
 - 63 -

ReaderBench Talk: Online Conversations Empowered by
Advanced NLP Techniques

Andrei Mardale, Gabriel Gutu-Robu, Mihai Dascalu, Stefan Trausan-Matu

University Politehnica of Bucharest
313 Splaiul Independentei, Bucharest, Romania

andrei.mardale@cti.pub.ro, {gabriel.gutu, mihai.dascalu, stefan.trausan}@cs.pub.ro

ABSTRACT

With the increased need of communication, Computer-

Supported Collaborative Learning has gained a broader

attention within the last years. Thus, the necessity of using

chat applications emerged; however, most solutions lack the

integration of Natural Language Processing (NLP) services

in order to provide support and guidance, while discussing.

Our novel application Talk is integrated within the

ReaderBench framework and is defined by three main

features: asynchronous messages specific to chats,

automated bots for enhancing participants’ involvement and

interactions, as well as the usage of advanced NLP

functionalities for a posteriori evaluations. ReaderBench

Talk communicates with the framework through a dedicated

endpoint built within the ReaderBench API. As preliminary

validation, two assignments were given to students from our

faculty. Overall, students were able to solve the tasks without

encountering critical bugs and they also provided valuable

feedback. Their feedback revealed the usefulness of the

application, its ease of use, the persistency of data, and the

quality of the NLP services. The feedback also helped

identify issues, which were mainly related to the user

interface and to the communication with the server.

Author Keywords

Chat Conversations; Computer-Supported Collaborative

Learning; ReaderBench framework; Natural Language

Processing; Chat Bots.

ACM Classification Keywords

I.2.1. ARTIFICIAL INTELLIGENCE: Applications and

Expert Systems.

INTRODUCTION

Computer-Supported Collaborative Learning (CSCL)

technologies gained attention within the last years for both

scientific researchers and for regular users, mainly motivated

by the underlying social web and the knowledge building

processes [1]. CSCL scenarios frequently use chats, which

work similar to instant messaging applications, but can

integrate advanced facilities. CSCL is aimed at a learning

tasks and regularly involves more than two students. As

specific traits, the resulting conversation may include the

intertwining of complex discussion threads in a polyphonic

manner [2]. The integration of explicit referencing

mechanisms helps follow the threads, while mechanisms of

automated detection of implicit links using Natural

Language Processing (NLP) techniques [3] can

automatically create references between utterances when

manual annotations are forgotten or omitted [4].

Several experiments were previously performed by our

research group by considering a collection of chat

conversations [5]. In order to extend the corpus of

conversations, the idea of gathering new conversations for

future experiments was considered beneficial. The need to

develop a new, dedicated chat application emerged, taking

into account that the previously used application is tedious

to install and use as it requires obsolete technologies. With

this aim, our application was designed to easily enable the

integration of NLP facilities, to help increase users’

interactivity, and to facilitate referencing between

contributions.

This paper is structured as follows. The next section

describes related work and it is focused on ConcertChat [6],

the ReaderBench framework [7, 8]. Afterwards follows the

presentation of the chat interface, together with its main

windows and functionalities, including the automated bots.

Feedback gathered from part of the students’ that interacted

with the application is then provided followed by

conclusions.

RELATED WORK

Taking into account that our first experiments on chat

conversation date more than 10 years ago [9], the need of

gathering a new collection of conversations motivated us

into researching existent solutions. After comparing a few of

them, we decided to build our own application, which is

presented in the next section.

Existing applications

While desktop-based applications are less and less used

nowadays, web-based applications gained a lot of popularity

within the last years. Out of existing desktop applications,

ConcertChat was used in previous experiments conducted bu

our team. Web apps include popular services such as Skype,

Facebook Messenger, Google Hangouts or Slack.

