
- 111 -

Game Development Methodology Mapped on the
EvoGlimpse Video Game Experiment

Bianca-Cerasela-Zelia Blaga1, Dorian Gorgan2

Technical University of Cluj-Napoca

Computer Science Department
Cluj-Napoca, Romania

1zelia.blaga@cs.utcluj.ro, 2dorian.gorgan@cs.utcluj.ro

ABSTRACT

Game development is a complex task that requires a lot of
hard work and patience because it contains various
elements such as 3D objects, collision detection, scripting,
sound management, animation, rendering, control, and
artificial intelligence. Video games are also interactive
applications; therefore, they need to be designed in such a
way that would enable a high level of usability. In this
paper, the development methodology steps that were done
for creating a video game are presented. The goal is to gain
knowledge in game development with a hands-on
experiment and to obtain a highly functional and usable
game.

Author Keywords

development methodology; evaluation; game design; game
implementation; video games.

ACM Classification Keywords

HCI design and evaluation methods; interactive games.

INTRODUCTION

It has been more than 40 years since digital games have
been around. They require interaction between a human and
a digital device. Video games were defined by [1] as “a
system in which players engage in artificial conflict,
defined by rules, that results in a quantifiable outcome”.
The word “video” refers to Cathode Ray Tube (CRT)
monitors, and it is still used nowadays even though games
can be played on a variety of devices that have nothing to
do with CRT. Nowadays, video games have become a
medium to present narratives and sometimes they are even
compared to movies. They present a vision that the creator
has on a world in which players can immerse into.
The game industry has started with Pong in 1970 [2], and
now the market is worth billions of dollars. Digital games
are played on gaming platforms that contain displays to
present the output, controllers to give the input, and a main
unit to run the software. They present a lot of variety and
can be of different complexities. What they have in
common is that they can be categorized as being either
action, adventure, fighting, puzzle, role-playing, sports, and
strategy. Sometimes, game developers will combine more
genres to create more interesting gameplays.
The game development methodology determines the quality
of the final product. Emphasis is put on how the game looks
and feels (i.e. the user interface), therefore this affects the
source code, as we will see in this paper too. Game

development is a visual technique, because the
implementation is done first, and then the system is tested
to see if the demands are met. The next step is decided
based on the requirements and how it looks, with the
iteration cycles being very short.

This paper is structured as follows: in Section Related

Work will be presented a literature review of this domain,

together with some video game relevant concepts. The

chosen steps are briefed in Section Game Development

Methodology. In Section Analysis topic selection is

discussed – this includes what inspired the game creation,

what the plot is, and what are the final specifications that

will be implemented; then a low-fidelity game prototyping

method is employed to establish how the interface and the

controls of the game should look like and function; finally,

details of game design are presented – scenarios and

actions, while in Section Implementation, the actual

implementation steps that were done to create the system

are discussed, together with some results which are

presented in Section Evaluation. The final observations are

made in Section Conclusions. An in-game screen-shot can

be seen in Figure 1.

RELATED WORK

Game development is a set of complex processes that need

knowledge from multiple domains, such as software

engineering, visual arts, graphics design, modeling,

simulations, psychology to name just a few disciplines.

Therefore, it becomes obvious that planning and managing

the development of such a project requires using clear

development methodologies and continuous evaluation. In

[3], the aspects of game development are presented in

Figure 1. The game interface of EvoGlimpse

- 112 -

detail, and emphasis is put on the necessity of having an

explicit, well-defined structure when developing a digital

game.

First, an immersive game story has to be established. Then

the main world is built upon it, with the principal purpose

of entertaining the target audience [4]. The world should be

kept simple and elegant, it has to fit the story, and should be

logically consistent. The last one means that the gameplay

should not break the game logic (e.g. physics), and should

allow smooth transitions, without distractions.

