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ABSTRACT 

This paper presents a project that applies Markov Models 

improved with similarity metrics to produce computer-

generated Byzantine music. An implementation over a 

dataset of Romanian music in eighth mode, stichiraric style 

is described. The importance of the similarity mechanism is 

highlighted, in particular in regard to melodic transition 

tables. Results of the implementation are presented, which 

show both strengths and limitations of the model. 

Author Keywords 

Music composition; Markov Models; Byzantine Music; 

rhythm 

ACM Classification Keywords 

H.5.1. Multimedia Information Systems: Audio 

input/output; Applied computing → Sound and music 

computing; Computing methodologies → Artificial 

intelligence; Machine learning; 

INTRODUCTION 

Advanced interfaces should include all communication 

means that can enhance human-computer interaction. In this 

sense, music has an important role, being able to provide an 

adequate context for accompanying various tasks, for 

immersing the user in a specific atmosphere. Therefore, 

generating/composing music with the computer in the aim of 

facilitating immersion should be able to provide various 

specific melodicities. There already are an important number 

of computer programs that generate several common music 

genres: jazz, rock, pop, blues, classical music (for example, 

in Bach’s style), using various techniques, such as: rule-

based systems, constraint satisfaction, neural networks, 

evolutionary programming, Markov Models, etc. [3] These 

programs may generate music from scratch starting from 

some rules (written by the programmer or obtained by 

machine learning) or by “imitation”, through supervised 

machine learning, Markov Models being very well suited for 

temporal sequences of events, specific also to music. 

Another way to generate music is the sonification of 

processes that have musicality [6]. 

However, at least as far as we know, there are no computer 

programs that generate Byzantine or Gregorian music, even 

if there are many contexts in which these kinds of music may 

accompany human-computer interaction, for example in 

virtual museums, when reading specific texts, or even as a 

general background music. 

This paper mainly contains the results of the research and 

implementation done by the first author for his graduation 

thesis, which expand upon Ebert’s ideas of a 

phenomenological approach to artificial jazz improvisation 

[2], testing them out on a very different kind of music: the 

Byzantine chant without ison. Ebert declares his approach 

‘phenomenological’, thus, inspired by the processes of the 

human mind. He notes that jazz improvisation is based less 

on well-defined musical laws and more on the players’ 

experience with listening and improvising on a given musical 

theme. Ebert mentioned that an important component of his 

algorithm is the addition of similarity metrics, idea implied 

by the importance of similarity in human creativity [2]. 

Moreover, a phenomenological philosophy perspective was 

emphasized as required for human language understanding 

[7]. 

Byzantine musical theory, on the other hand, as compared to 

the liberty of jazz improvisation, is based on a complex set 

of composition rules which restrain the composer's 

creativity, without excluding it. There is also a significant 

difference at a purely musical level, requiring a respective 

adaptation of the composition algorithm. The groups of notes 

at the end of each musical breath (known as cadences) had 

to be extracted separately. The similarity metrics (in 

particular, the rhythmic ones) also had to be changed. 

Fragment extraction was complicated by the melismata (the 

notes that are sung for one syllable) that characterise 

stichiraric chant. The aim of the research was to investigate 

whether the above-mentioned algorithm is capable of 

producing music with a Byzantine character, without having 

explicitly given it any composition rules. 

BASIC IDEAS OF THE COMPOSITION ALGORITHM 

Generally speaking, the algorithm consists of extracting the 

most frequent melodic and rhythmic fragments, followed by 

the calculation of tables containing respectively the 

probability of one rhythmic fragment following another one 

(Pr(rj|ri)), the probability of one melodic fragment following 

another one (Pr(mq|mp)), and the probability of a rhythmic 
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fragment and a melodic fragment overlapping (Pr(rj,mq)), 

which is computed using the number of occurrences of the 

extracted fragments in the training set. Then, the probability 

of a new melodico-rhythmic fragment following any given 

fragment may be approximated as follows: 

 Pr(rj,mq | ri,mp)≈Pr(rj|ri) · Pr(mq|mp) · Pr(rj,mq)     (1) 

The similarity metrics are used for extrapolating fore-

mentioned probabilities when the fragments in question do 

not follow each other or overlap at all in the training set. This 

extrapolation is very important because in practice the 

transition tables are quite sparse without extrapolation, 

which narrows the composition possibilities. The 

extrapolation of unseen probabilities in the rhythmic matrix 

is done according to the following equation: 

 Pr(rj|ri)≈r · Pr(rj|rk) · Sk,i
(R)                                              (2) 

where k = argmax(Sk,i
(R)), r is the rhythmic extrapolation 

factor that controls the weight of extrapolated transition 

probabilities relative to directly calculated ones, and Sk,i
(R) is 

the similarity between rhythmic fragments rk and ri. 