ConcertChat

ConcertChat (https://sourceforge.net/p/concertchat/) [10] is

a software application built in Java, aimed at providing

CSCL facilities for chat conversations. It is particularly

powerful for collaboration purposes, as it offers two panels

for content sharing which suppor both text and graphical

 - 64 -

elements. Among the most important features, it is worth

mentioning the referencing system. References are messages

explicitly annotated by participants as replies to prior

utterances. The key aspect of ConcertChat is the fact that

responses can be posted both to text utterances and to

elements drawn on the whiteboard. Due to the dynamic

character of chat environments, chaining ideas can be

problematic when multiple participants actively discuss;

ConcertChat overcomes this impediment with the aid of

explicit referencing. Thus, linking a text message to a piece

of drawing enriches communication expressivity and

reinforces the outlined ideas. Another benefit of the reply-

based communication tools is the ability to decrease

confusion among participants, as the flow of discussions is

enhanced. By using replies, text coherence is improved and

discourse becomes more cursive [6].

ConcertChat offers persistent storage of conversations; thus,

people who join a room later on can have access to the entire

conversation and can easily get involved. Another advantage

of the persistency is the fact that scientific analyses can be

made a-posteriorly. Both texts and the drawn elements are

kept in the history, thus allowing users to easily revert to a

discussion to a previous state.

ConcertChat was used for creating of the corpus of

conversations used in our previous experiments [11]. As the

software application was not updated since 2007 and is based

on currently obsolete technologies, the stringent need of

building a dedicated application emerged.

Web-based application

One of the main issues of available online applications is the

lack of the facility to export conversations for follow-up

analyses. Moreover, most applications (e.g., Slack) limit the

number of messages that can be retrieved for free usage.

Moreover, the majority of such services are also based on

central servers that store the entire conversation (sometimes

un-encrypted), thus exposing sensitive information. The

deletion of conversations is also sometimes a tedious task.

Needless to say, there are no NLP facilities integrated within

existing online applications.

The need for a dedicated chat application

Our decision was to create a new user-friendly web

application, as a dedicated endpoint for analyzing chat

conversation was already implemented within the

ReaderBench Application Programming Interface (API)

[12]. The increasing spread of online services in the

detriment of desktop applications also motivated the decision

to create it as a web interface. Such applications usually work

without the need to install additional software, which makes

them easier to be used, while increasing the availability of

server-side hardware resources for advanced processing.

Thus, we are able to use our API in order to render

collaboration results and sociograms.

The ReaderBench CSCL endpoint

ReaderBench is an advanced multi-lingual Natural Language

Processing framework [12]. The assessment of chat

conversations is one of the provided functionalities within

the Application Programming Interface (API) and it is used

for the development of the chat application. A dedicated

endpoint is publicly available through POST requests sent to

the ReaderBench API at http://readerbench.com/api/cscl-

processing. This service performs multiple NLP analyses,

out of which we highlight:

• Keywords extraction;

• The assessment of users’ participation throughout

the conversation;

• The evaluation of participants’ interactions;

• The assessment of collaboration in regard to social

knowledge building, based on Cohesion Network

Analysis [13];

• Specific indices, denoting characteristics such as

participation and collaboration for each participant.

The CSCL processing service requires the following input

parameters to perform a request:

• The chat conversation to be processed, provided in

a specific XML format, compatible with

ConcertChat;

• The language of the conversations (English and

French are currently supported);

• The pre-trained corpus to be used for the integrated

semantic models. A corpus consisting of documents

comprised of both general and specific terms is

recommended; TASA (http://lsa.colorado.edu/

spaces.html) is a good example for current

experiments;

• A similarity threshold for calculating semantic

similarity scores between concepts; only the scores

exceeding the threshold will be retrieved;

• Options for advanced computations such as the

enabling of the part-of-speech tagger, which is

aimed at detecting words’ parts of speech, or the

dialogism mechanism, which allows the detection

of semantic chains.