Then, the developers decide the main gameplay mode,

which is the stage in which a player will spend most of

his/her time into. Then the world scene is decided, which

can be 2D, 2.5D or 3D. Afterward, interactions between the

player and the game scene and objects are defined. These

should be functionally correct and suitable for the genre.

For example, take into account what kind of input devices

(mouse, keyboard, joystick etc.) will be used by the player

and adjust the interactions to them.

In the next stage, the gameplay is established. This contains

what levels the game has, the challenges for each one of

them, how players can gain experience and level up, and

how they can lose or gain points. The ways of winning and

losing the game should be clearly established too. Each

game needs a well-designed, believable and realistic

character that would fit the game story and that would

motivate the players. The success of the game depends on

how deep and lovely the character is, the level of

engagement it gets from the players, and how easy it is to

connect with it. As it is stated in [5], the goal is to create

situations and characters that players can truly engage and

love. Also, the game should allow character customization,

to make the gameplay more personal.

Afterward, the core game mechanics are defined. These are

the interactions that occur frequently. For example, firing a

weapon would be the main mechanic of a shooter game.

This further allows to build around it challenges and actions

in the gameplay. Also, the game genre is defined. This is

used to classify games based on the interaction and

gameplay techniques. A list of commonly used video game

genres can be found in [6, 7].

In the iterative stages of game development, the design goes

from general to more specific, as the developers elaborate

the plot ideas. Designers define the story, game worlds,

characters, gameplay modes, core game mechanics, levels

etc. They get into more details by creating a prototype to

check how the ideas fit together and how they actually look

and fell in a real environment. Prototyping is used to

visually represent the interface of the game, so potential

players can experiment with the expected functionalities

under virtually simulated conditions. It is fast and cheap to

build, and also easily modifiable. The main purpose of

prototyping is to discover flaws of game design and to give

feedback to the developers.

The last stage of the iterative development methodology is

the evaluation. This can be both functional – test the

correctness of the functionality of the controls and

interactions, and heuristic – establish a set of criteria and

rules for testing. The game quality is thus assessed, and the

errors are identified. Based on the results’ analysis,

solutions are proposed to improve the game.

To connect all the previously mentioned elements of the

game development, such as characters, levels, game world,

gameplay, mechanics etc., a flowboard technique is used.

This has the advantage of being non-linear, and it contains

scenes linked to each other by arrows. All this development

methodology and especially the conclusions and details that

the developers came up with, should be recorded in the

Game Design Specification Document. This is constantly

updated and maintained, being the blueprint that describes

every aspect of the game [8].

Even though the game industry had been rising, being a

successful developer is getting more difficult, as shown in

[9]. The digital game has to constantly be revised and

updated to keep up with the desires of customers. That is

why having project management is crucial because then the

manager is responsible for the stages of development like

planning, execution, resource and people management and

he/she makes sure that the objectives are met.

GAME DEVELOPMENT METHODOLOGY

In this paper, the actual steps that were put in place to

create a game are:

1. Analysis:

1.1. Topic selection – in which the inspiration sources

are presented;

1.2. Game specifications – this includes user

requirements and usability specifications;

1.3. Prototyping – which helps explore different

solutions by creating low-fidelity user interfaces;

1.4. Scenario and task description – where the final

components of the game are established; steps to

establish how the game should be played, how it

can be lost or won, interactions of the player with

objects from the scene etc.

2. Implementation:

3.1. Tools – the software that was used in

building the actual game;

3.2. Game objects – the 3D models that compose

the game world;

3.3. Implementation details – how the scenarios

and the actions were brought to life;

3. Evaluation – results of the functional and heuristic

evaluation, together with solutions to the problems

that were found, and future development possibilities.

ANALYSIS

Topic selection

To keep the players interested, the game should have a

story. This also motivates the users to want to go out and

reach the next level. For example, there can be transitional

scenes between levels. Also, the story can be either linear or

non-linear. A great example of the latter is “Life is strange”

[10], where time travel is one of its main themes to show

- 113 -

how your choices affect the lives of others. In this section,

the main sources of inspiration for the developed game will

be shown, together with the plot of a complex game, and

what will actually be implemented.

