, when the number of entities is increased to 2000,

the GPU takes approximately 4000 microseconds while the

CPU 10 times longer: 40000 microseconds.

Table 1. Number of entities scalability and time performance.

CLUSTERING

Clustering is the technique used to group together entities

that act similarly in given situations. The behavior of the

group is described rather the one specific for each

individual. Atomic operations, just like the ones presented

in the earlier section, are used to define the reaction to a

certain kind of interaction. Refer to Figure 1 for a graphical

representation. The most important part here is defining the

characteristics of the cluster instead of the ones that refer to

an individual. Each entity can decide whether or not to be

part of one or more defined groups. This way, the behavior

Entities

number

GPU computation

time (microseconds)

CPU computation

time (microseconds)

10 400 100

100 500 400

500 800 4500

1000 2000 10000

2000 4000 40000

- 179 -

is deduced by the analysis of the influence that all groups

bring to a specific entity.

INTRODUCTION USER INPUT

For a more flexible manipulation of the events that take

place in the entities’ environment, the user input has been

introduced: it creates new scenarios that are not explicitly

described by the program/application. This kind of

interaction is valuable because it improves the usability of

the application. Some default patterns can be manipulated

in order to create new ones.

Here, it is considered the input from the user for a use-case

when the entities cannot decide by themselves how to avoid

an obstacle. The user can create the so called temporary

attraction points that act towards entities blocked by an

obstacle. He/she can also control those attraction points by

activating and deactivating them at any time.

Introducing input from a user generates use-cases that are

handled according to the atomic interactions presented in

the previous section: an entity that encounters an obstacle in

its way towards a target is blocked. The user’s input helps it

find an alternative way of reaching the final position. This

automatically generates a scenario in which a user has

impact; out of all the possibilities, somebody chose a

certain one: the entity could avoid the obstacle by turning

left or right (up or down), but the user specified to turn left

(figure 8).

Figure 8. The entity cannot decide by itself which way to avoid

the obstacle.

Going further, there are some possible use-cases: (1) The

entity might encounter another entity, this generating a

rejection force as the one presented earlier (rejection force

between entities). Being an atomic operation, the system

has a default way of handling this situation (figure 9).

Figure 9. The system finds an alternative way for B to reach

its target without overlapping entity A.

(2) Even if there is no other obstacle, the entity follows its

path towards the target, which is again an atomic operation

(figure 10). Notice that all operations are performed real-

time. In situations when more than one outcome is possible,

the user can manipulate the default behavior and

experiment new scenarios. The responsiveness of the

application is an important objective which this approach

makes sure to accomplish.

Figure 10. After avoiding the fixed obstacle, entity B follows its

target normally, without any other interference.

The user also has control over the number and type of

entities that create the scenario. This information is given at

the beginning of the application, before the rendering of the

scene. This way, he/she can study and measure the

performance of the system and scalability, as well as

simulating the behavior of the entities for a more or less

crowded scenario.

Avoiding obstacles using user input

An example scenario that uses the user’s input in order to

avoid an obstacle is presented in figure 11.

The red squares denote the moving entities; those have a

simple route: starting from the left part of the screen, they

want to reach a target on the right part of the screen. The

vertical bar is an obstacle and the points cannot move

further. The two ends of the bar represent the temporary

attraction points mentioned earlier. The entities will start

moving towards that point once the user activates one (or

both) of them; in the case that the user activates both

attraction points at the ends of the obstacle, the subjects

choose to reach the one which is closer. Temporary

attraction holds until the subject reaches it; after that, the

entity follows its path to the target.

APPLICABILITY

The previous section - TYPE OF INTERACTIONS

presented the basic atomic operations used in the simple

application referred to in image 11. The red squares have as

purpose reaching a previously known target when there are

obstacles on the way. This simple scenario has been

implemented in order to represent the possibilities offered

by the system for further developing; for example a real-life

application for finding a convenient route knowing a set of

constraints (dead end, the route is for trains only, obstacles

like fences) and also allowing the user to choose; a scenario

could be: ‘here, you can go to the left where the road is

TARGET

POSITION

ENTITY

B

ENTITY

TARGET

POSITION

ENTITY

B

ENTITY

A

- 180 -

paved or you could take a shortcut through the park’. Figure

11 depicts the result of simulating such a simplified

scenario (some of the red points are stuck, waiting for the

user to take a decision).