The output data provided as response by our CSCL

processing service include:

• Participants’ interactions,;

• The evolution of participants’ contributions to the

overall conversation;

• Knowledge brought by each participant to the

conversation;

• The manner in which users’ points of view (i.e.,

voices from dialogism) intertwine throughout the

conversation;

• The most relevant concepts of the conversation,

together with the semantic relatedness links

http://readerbench.com/api/cscl-processing
http://readerbench.com/api/cscl-processing

 - 65 -

between them, which may be used for creating a

concept map;

• Indices denoting CSCL features specific per user,

such as their number of contributions, their degree

of inter-animation, the overall score of their

contributions or their degree in terms of posted and

received messages.

The participants’ evolution and interaction graphs, together

with the map of concepts have been used within the chat

application to visually express the main characteristics of a

chat conversation. Information with regards to participants'

collaboration and participation effects have been associated

also with each utterance in order to highlight intense

collaboration sections within the conversation. Our aim is to

allow users to easily analyze chats with the help of specific

visualizations presented in detail in the following section.

THE CHAT SYSTEM

The chat application is part of the ReaderBench website [14]

and is available at http://chat.readerbench.com. It works as a

stand-alone application that can be used only by registered

users. The homepage displays a guide that explains how

users can register and login, how rooms can be created or

how other conversations can be joined. Additional

explanations regarding the interface of a room are also

displayed, followed by short explanations describing the bots

and the automated analyses perform on the conversations.

Our chat application is characterized by three main features:

asynchronous messaging, automated bots for enhancing

participants’ activity and interactions, and the integrated

NLP functionalities. Asynchronous messages allow users to

access conversations, even after signing out and rejoining a

room later on. Automated bots help participants to focus on

the conversation by suggesting them to be more active or to

express their opinions with regards other participants’ ideas.

Advanced NLP functionalities include visual graphs

performed after a discussion is finished, with the help of the

ReaderBench API. The graphs are based on the outputs

provided by the ReaderBench processing endpoint.

The List of Chat Rooms

On sign-up, users have to read the Information Consent,

which provides details that their contributions may be used

for scientific research and that users have the right to be

forgotten from the system; on this request, their usernames

will be replaced by a random nickname.

Upon sign in, users are redirected to a page listing the

discussion rooms. Here, they can either create a new room or

join an existing one. Figure 1 shows the interface of the chat

application displayed after sign in. Each conversation in the

list displays its creator, the room name and the creation date.

After clicking a conversation, the user is redirected to the

room.

Figure 1. Main interface after login showing all available chat rooms.

http://chat.readerbench.com/

 - 66 -

The Room Interface

Figure 2(a) shows part of a discussion established between a

group of students within the chat application. It can be

observed that some utterances were added as replies to

previous utterances. This can be performed with the help of

the “reply-to” button displayed as an arrow besides the

participant's name. The application also saves the timestamp

of each contribution and it exports discussions as an XML

files, following the format which ensures compatibility to

previous experiments.

(a)

(b)

Figure 2. (a) Preview of a discussion performed within the chat application.

(b) Social Knowledge Building and Dialogism evolution graphs of a sample conversation.

 - 67 -

The Chat Bots

Within a discussion, the implemented chat bots intervene and

try to regain the focus of users and to stimulate their

participation. The current version of our application

integrates two chat bots. The first bot is aimed at increasing

users’ interaction by asking participants, who did not

formulate replies for other participants’ contributions, to

express their thoughts. The second bot tries to stimulate the

conversation by asking users who did not show activity

within a predefined time period if they are still present in the

discussion or what is their opinion.

NLP Services

The chat application communicates with ReaderBench API

and the response of the service is used for building visual

graphs such as the social knowledge building and the

dialogism evolution graphs [15] – see Figure 2(b). Figure

3(a) presents the concept map of a sample conversation,

where the size of a node (i.e., keyword) shows its relevance

throughout the conversation, while the length of an edge

depicts the semantic distance between two concepts. Only

the links with similarity scores above the provided threshold

(which is set to 0.3 out of 1 in the application) are drawn.