Inspiration

The main source of inspiration for the game comes from

“2001: A space odyssey” [11], that stands out for the

evocative power it has, even though it relies only on a small

set of resources and songs. Humans have always been

fascinated with how the world has evolved and have tried to

come up with understandings of how the knowledge was

found out. Here, the source of knowledge is the monolith –

it can be seen in Figure 2, which apparently is only a big

black block of unknown matter, but which was actually

placed in our world by unknown beings to provide guidance

and survival ideas. The movie and the book were created in

1968, before the man first walked on the moon, and has

such powerful visionary scenes that are relevant even to this

day. Other great visual inspiration sources are “Blade

Runner 2049” [12] – for the vision about the future of our

world, and also the smooth movement of the flying cars,

and “Dunkirk” [13] – for the scenes where the planes fly

over the water. Screenshots from the two movies can be

seen in Figure 3 and Figure 4. All the previously mentioned

movies have powerful cinematography and soundtracks.

Another main inspiration theme, the book “The Greatest

Show on Earth” by Richard Dawkins [14] provides

exhaustive information about evolution, starting from the

early stages of life until our days and the current discoveries

that man has made in this area.

Game plot

EvoGlimpse aims to give players a glimpse into evolution

from the perspective of an exterior observer, who can travel

at different points in time of Earth’s existence. This game is

heavily inspired by the movie and the book “2001: A space

odyssey” [11], in which a civilization of advanced beings

helps humans that are in different stages of evolution by

presenting to them ways that can aid in their survival.

A series of worlds would be available, starting from the

first appearance of life – the fusion between RNA and an

enzyme, then at different stages of the evolution of species

– underwater life, transitioning to earth land and dinosaurs,

continuing with the human history – from the ancestors

until today, and for a plus of entertainment, will continue

with a science fiction view of humankind – the union of

human-machine and the exploration of the universe. The

player would be able to travel in these worlds in different

specific shapes: atoms, energy, swimming, walking, riding

animals, driving the car, flying the flying cars, and

exploring the outer space in spaceships.

Each phase has as objective finding the knowledge source,

represented by the monolith, which has an imposing shape,

tall, black, created by a superior entity and which holds

superior information about the current state of the world.

For example, in stone age, this can offer to the monkeys the

idea of creating weapons that represent an advantage in the

fight for survival. As a world is explored, different

obstacles appear, and the player must overcome them with

the current set of skills. This is enhanced each time the

monolith is found. Once the world has been completely

observed and the enemies are defeated, the monolith

appears to present the way of going from the past to the

future. Using visual and auditory information, the player

will know if he/she is close to the location of the monolith,

and when this will be found, an educational video about

evolution will be presented. The player will be able to see

all finished phases and all the discovered videos in a

library, to which he/she can return at any time.

Game specifications

For the actual game implementation, the goal was to create

only a world, a futuristic one, on a planet covered by water,

in a developed society, with modern architecture and flying

cars. The main enemies will be planes guided by artificial

intelligence. The player will have to protect itself from

them by shooting, for example with bullets, plasma, or

laser. The main plot of the game follows 3 stages. In the

first one, the player will have some time to get used to the

planet and the controls, being able to peacefully explore and

observe the world scene. In the second stage, the player will

have to protect the planet from some invaders; as the game

advances, the abilities increase. In the last stage, since an

advanced technology state has been reached, the monolith

will appear in an unknown location and will have to be

Figure 2. The first discovery on the monolith by the apes

Figure 3. Screenshot from Blade Runner 2049

Figure 4. Screenshot from Dunkirk

- 114 -

found by following its sound signals. Therefore, this is a

shooter action game, in which the main action is firing

weapons. This genre is most suitable for ages 12 and over

because it does not contain unnecessary violence and

inappropriate scenes for young players.

