
 - 71 -

Byzantine Music Composition Using Markov Models

Teodor Lucian Anton

University Politehnica of Bucharest

313 Splaiul Independentei,

Bucharest, Romania
teodordanton@gmail.com

Stefan Trausan-Matu

University Politehnica of Bucharest

313 Splaiul Independentei,

Bucharest, Romania

and

Research Institute for Artificial Intelligence

and

Academy of Romanian Scientists
stefan.trausan@cs.pub.ro

ABSTRACT

This paper presents a project that applies Markov Models

improved with similarity metrics to produce computer-

generated Byzantine music. An implementation over a

dataset of Romanian music in eighth mode, stichiraric style

is described. The importance of the similarity mechanism is

highlighted, in particular in regard to melodic transition

tables. Results of the implementation are presented, which

show both strengths and limitations of the model.

Author Keywords

Music composition; Markov Models; Byzantine Music;

rhythm

ACM Classification Keywords

H.5.1. Multimedia Information Systems: Audio

input/output; Applied computing → Sound and music

computing; Computing methodologies → Artificial

intelligence; Machine learning;

INTRODUCTION

Advanced interfaces should include all communication

means that can enhance human-computer interaction. In this

sense, music has an important role, being able to provide an

adequate context for accompanying various tasks, for

immersing the user in a specific atmosphere. Therefore,

generating/composing music with the computer in the aim of

facilitating immersion should be able to provide various

specific melodicities. There already are an important number

of computer programs that generate several common music

genres: jazz, rock, pop, blues, classical music (for example,

in Bach’s style), using various techniques, such as: rule-

based systems, constraint satisfaction, neural networks,

evolutionary programming, Markov Models, etc. [3] These

programs may generate music from scratch starting from

some rules (written by the programmer or obtained by

machine learning) or by “imitation”, through supervised

machine learning, Markov Models being very well suited for

temporal sequences of events, specific also to music.

Another way to generate music is the sonification of

processes that have musicality [6].

However, at least as far as we know, there are no computer

programs that generate Byzantine or Gregorian music, even

if there are many contexts in which these kinds of music may

accompany human-computer interaction, for example in

virtual museums, when reading specific texts, or even as a

general background music.

This paper mainly contains the results of the research and

implementation done by the first author for his graduation

thesis, which expand upon Ebert’s ideas of a

phenomenological approach to artificial jazz improvisation

[2], testing them out on a very different kind of music: the

Byzantine chant without ison. Ebert declares his approach

‘phenomenological’, thus, inspired by the processes of the

human mind. He notes that jazz improvisation is based less

on well-defined musical laws and more on the players’

experience with listening and improvising on a given musical

theme. Ebert mentioned that an important component of his

algorithm is the addition of similarity metrics, idea implied

by the importance of similarity in human creativity [2].

Moreover, a phenomenological philosophy perspective was

emphasized as required for human language understanding

[7].

Byzantine musical theory, on the other hand, as compared to

the liberty of jazz improvisation, is based on a complex set

of composition rules which restrain the composer's

creativity, without excluding it. There is also a significant

difference at a purely musical level, requiring a respective

adaptation of the composition algorithm. The groups of notes

at the end of each musical breath (known as cadences) had

to be extracted separately. The similarity metrics (in

particular, the rhythmic ones) also had to be changed.

Fragment extraction was complicated by the melismata (the

notes that are sung for one syllable) that characterise

stichiraric chant. The aim of the research was to investigate

whether the above-mentioned algorithm is capable of

producing music with a Byzantine character, without having

explicitly given it any composition rules.

BASIC IDEAS OF THE COMPOSITION ALGORITHM

Generally speaking, the algorithm consists of extracting the

most frequent melodic and rhythmic fragments, followed by

the calculation of tables containing respectively the

probability of one rhythmic fragment following another one

(Pr(rj|ri)), the probability of one melodic fragment following

another one (Pr(mq|mp)), and the probability of a rhythmic

 - 72 -

fragment and a melodic fragment overlapping (Pr(rj,mq)),

which is computed using the number of occurrences of the

extracted fragments in the training set. Then, the probability

of a new melodico-rhythmic fragment following any given

fragment may be approximated as follows:

 Pr(rj,mq | ri,mp)≈Pr(rj|ri) · Pr(mq|mp) · Pr(rj,mq) (1)

The similarity metrics are used for extrapolating fore-

mentioned probabilities when the fragments in question do

not follow each other or overlap at all in the training set. This

extrapolation is very important because in practice the

transition tables are quite sparse without extrapolation,

which narrows the composition possibilities. The

extrapolation of unseen probabilities in the rhythmic matrix

is done according to the following equation:

 Pr(rj|ri)≈r · Pr(rj|rk) · Sk,i
(R) (2)

where k = argmax(Sk,i
(R)), r is the rhythmic extrapolation

factor that controls the weight of extrapolated transition

probabilities relative to directly calculated ones, and Sk,i
(R) is

the similarity between rhythmic fragments rk and ri.