CONCLUSION

The interaction between humans and computer [5] is a step

forward in technological research and development. It

enables people to make use of the computation power of a

machine in order to solve and analyze complex problems.

Human-Computer Interaction is a multidisciplinary field of

study: this type of interaction assumes, besides computer

sciences knowledge, the creation of a design or interface for

the human user. This paper has as purpose the study of

those types of interactions from a graphical perspective. It

focuses on the improvements brought by using the GPU as

principal engine of computation for data manipulation

regarding the user experience. The four atomic forces

presented are the basic tools that an end user can

manipulate in order to create complex scenarios.

Figure 11. Moving entities (red squares) encounter a vertical

obstacle.

Regarding interactivity, here can be differentiated two

major categories: (1) interactions between the entities

(programmed interaction that cannot be altered) and (2)

user input interactions (those interactions that introduce

additional data in the system, with the purpose of altering

the default scenario described programmatically).

The interaction between entities makes use of the parallel

and distributed computation system implemented on the

GPU. The performance regarding this aspect is limited by

the hardware specifications, but is far more capable than the

CPU. The atomic forces: (1) attraction towards a fixed

target, (2) attraction towards another entity, (3) the rejection

force between an obstacle and an entity and (4) the rejection

force between two entities are thus the basic tools for a real-

time responsive visualization of data.

Introducing the user input is the next step in developing the

interactive study. This creates responsive visualization of

scenarios that alter the default(programmed) behavior of the

entities. It makes use of the atomic operations presented

above.

All in all, massive data manipulation human computer

interactive applications can be created by making use of the

parallel and distributed systems. The responsiveness is

preserved by transporting the computations’ overhead to the

GPU. The visualization is thus smooth and offers a good

user experience.

REFERENCES

1. Stefan Mocanu, Ramona Din, Daniela Saru, Cosmin

Popa: Using Graphics Processing Units for Accelerated

Information Retrieval. Faculty of Automatic Control and

Computer Science, University Politehnica of Bucharest,

060042, Romania. Year: 2014. Article 3. Number of

pages: 8.

2. Mark Joselli: Pontificia Universidade do Parana, PUC-

PR. Jose Ricardo da S., Esteban Clua: Medi Lab,

Universidade Federal Fluminense. An architecture for

real time crowd simulation using multiple GPUs. SBC -

Proceedings of the SBGames 2014 | ISSN: 2179-2259.

Computing Track - Full Papers. Number of pages: 8.

3. Dirk Helbing, Peter Molnar: Social force model for

pedestrian dynamics: volume 51, number 5, May 1995.

Institute of Theoretical Physics, University of Stuttgart,

70550 Stuttgart, Germany. Number of pages: 5.

4. Benedikt Bitterli: A Verlet based approach for 2D game

physics. Math and physics, November 20, 2009 Number

of pages: 7.

5. Using research methods in human-computer interaction

to design technology for resilience: Armida Guerra

Lopes, Centro Algoritmi, University of Minho,

Guimarães, Braga, Portugal. Instituto Politécnico of

Castelo Branco, Portugal. JISTEM J.Inf.Syst. Technol.

Manag. vol.13 no.3 São Paulo Sept./Dec. 2016.

6. Sociophisics: a personal testimony. Serge Galam,

Laboratoire des Milieux Desordonnes et Heterogenes,

Tour 13, Case 86. CNRS UMR 7603. Number of pages:

7.

7. From CUDA to OpenCL: Towards a Performance-

portable Solution for Multi-platform GPU: Peng Dua,

Rick Webera, Piotr Luszczeka, Stanimire Tomova,

Gregory Petersona, Jack Dongarra. University of

Tennessee Knoxville and University of Manchester.

Number of pages: 7