Prototyping

A low-fidelity game interface has been created, which can

be seen in Figure 5. The main interface of the game will

have useful information for the player but will be mainly

dedicated to presenting the game scene of the world and the

vehicle. The game scene prototype can be seen in Figure 6;

the focus is on creating an aesthetic 3D world and a realistic

vehicle for the player to control. The components of the

game interface are:

1. The main game scene. Here the movement of the car

can be observed. The perspective of the camera can

be changed to allow the player to see further away.

2. The menu contains 5 buttons, each one of them

taking the player in a different configuration option.

The menu interface can be seen in Figure 7.

3. Relevant logs for the game. After some options are

selected in the menu, a confirmation message will be

displayed.

4. Information about the current state of the game, like

health, attack speed, and armor. In a window will be

displayed the number of enemies remaining and the

number of enemies that were taken down.

5. The map of the world and the position of the player

in it, in the form of a birds-eye view.

The player could access the menu to change the game

settings. By pressing the Menu button, the player has access

to 4 options. Pressing the corresponding buttons, the

interface will change for the desired modifications to be

made. Swapping the car can be done in the menu by

pressing the button Select car. This interface can be seen in

Figure 8. On the screen, the available options will be shown.

By moving the mouse over one of them, this will receive a

yellow glow. If the player clicks in the vehicle area, it will

receive a green glow.

To select a type of attack, press the button Select attack type

from the menu. The options will be shown; these will vary

from bullets to laser to plasma. Pressing on one of them will

select it, and the user will be returned to the main game

scene. The volume could be changed by pressing the button

Sound settings from the menu, where a slider will enable the

player to modify the sound volume. The changes will be

heard in real time because music will play. The game can be

saved by pressing the Save button. The game can be paused

by pressing the key P. The player can exist from the game

by pressing the Escape button.

Scenario and task description

In this stage of the game development, we establish what

we want to actually have in the game. Decisions are made

about the game scene, objects, ways of interaction etc.

Changes are made to the previous specifications because

new ideas that can improve the game experience for the

player arise. For example, in this stage the designer of the

game came up with the plan of inserting power-up boxes,

that would aid the user by providing certain benefits.

The game scene contains a close to dusk skybox, a beautiful

body of water, the player’s vehicle, a finite number of

enemies and a finite number of power-up boxes. There are

two types of objects in the scene: dynamic – which means

they change position or interact with other objects, such as

the flying car, the enemies, the power-up boxes and the

monolith, and static – which means that they do not interact

Figure 5. Game interface prototype

Figure 6. Game scene prototype

Figure 7. Menu prototype

Figure 8. Vehicle selection menu prototype

- 115 -

specifically with any other objects and do not change

attributes, like buildings and the body of water.

Now that the gameplay has been defined in the previous

stages, the main interaction techniques should be

established. It is useful to create scenarios that are

composed of specific actions. Each one of them represents a

certain part of the game and they will be useful during the

implementation and evaluation stages. Another change has

taken place at this stage. Initially, the interaction between

the player and its vehicle was established to be done using

keyboard buttons W, A, S, D. But in an initial

implementation prototype of the game, it has been seen that

it is cumbersome to control the movements, so another

option was chosen – using a mouse so that the vehicle will

follow its position on screen. The scenarios and actions for

EvoGlimpse can be seen in Table 1.

The car has a set of parameters that can change during the

game, such as life amount, speed, attack damage, and fire

rate. The player can change the car's position using the

mouse in a continuous interaction mode, while the camera

perspective can be changed with the scroll wheel (zoom in

and out), and the attack action can be done by pressing the

left mouse button. The enemies have similar parameters to

the player’s flying car, and additionally, they have AI

(Artificial Intelligence) capabilities – because they need to

move on their own, without exterior control.