Extrapolation for melodic transitions and for melodico-

rhythmic superposition is done in similar fashion.

The learning process ends with the calculation and

extrapolation of the elements of the tables. Afterwards they

can be used for generation: a melodico-rhythmic fragment is

selected for the beginning, the most likely follow-ups are

calculated, one of them is chosen and the steps are repeated,

forming a new score. In the case of Byzantine music, a fitting

cadence is attached at the end.

DETAILED EXPOSITION

According to the tempo, Byzantine chant is split into four

styles, from faster to slower: recitative, heirmologic,

stichiraric, and papadic. According to the character of the

melody, it is split into eight tones. Every tone has its own set

of melodic structures and formulae; in particular, it has a

fundamental scale of eight notes, typical cadences and final

notes; these are the traits that were looked for in the results

of the system. In building the training the used set was only

stichiraric, because the recitative and heirmologic styles

were found as too simple, and papadic too rare. Of stichiraric

chants, only those in eighth tone (whose base scale is in fact

C Major) were picked because it is one of the most frequent.

The music used for training was taken from standard

Romanian church music books [1,4,5], as it was wished that

the set to be as stylistically coherent as possible. The selected

chants were transcribed into the score editor MuseScore,

which was used to convert them to the MusicXML standard

annotation language. Most of the secondary elements:

legatos, grace notes, lyrics (as a redundant element for

checking transcription correctness) were kept, but all

dynamics elements were dropped. 17 chants were obtained,

for a total of approximately 850 measures.

Every chant is a sequence of phrases, and every phrase is a

sequence of ‘breaths’. Every breath ends with a cadence - a

final formula ending on a very particular note. There are

multiple types of cadences, according to the kind of pause

that follows them, and every cadence type ends on a certain

note of the tone’s base scale; most often, the first or the third

or the fifth. For the sake of simplicity, cadences were split

into ‘mid-’ - that end a breath inside a phrase, and ‘final’ -

that end the final breath of a phrase.

The program was written in Python, which was chosen due

to its conciseness and its wealth of useful libraries. It is split

into 3 separate phases: data attainment, data processing, and

composition.

Data Attainment

Data attainment involves reading the input MusicXML files

and generating an internal representation of the data, which

is to be stored in serialized form and processed later. Python's

XML ElementTree API was used to extract the XML tree

from the files. The tree was decomposed into individual

notes, retaining for each note its duration, pitch and potential

legatos with the previous note.

For pitch appreciation the old (and rather complex)

Byzantine diastematics were dropped in favour of their

Western scale approximation, that is commonly used today

in the Romanian Orthodox Church chanting. Having then the

Western scale of 12 half-steps, every possible pitch was

represented with a number: G2# = -1, A3 = 0, A4 = 12, etc.

A numeric representation for duration was used as well.

Noting that the shortest duration in the dataset is the

semiquaver, and that triplets are also present, it was decided

upon: 𝅘𝅥𝅮 = 6, 𝅘𝅥 = 12, 𝅘𝅥 ∙ = 18, etc.

At the end of this phase the data is represented as a list of

phrases, with each phrase being a list of breaths, each breath

a list of note groups (a.k.a. legatos), each legato a list of

notes, each note a pair of step and duration.

Data Processing

Data processing proceeds using the data representation

obtained during data attainment to build fragment lists and

probability tables. The table set built here is extended

compared to that of Egbert [2], since cadences had to be

considered as separate fragments. Thus, this phase generates

the below data, which are serialized at the end, to be used in

the next phase:

1. R the list of most frequent rhythmic fragments;

2. RT the table of rhythmic transition probabilities;

3. M the list of most frequent melodic fragments;

4. MT the table of melodic transition probabilities;

5. AT the table of melodico-rhythmic alignment

probabilities;

6. TL the legato translation dictionary;

 - 73 -

7. CR the list of most frequent cadence rhythms;

8. CRT the table of rhythmic cadence transition

probabilities;

9. CM the list of most frequent cadence melodies;

10. CMT the table of melodic cadence transition

probabilities;

11. CAT the table of melodico-rhythmic cadence

alignment probabilities;

12. B the list of most likely breath-starting melodico-

rhythmic fragments.