Extrapolation for melodic transitions and for melodico-

rhythmic superposition is done in similar fashion. 

The learning process ends with the calculation and 

extrapolation of the elements of the tables. Afterwards they 

can be used for generation: a melodico-rhythmic fragment is 

selected for the beginning, the most likely follow-ups are 

calculated, one of them is chosen and the steps are repeated, 

forming a new score. In the case of Byzantine music, a fitting 

cadence is attached at the end. 

DETAILED EXPOSITION 

According to the tempo, Byzantine chant is split into four 

styles, from faster to slower: recitative, heirmologic, 

stichiraric, and papadic. According to the character of the 

melody, it is split into eight tones. Every tone has its own set 

of melodic structures and formulae; in particular, it has a 

fundamental scale of eight notes, typical cadences and final 

notes; these are the traits that were looked for in the results 

of the system. In building the training the used set was only 

stichiraric, because the recitative and heirmologic styles 

were found as too simple, and papadic too rare. Of stichiraric 

chants, only those in eighth tone (whose base scale is in fact 

C Major) were picked because it is one of the most frequent. 

The music used for training was taken from standard 

Romanian church music books [1,4,5], as it was wished that 

the set to be as stylistically coherent as possible. The selected 

chants were transcribed into the score editor MuseScore, 

which was used to convert them to the MusicXML standard 

annotation language. Most of the secondary elements: 

legatos, grace notes, lyrics (as a redundant element for 

checking transcription correctness) were kept, but all 

dynamics elements were dropped. 17 chants were obtained, 

for a total of approximately 850 measures. 

Every chant is a sequence of phrases, and every phrase is a 

sequence of ‘breaths’. Every breath ends with a cadence - a 

final formula ending on a very particular note. There are 

multiple types of cadences, according to the kind of pause 

that follows them, and every cadence type ends on a certain 

note of the tone’s base scale; most often, the first or the third 

or the fifth. For the sake of simplicity, cadences were split 

into ‘mid-’ - that end a breath inside a phrase, and ‘final’ - 

that end the final breath of a phrase. 

The program was written in Python, which was chosen due 

to its conciseness and its wealth of useful libraries. It is split 

into 3 separate phases: data attainment, data processing, and 

composition. 

Data Attainment 

Data attainment involves reading the input MusicXML files 

and generating an internal representation of the data, which 

is to be stored in serialized form and processed later. Python's 

XML ElementTree API was used to extract the XML tree 

from the files. The tree was decomposed into individual 

notes, retaining for each note its duration, pitch and potential 

legatos with the previous note. 

For pitch appreciation the old (and rather complex) 

Byzantine diastematics were dropped in favour of their 

Western scale approximation, that is commonly used today 

in the Romanian Orthodox Church chanting. Having then the 

Western scale of 12 half-steps, every possible pitch was 

represented with a number: G2# = -1, A3 = 0, A4 = 12, etc. 

A numeric representation for duration was used as well. 

Noting that the shortest duration in the dataset is the 

semiquaver, and that triplets are also present, it was decided 

upon: 𝅘𝅥𝅮   = 6, 𝅘𝅥  = 12, 𝅘𝅥 ∙ = 18, etc. 

At the end of this phase the data is represented as a list of 

phrases, with each phrase being a list of breaths, each breath 

a list of note groups (a.k.a. legatos), each legato a list of 

notes, each note a pair of step and duration. 