The most important metaphor in the game is the player's

interaction with the power-up boxes. By touching one of

them with the car, some characteristics of the vehicle or of

the enemies will change. The color denotes the class of the

box, that is what attribute it will modify. Each box appears

with a certain probability, and in the scene, at the same

time, there will be a limited number of them. Some boxes

have as a parameter a quantity which says with how much a

certain attribute changes – it can be a fixed number or a

random number from a certain range. For example, the 4th

game scenario this will be relevant for the repair power-up

box. Other boxes give the player abilities that expire after a

few seconds. For example, in the case of the 5th game

scenario, this would be the immunity power-up box.

IMPLEMENTATION

In this section, we will discuss about the actual steps of the

game implementation. The tools that were used will be

shown, together with the game objects, the game scene, and

details about how each scenario was created will be given.

Tools

The first software tool that was used is Unity 2017.3.1 [15],

which is a platform for creating both 2D and 3D games,

which can be ported on different platforms or operating

systems – Windows, Linux, Oculus Rift etc. The

implementation is done in C# in files called scripts; these

handle the object logic and the results of the interactions.

Unity offers a lot of game development possibilities, such

as maps, terrain, shadows, packages with premade particle

effects etc. which make the process of creating a digital

game simple, fast and easy.

For additional object modeling or to change premade

objects, Blender 2.79a [16] was used, because it is a very

popular and efficient graphics tool. To create the prototypes

and edit textures for the game objects, Adobe Photoshop

CS6 [17] was used. Also, it is important to note that the

whole development process was documented, and

whenever there were updates or maintenance steps, these

were recorded.

Table 1. Scenarios and actions of the game

Scenario Actions

S1. Navigation in

the 3D scene

T1. controlling the vehicle using

the mouse movements

T2. increase speed by pressing

space

T3. zoom in and out using the

scroll wheel

S2. Attacking and

avoiding

enemies

T1. observing the enemies

T2. flying towards enemy

T3. player attacks by pressing the

left button of the mouse

T4. the enemies attack when the

player gets in a certain range

and in a certain field of view

T5. observing the enemies reaction

T6. avoiding enemies

S3. Monolith T1. the player should understand

the objective, by reading the

message shown on the screen

T2. successfully navigating in the

scene

T3. observe the monolith

T4. fly towards objective

T5. message of winning the game

S4. Repair power-up

box

T1. recognizing the object

T2. flight towards the objective

T3. colission with the object

T4. object destroyed

T5. life health increased

S5. Immunity

power-up box

T1. recognizing the object

T2. flight towards the objective

T3. colission with the object

T4. object destroyed

T5. enemy attack canceled for 20

seconds

S6. Display relevant

messages

T1. message with the game

objectives

T2. toggle help option

T3. quit button

T4. player health information

T5. message of collecting repair

power-up box

T6. message of collecting

immunity power-up box

T7. message of destroying enemy

T8. message of losing the game

T9. message of winning the game

- 116 -

Game objects

To create an immersive game world, after defining the story

and having in mind the inspiration sources, game objects

were chosen to fit the desired goals. Some of the 3D

models, objects and particle effects come from the Asset

Store of Unity, some come from websites that make them

available for free. Due to space considerations, they will not

be displayed in here. Now that we have all the necessary

game elements, it is time to create the interactions between

them so that the game can finally be played!

Implementation details

The creation of the game scene composed of the water

body, the skybox, and the buildings was done first. This has

been done directly in the Unity development tool, in the

scene part. Also, at this point in time, it was realized the

need for a region delimiter, to help the player recognize

better the area in which the game takes place, so it wouldn’t

wander too far away. After importing the buildings in the

game scene, some components like rigid bodies and

colliders with physics materials were added to them, so that

the player’s vehicle will collide with them and not pass

through them. The result can be seen in Figure 9.