In the case of Western musical scores, fragment extraction

can naturally be based on the division of the score into

measures. Ebert proposes extracting as fragments each

measure or each half-measure [2, page 26]. Byzantine music

is not divided into measures, and therefore requires a

different approach. Fragment extraction was based on

rhythm, following the durations of the notes. Multiple

fragment lengths were tried, looking for the length that

would best align with the durations in the dataset. The

conclusion was that the length of one measure (four

crotchets, or 48 in the representation of duration of this

presented approach) would indeed be the best. A sliding-

window procedure was used to extract all available

fragments of duration 48, splitting them into rhythmic and

melodic components.

During fragment extraction, legatos were considered to be

important, since they corresponded to typical Byzantine

melismata. For this reason, fragments whose boundaries cut

across legatos were not extracted.

At rhythmic fragment selection, it was noted that there were

many examples of fragments with the same effective

durations, but differently placed legatos, e.g.: [(12) (12 12

12)], [(12 12 12) (12)], [(12 12 12 12)]. They were

considered as musically equivalent, but, not wanting to lose

essential melismata, the lowest common denominator was

computed and TL, the legato translation dictionary was

created. In the case of the previous example, the respective

dictionary entry would be: ‘[12 12 12 12] : [(12) (12 12)

(12)]’. In this way, rhythmic duration was separated from

legatos, simplifying the representation and increasing the

diversity of the selected rhythmic fragment set, R.

A different approach to melodic fragment extraction was

chosen: the melodic fragments were classified according to

the number of notes. For this reason, the selected melodic

fragments set, M, is in fact a dictionary with the number of

the notes as a key and the list of fragments as the value.

When building the transition tables the exact same approach

as Ebert’s [2] was used, dividing the number of occurrences

of each transition by the total number of transitions.

Rhythmic Similarity

The rhythmic similarity metric was inspired by the Byzantine

neumic musical notation, which uses special symbols to

halve or double the durations of notes, or to play multiple

notes in one duration unit. All fragments were organized into

a directed acyclic graph which reflects how splitting

durations leads from a fragment to another. The possible

splitting operations are:

1. Binary Most operations, for example:

[24] → [12 12], [9] → [6 3];

2. Ternary Only triplets:

[12] → [4 4 4] or [24] → [8 8 8].

Then, the distance between two durations would be the

minimum number of operations separating them, or the

shortest distance between them in the equivalent undirected

graph. For example, the distance between [24, 12, 12] and

[12, 12, 12, 12] is 1, because only one operation is required

(splitting 24 in half); the distance between [6, 18] and [18, 6]

is 2, because they are two incompatible splittings of [24].

Using this formalism, it was proven that the shortest distance

between two rhythmic fragments can be efficiently

calculated using the following algorithm:

1. The two fragments are overlapped and the subfragments

that align on duration are identified:

 r1 = [12, 24, 4, 4, 4] [12] [24] [4, 4, 4]

 r2 = [12, 18, 6, 6, 6] [12] [18, 6] [6, 6]

2. For each subfragment in each pair, the splitting

coefficient sp is calculated, that is, the number of splits

needed to turn a monolithic duration into that

subfragment. For example:

- For [18 6] sp is 1, since only one operation is

necessary:

 [24] → [18, 6];

- For [6, 6, 3, 9] sp is 3: [24] → [12, 12] → [6, 6,

12] → [6, 6, 3, 9];

In practice, the splitting coefficient can be

calculated using the formula:

sp = number of durations – number of triplets – 1.

3. All splitting coefficients calculated earlier are

summated; this sum is the shortest distance (base

distance) between the two fragments. In the case of

fragments r1 and r2:

Σsp = (0 + 0) + (0 + 1) + (1 + 1) = 3

An issue with this metric, as with the Hamming distance, is

that it cannot detect non-local similarities – that is, patterns

that do not align in time. For this reason, the base distance

calculation was combined with the permutation of the second

 - 74 -

rhythm. A additional cost for permutation was set to the

number of inversions. Then, the effective distance Dr1,r2 is the

minimum of distances between all permutations. Similarity

is calculated using a function that converts distance into

coefficient [2, page 31].

 Sr1,r2=1/√ 1+ Dr1,r2 (3)

Melodic Similarity

The melodic similarity metric is based on the geometric

distance [2, page 33]. It can be proven that the distance

between two fragments, as a function of vertical shifting, has

a convex graph, fact which leads to a more efficient search

for the smallest distance. The similarity coefficient

calculation is also done using formula (3).