Data Processing 

Data processing proceeds using the data representation 

obtained during data attainment to build fragment lists and 

probability tables. The table set built here is extended 

compared to that of Egbert [2], since cadences had to be 

considered as separate fragments. Thus, this phase generates 

the below data, which are serialized at the end, to be used in 

the next phase: 

1. R the list of most frequent rhythmic fragments; 

2. RT the table of rhythmic transition probabilities; 

3. M the list of most frequent melodic fragments; 

4. MT the table of melodic transition probabilities; 

5. AT the table of melodico-rhythmic alignment 

probabilities; 

6. TL the legato translation dictionary; 
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7. CR the list of most frequent cadence rhythms; 

8. CRT the table of rhythmic cadence transition 

probabilities; 

9. CM the list of most frequent cadence melodies; 

10. CMT the table of melodic cadence transition 

probabilities; 

11. CAT the table of melodico-rhythmic cadence 

alignment probabilities; 

12. B the list of most likely breath-starting melodico-

rhythmic fragments. 

In the case of Western musical scores, fragment extraction 

can naturally be based on the division of the score into 

measures. Ebert proposes extracting as fragments each 

measure or each half-measure [2, page 26]. Byzantine music 

is not divided into measures, and therefore requires a 

different approach. Fragment extraction was based on 

rhythm, following the durations of the notes. Multiple 

fragment lengths were tried, looking for the length that 

would best align with the durations in the dataset. The 

conclusion was that the length of one measure (four 

crotchets, or 48 in the representation of duration of this 

presented approach) would indeed be the best. A sliding-

window procedure was used to extract all available 

fragments of duration 48, splitting them into rhythmic and 

melodic components. 

During fragment extraction, legatos were considered to be 

important, since they corresponded to typical Byzantine 

melismata. For this reason, fragments whose boundaries cut 

across legatos were not extracted. 

At rhythmic fragment selection, it was noted that there were 

many examples of fragments with the same effective 

durations, but differently placed legatos, e.g.: [(12) (12 12 

12)], [(12 12 12) (12)], [(12 12 12 12)]. They were 

considered as musically equivalent, but, not wanting to lose 

essential melismata, the lowest common denominator was 

computed and TL, the legato translation dictionary was 

created. In the case of the previous example, the respective 

dictionary entry would be: ‘[12 12 12 12] : [(12) (12 12) 

(12)]’. In this way, rhythmic duration was separated from 

legatos, simplifying the representation and increasing the 

diversity of the selected rhythmic fragment set, R. 

A different approach to melodic fragment extraction was 

chosen: the melodic fragments were classified according to 

the number of notes. For this reason, the selected melodic 

fragments set, M, is in fact a dictionary with the number of 

the notes as a key and the list of fragments as the value. 

When building the transition tables the exact same approach 

as Ebert’s [2] was used, dividing the number of occurrences 

of each transition by the total number of transitions. 

Rhythmic Similarity 

The rhythmic similarity metric was inspired by the Byzantine 

neumic musical notation, which uses special symbols to 

halve or double the durations of notes, or to play multiple 

notes in one duration unit. All fragments were organized into 

a directed acyclic graph which reflects how splitting 

durations leads from a fragment to another. The possible 

splitting operations are: 

1. Binary Most operations, for example: 

[24] → [12 12], [9] → [6 3]; 

2. Ternary Only triplets: 

[12] → [4 4 4] or [24] → [8 8 8]. 

Then, the distance between two durations would be the 

minimum number of operations separating them, or the 

shortest distance between them in the equivalent undirected 

graph. For example, the distance between [24, 12, 12] and 

[12, 12, 12, 12] is 1, because only one operation is required 

(splitting 24 in half); the distance between [6, 18] and [18, 6] 

is 2, because they are two incompatible splittings of [24]. 

Using this formalism, it was proven that the shortest distance 

between two rhythmic fragments can be efficiently 

calculated using the following algorithm: 

1. The two fragments are overlapped and the subfragments 

that align on duration are identified: 

          r1 = [12, 24, 4, 4, 4]      [12]  [24]      [4, 4, 4] 

          r2 = [12, 18, 6, 6, 6]      [12]  [18, 6]  [6, 6] 

2. For each subfragment in each pair, the splitting 

coefficient sp is calculated, that is, the number of splits 

needed to turn a monolithic duration into that 

subfragment. For example: 

- For [18 6] sp is 1, since only one operation is 

necessary: 

    [24] → [18, 6]; 

- For [6, 6, 3, 9] sp is 3: [24] → [12, 12] → [6, 6, 

12] → [6, 6, 3, 9]; 

In practice, the splitting coefficient can be 

calculated using the formula: 

sp = number of durations – number of triplets – 1. 