In the next step, the interactions between the player and the

flying vehicle were implemented. The main camera was

attached to the body of the vehicle, behind it, so that when

the player moves, the camera will follow the movements

and it will change its position. Two scripts were added to

the player’s object. The first script is Vehicle Pilot and it

contains attributes such as speed, health, and attached game

objects for certain text information messages. The Update

method contains code for:

• starting the game when the Y key is pressed (which is

required when the game starts, from the message

“Start? Press Y….”);

• stopping the game when the escape key is pressed, and

which will quit the application;

• increasing the speed of the vehicle when the space key

is pressed;

• zooming in and out when the scroll wheel is used; this

actually changes the field of view of the camera;

• changing the position of the car by following the

position of the mouse of the screen, and changing the

rotation by accounting for the angle between the up

axis of the object and the mouse position;

• smoothing the movement of the camera.

Three additional methods are created here, and they deal

with the amount of life of the player. In the method

TakeDamage, whenever an enemy successfully hits the

vehicle, the amount of life is decreased with a certain given

value. When the life quantity reaches zero, the method Die

is called which means that the game is lost. The time is

frozen, and a specific message is displayed on the screen.

The third method is called when the player used the repair

power-up box. It is called HealUp and its effect is that the

player gains back the whole missing amount of life from the

maximum that it can have.

The second script attached to the flying vehicle is used to

deal with the interaction of the player with the attack

techniques. The attack has attributes such as damage, range

– the minimum distance required for the player to be able to

actually hit something, fire rate or attack speed – how fast

can the attack reload when the mouse key is pressed, and

impact force. Also, it has attached a camera – which is

needed to direct the attack, and a particle system – that

appears when the player shoots. These can be seen in

Figure 10. The Update method continuously checks if the

Fire1 button has been pressed – this is the left button of the

mouse. If so, the Shoot method is called after a reload time

that is the inverse of the fire rate. In this method, the

particle effect is played, and a sphere cast with radius 4 is

used to perform the actual attack. If the ray hits an object it

displays bullet effects on its surface, and it checks that its

type is Target. If so, it means that we are hitting an enemy,

so we can subtract a certain amount from its life. To aid the

player, a crosshair is added as a circle in the middle of the

screen. This means that the attacks will hit in the center of

Figure 9. Game scene after importing some buildings and

positioning them. The collision mesh attached to the

selected building can be seen.

Figure 10. The object used for representing the player’s

flying vehicle. Two important elements can be seen: the

camera attached to the back, and the particle effect

attached to the front – which appears only when the fire

action takes place.

- 117 -

the screen, so the players will know how to position the car

accordingly.

Now that we have a functional vehicle that can attack, we

need enemies. But we don’t want dumb enemies, we want

ones that are able to move and react to our presence around

them. To do this, we need to add AI capabilities, which for

video games means creating a state machine. For what we

want, there need to be a total number of 5 states:

1) Initial – the enemy is initialized at a random position

in the game world;

2) Idle – the enemy checks the environment

continuously, by rotating in a circle, around a pivot,

but does nothing else;

3) Fly – if the player is at a certain distance smaller than

a set value, and if it is in its field of view (for example,

60 degrees), the enemy flies towards the spotted

vehicle;

4) Attack – and attacks;

5) Die – if the amount of life reaches zero, the object is

destroyed.

These states and the transitions can be seen in Figure 12.

The implementation is straightforward, because the

necessary conditions are checked, and decisions are being

made depending on the position of the player. The

implementation of the movement is done by using rotations

around a pivot point, with a certain speed, and around the y-

axis. The implementation of the attack is similar to the

player’s attack. In order to make the enemy “see” the

player’s vehicle, we have to compute the distance between

these two, and also the angle between their positions. If the

distance and angle conditions are met, using the quaternion

function Slerp, the enemy changes its heading towards the

player in a natural motion movement, and it changes its

position forward. If the enemy is close enough to the player,

it starts attacking. The player can outrun the enemies and

escape their attacks.