These similarity metrics and formula (2) are used to calculate

the final form of the transition tables RT, MT, and AT.

Similarly, the cadence was calculated in transition tables

CRT, CMT, CAT, which give the probability of a normal

fragment transitioning into a cadence fragment.

Composition

The score generation phase starts with the deserialisation of

the tables obtained at the previous phase, followed by the

selection of a breath-starting fragment. The fragments most

likely to follow after the current fragment are calculated, and

one is picked at random. This is repeated a specified number

of times, after which a suitable cadence is selected. Then the

generated sequence is converted into MusicXML and stored

in a new file.

RESULTS

The cutting out of cadences during cadence extraction

showed to lead to a significant decrease of data available for

ordinary fragment extraction and transition calculation, due

to the shortness of the chant's breaths. This meant it was

needed to add extra scores to the training set. Due to the

variety of melodic fragments, melodic transition tables

proved to be very sparse: out of 7056 elements, only 431

(6.1%) were non-zero. An additional 499 transitions were

extrapolated using the similarity metric, more than doubling

the number of non-zero elements and therefore greatly

expanding melodic evolution possibilities.

It also was noted that some transitions were far more

prevalent than others, even when applying thinning to the

transition tables [2, page 29]. This made the generated

material rather predictable, often leading into a cycle after 4-

6 measures. This was improved by introducing a random

element into the selection process.

Evaluation

The music was evaluated using principles described in [8].

Considering the three examples in Figure 1: first two exhibit

progressions across the subscale C–G and cadences in G and

C, in accordance with the rules of the first species of eighth

mode chant [8, page 29 & 366]. The third shows melodic

evolution on the tetrachord of F–B♭, in accordance with the

rules of the second species of eighth mode chant [8, page 29

& 377]. A notable aspect of the third example is the

exclusively syllabic character (all crotchets, no legatos),

whereas stichiraric style requires more ornamentation.

Overall, the tone of eighth mode stichiraric is described as

serene, imposing, and even majestic in mood [Giu81, page

364]; the generated sequences were found to be serene and

dignified, which is generally consistent with the description

of the music species.

CONCLUSION

The algorithm successfully learns overall Byzantine

characteristics and puts them into music. The main issues

seem to be the sparseness of the melodic transition tables, the

lack of ornamentation, and the overall ‘aimless’ character of

the compositions. A possible remedy for the first would be a

different kind of musical fragment extraction, combining

similar fragments into one, using binning for instance [2,

page 27], or using clustering. The second issue stems from

the great prevalence of the syllabic rhythmic measure, [12,

12, 12, 12], which makes up more than a third of the rhythmic

dataset; this could be improved by separating this fragment

from the others during fragment selection and learning a

separate probability of any measure being syllabic or

melismatic. The third issue is due to the limitations of an

first-order Markov Model. A solution might be to introduce

a parallel system to learn composition patterns at a ‘macro’

level and use it to influence fragment selection during the

composition phase.

It is expected that this system could be easily adapted to work

with Gregorian chant, given its sisterhood to Byzantine

chant.

REFERENCES

1. Cântările Sfintei Liturghii, colinde și alte cântări bisericești.

Editura Institutului Biblic și de Misiune al Bisericii

Ortodoxe Române, București, 1999.

2. Ebert, M. A Phenomenological Approach to Artificial Jazz

Improvisation. In: Publications of the Institute of Cognitive

Science. University of Osnabrück, 2010.

3. Herremans, D., Chuan, C-H., Chew, E. A Functional

Taxonomy of Music Generation Systems, ACM Computing

Surveys, Vol. 50, No. 5, Article 69, 2017.

4. Lungu, N.C., Croitoru, I., and Costea, G. Anastasimatarul

uniformizat: II. Utrenierul. Editura Institutului Biblic și de

Misiune al Bisericii Ortodoxe Române, București, 2004.

Figure 1: Some melodies created by the system

 - 75 -

5. Lungu, N.C., Croitoru, I., and Costea, G. Anastasimatarul

uniformizat: I. Vecernierul. Editura Institutului Biblic și de

Misiune al Bisericii Ortodoxe Române, București, 2002.

6. Trausan-Matu, S., Calinescu, A. Compunerea de muzică prin

sonificarea conversaţiilor chat conform modelului polifonic,

Revista Romana de Interactiune Om-Calculator, 2015, 8(1),

33-44.

7. Winograd T. Thinking machines: can there be? Are we?

Report No. STAN-CS-87-1161, Stanford, 1987.

8. Giuleanu V. Melodica Bizantină. Editura Muzicală,

București, 1981.