3. All splitting coefficients calculated earlier are 

summated; this sum is the shortest distance (base 

distance) between the two fragments. In the case of 

fragments r1 and r2: 

Σsp = (0 + 0) + (0 + 1) + (1 + 1) = 3 

An issue with this metric, as with the Hamming distance, is 

that it cannot detect non-local similarities – that is, patterns 

that do not align in time. For this reason, the base distance 

calculation was combined with the permutation of the second 
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rhythm. A additional cost for permutation was set to the 

number of inversions. Then, the effective distance Dr1,r2 is the 

minimum of distances between all permutations. Similarity 

is calculated using a function that converts distance into 

coefficient [2, page 31]. 

 Sr1,r2=1/√ 1+ Dr1,r2        (3) 

Melodic Similarity 

The melodic similarity metric is based on the geometric 

distance [2, page 33]. It can be proven that the distance 

between two fragments, as a function of vertical shifting, has 

a convex graph, fact which leads to a more efficient search 

for the smallest distance. The similarity coefficient 

calculation is also done using formula (3). 

These similarity metrics and formula (2) are used to calculate 

the final form of the transition tables RT, MT, and AT. 

Similarly, the cadence was calculated in transition tables 

CRT, CMT, CAT, which give the probability of a normal 

fragment transitioning into a cadence fragment. 

Composition 

The score generation phase starts with the deserialisation of 

the tables obtained at the previous phase, followed by the 

selection of a breath-starting fragment. The fragments most 

likely to follow after the current fragment are calculated, and 

one is picked at random. This is repeated a specified number 

of times, after which a suitable cadence is selected. Then the 

generated sequence is converted into MusicXML and stored 

in a new file. 

RESULTS 

The cutting out of cadences during cadence extraction 

showed to lead to a significant decrease of data available for 

ordinary fragment extraction and transition calculation, due 

to the shortness of the chant's breaths. This meant it was 

needed to add extra scores to the training set. Due to the 

variety of melodic fragments, melodic transition tables 

proved to be very sparse: out of 7056 elements, only 431 

(6.1%) were non-zero. An additional 499 transitions were 

extrapolated using the similarity metric, more than doubling 

the number of non-zero elements and therefore greatly 

expanding melodic evolution possibilities. 

It also was noted that some transitions were far more 

prevalent than others, even when applying thinning to the 

transition tables [2, page 29]. This made the generated 

material rather predictable, often leading into a cycle after 4-

6 measures. This was improved by introducing a random 

element into the selection process. 

Evaluation 

The music was evaluated using principles described in [8]. 

Considering the three examples in Figure 1: first two exhibit 

progressions across the subscale C–G and cadences in G and 

C, in accordance with the rules of the first species of eighth 

mode chant [8, page 29 & 366]. The third shows melodic 

evolution on the tetrachord of F–B♭, in accordance with the 

rules of the second species of eighth mode chant [8, page 29 

& 377]. A notable aspect of the third example is the 

exclusively syllabic character (all crotchets, no legatos), 

whereas stichiraric style requires more ornamentation. 

 

Overall, the tone of eighth mode stichiraric is described as 

serene, imposing, and even majestic in mood [Giu81, page 

364]; the generated sequences were found to be serene and 

dignified, which is generally consistent with the description 

of the music species. 

CONCLUSION 

The algorithm successfully learns overall Byzantine 

characteristics and puts them into music. The main issues 

seem to be the sparseness of the melodic transition tables, the 

lack of ornamentation, and the overall ‘aimless’ character of 

the compositions. A possible remedy for the first would be a 

different kind of musical fragment extraction, combining 

similar fragments into one, using binning for instance [2, 

page 27], or using clustering. The second issue stems from 

the great prevalence of the syllabic rhythmic measure, [12, 

12, 12, 12], which makes up more than a third of the rhythmic 

dataset; this could be improved by separating this fragment 

from the others during fragment selection and learning a 

separate probability of any measure being syllabic or 

melismatic. The third issue is due to the limitations of an 

first-order Markov Model. A solution might be to introduce 

a parallel system to learn composition patterns at a ‘macro’ 

level and use it to influence fragment selection during the 

composition phase. 

It is expected that this system could be easily adapted to work 

with Gregorian chant, given its sisterhood to Byzantine 

chant. 
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