The enemies have two scripts attached to them: one for

chasing and attacking the player – which contains the

information previously discussed, and one for rendering

itself as a target. The latter is used by the player’s vehicle to

check if it attacks the right objects. The enemies themselves

have a certain amount of life too, thus they can take damage

when hit by the player’s attacks. When the health amount

reaches zero, they are destroyed, an explosion particle

effect plays, and they are removed from the game scene,

and a specific message is displayed as seen in Figure 11.

The player might need help to survive longer in the game,

so power-up boxes were added. There are only two of them

for now. The first one is called repair, and it has a green

wrench on it, to help the user recognize its meaning during

the game. Its purpose is to give back to the player the lost

amount of life. It is important to note here, that this happens

when the player’s vehicle collides with the box. To make it

easier for this to happen, a collision box is added, but this

expands a little bit outside so that if the player misses is by

little, it will still have an effect. On collision enter, the

function HealUp previously mentioned when we talked

about the flying car’s scripts, is called, the repair box is

removed, and a message is displayed on the screen to

announce the player that the changes have taken place.

The same is true for the immunity power-up box. This is

represented by a rectangle that has a blue shield on top of it,

to help the user recognize its meaning during gameplay.

The ability that is rendered to the player lasts only 20

seconds. This means that the flying vehicle gains a shield

that cancels all enemies’ attacks. This is done by bringing

their attack damage to zero. Now the player can go near the

enemies, they will still follow him, but their attacks have no

effect on the player. After the 20 seconds have elapsed, the

function that gives back the damage to the enemies is

called.

Another thing to discuss is about the displayed messages

that appear on the user interface. There are 3 types of

messages: static ones – which do not change during the

game, like the help menu, or game instructions, dynamic

ones – they change depending on the game status, for

example, the amount of life of the player, and triggered

ones – which, as their name suggests, are triggered by

specific interactions, like destroying an enemy, or

collection a power-up. This was not so straightforward to

implement, because at first each message was attached to

the object it was related to as a text object. This proved to

be incorrect since we wanted to make the trigger messages

pop up for a few seconds and then disappear. This meant

that we had to destroy them, but when we tried to display

them again for the next event, they were gone. So, the

solution was to create a separate script called

HUD_Manager, which manages the head-up display, that is

the information relayed to the user. In here we linked all

Figure 12. State machine for enemies

Figure 11. Particle effect and message that appear when

an enemy is destroyed by the player

- 118 -

text messages as game objects, and set them inactive by

default. We created a function that sets one such game

object active, then waits for a few seconds, and then renders

it inactive again. For each triggered message, we called this

function, which proved to be the right way of doing it.

By now, you are probably wondering how the game can be

won. We have talked in the early development stages about

the monolith, which is the key of the game. This object

spawns at a location far away from the player. It is difficult

to spot it right away, which makes the game more exciting.

But if the player finds it and flies towards it, when it gets

close enough to it the game is won. This is done by

checking the distance between the player and the monolith.

The downside is that its position is fixed, but this option

was chosen because the game scene is small.

EVALUATION

For implementing and running the game, we used the

following hardware specifications: Intel(R) Core(TM) i7-

6700HQ CPU, 2.60GHz, 8.0GB RAM, 1TB memory,

NVIDIA GeForce GTX 960M, on Windows 10 operating

system.

The game was evaluated in two stages. First, the designer

tested the functionality, after each step of the

implementation. This was done to check the correctness of

the behaviors. When errors were noticed, solutions were

found and implemented. The second stage consisted of a

heuristic evaluation. Nielsen’s 10 usability heuristics for

user interface design [18] were used. These are: the

visibility of system status, match between system and the

real world, user control and freedom, consistency and

standards, error prevention, recognition rather than recall,

flexibility and efficiency of use, aesthetic and minimalist

design, help users recognize, diagnose, and recover from

errors, and help and documentation. Two evaluators had to

independently complete reports for each game scenario,

consisting of marks from 0 to 100 for each usability criteria,

and they highlighted the errors that they found. Then a

group evaluation was done by the two evaluators and the

game designer, where the game was tested once again, and

the problems were pointed out. The game developer came

with solutions for the flaws that were discovered, and this

process proved to be very easy and efficient. Also, the game

obtained a 92.6% usability rate, which is quite satisfying.

The main functionality flaws had to do with the collision of

the car with the buildings – which can be solved by altering

the bounce parameter of the physics materials. Also, the

users are not fully satisfied with the level of entertainment

of the game, but this can be changed by making the game

scene bigger, adding more enemies, with more variety to

their behavior.

As future improvements for the digital game developed in

this paper, we can think of making it multiplayer. This

means that more than one person can play the game at the

same time. This would make the game more difficult, but

also more entertaining. It was also noted that this type of

game would be suitable for smartphones, because it would

be easy to control the movement of the flying vehicle with

the change in position and orientation of the phone, and by

tapping actions to shoot and to speed up.

CONCLUSIONS

This paper focused on presenting the development

methodology of an interactive application. The focus was

on implementing specific development stages to build a

video game. Literature was reviewed in order to understand

the necessary steps. Then, detailed explanations were made

at each stage. We explained where we got our inspiration

from, and how we planned the game. Then prototypes were

created to design the user interface of the game. Afterward,

the game scenarios were established. Following these, the

game was implemented in the presented technologies. We

showed what game objects were used, and how each one of

those was inserted into the game. In the last stage of

development, the functionality and usability of the game

were evaluated. This whole process proved to be a lot of

hard work, and documentation was needed to keep track of

the update and maintenance steps.

RESOURCES
[1] K. Salen and E. Zimmerman, Rules of Play: Game Design

Fundamentals: The MIT Press, 2003.

[2] The International Arcade Museum. (1995). International

Arcade Museum. Available: https://www.arcade-

museum.com/aboutus.php, Visited: 20.05.2018

[3] A. Serdar, "Digital Educational Games: Methodologies for

Development and Software Quality," Dissertation2016.

[4] E. Adams, Fundamentals of Game Design: New Riders

Publishing, 2009.

[5] P. Barnhardt, "Game design tips 2: That Pesky Character

development," vol. AXS Digital Group LLC, 2011.

[6] M. Sellers, "Designing the Experience of Interactive Play,"

Playing video games: Motives, responses, consequences,

vol. Vorderer, P. & Bryant, J. Mahwah: Lawrence Erlbaum

Associates, 2005.

[7] D. Pinelle, N. Wong, and T. Stach, "Using genres to

customize usability evaluations of video games,"

Proceedings of the 2008 Conference on Future Play, 2008.

[8] B. L. Mitchell, Game Design Essentials, 2012.

[9] E. Bethke, Game Development and Production (Wordware

Game Developer's Library) Wordware Publishing, 2003.

[10] S. Enix, Life Is Strange, 2015.

[11] A. C. Clarke and S. Kubrick, 2001: a space odyssey, 1968.

[12] D. Villeneuve, H. Fencher, M. Green, Blade Runner 2049:

Warner Bros. Pictures, Sony Pictures Releasing, 2017.

[13] C. Nolan and E. Thomas, "Dunkirk," 2017.

[14] R. Dawkins, The Greatest Show on Earth: The Evidence for

Evolution: Free Press, Transworld, 2009.

[15] A. Okita, Learning C\# Programming with Unity 3D: A. K.

Peters, Ltd., 2014.

[16] C. Wartmann, The Blender Book: Free 3d Graphics

Software for the Web and Video with Cdrom: No Starch

Press, 2000.

[17] S. Onstott, Adobe Photoshop CS6 Essentials: SYBEX Inc.,

2012.

[18] J. Nielsen, Usability Engineering: Morgan Kaufmann

Publishers Inc., 1993.