Figure 3(b) shows the participant evolution graph for the

conversation, which helps monitor the evolution of each

participant throughout the conversation. The horizontal axis

follows the conversation timeline, while the vertical axis

shows the overall score of user’s contributions.

(a)

(b)

C
u

m
u

la
ti

ve
 c

o
n

tr
ib

u
ti

o
n

sc
o

re
s

 Utterance Identifier

Figure 3. (a) Concept Map and (b) Participant Evolution graph for a sample conversation.

 - 68 -

FEEDBACK

The students involved in our experiments were asked to

provide free text feedback for the chat application by e-mail.

Although the number of feedbacks was pretty small (just 6

out of about 40 participants), they helped us identify the

strengths, the main issues and some recommendations for

improving the application. Table 1 shows this information

together with the corresponding number of students

emphasizing a certain idea, in descendant order. Based on

the gathered feedback, we evaluate the relevant issues or

recommendations and propose solutions for them. We also

assign priority scores (on a scale of high, medium and low),

which are aimed at showing the most important issues to be

solved by the developers.

Strengths

Two out of the six students who provided feedback

mentioned the application’s strengths. Both considered the

application as a good environment for conversation (S1)

which can be used with ease (S2). One user noticed that the

application was able to maintain the conversation even after

they accidentally closing the browser (S3), which is also

considered positive. Students noticed the capability to use

advanced NLP functionalities on the resulting conversation.

Issues

The students focused more on identifying issues and each of

them emphasized at least two problems. The highest priority

is assigned to the lack of the window’s auto-scroll facility

when new messages are received (I1), which was

emphasized by four out of six students. Long duration in

sending and receiving messages (I2), as well as misleading

messages of users joining and leaving the room even when

this did not happen (I3) was noticed by two of the users. One

out of six students also noticed the inability to use the “Drag

& Drop” facility for simulating the “reply-to” option (I4).

Another student encountered problems with messages that

were sent, but never showed up in the conversation (I5).

I1 should be immediately incorporated as it helps users to

focus at new messages and easily follow the conversation. I2

was identified as being caused by the limited hardware

resources currently being used for testing the application.

The usage of this platform in a production environment with

additional resources should be tested. I3 is a coding bug

related to the calculation of the users’ time of inactivity and

it was immediately addressed. I4 was not observed during

our internal tests on multiple operating systems and

browsers, thus it might be a specific issue to the user’s

environment; follow-up analyses will be conducted. I5 also

did not occur during our tests and, being reported by only

one user out of 40, might exhibit a specific environment

condition. However, since this is a critical functionality, we

decided to consider this issue as more important. Based on

these assumptions, we assigned priorities for each one of the

identified issues.

Feedback
No.

students
Priority

Strengths (2 students)

S1
NLP functionalities: The application is a good environment for chat conversations and

NLP tasks related to them.
2 / 2 N/A

S2 Ease of use: The application is exciting, and it can be easily used by any user. 2 / 2 N/A

S3
Persistency: The conversation could be found even after the user accidentally closed the

browser.
1 /2 N/A

Issues (6 students)

I1 The users had to scroll when new messages are received in order to read them. 4 / 6 High

I2 Lags in sending and receiving messages were observed. 2/ 6 Low

I3 Misleading messages of users joining and leaving the room were noticed. 2 /6 High

I4 The “Drag & Drop” facility for the “reply-to” option could not be used. 1 / 6 Low

I5 Some messages that were sent did not show up in the conversation. 1 / 6 Medium

Recommendations (2 students)

R1 An option to disable the bots should be included. 2 / 2 Medium

R2
Awareness messages (e.g., showing that a participant is typing a new message) should be

included.
1 / 2 Low

Table 1. chat application issues, recommendations and strengths based on students’ feedback.

 - 69 -

Recommendations

Just two of the six students provided recommendations.

Both of them requested to include a facility for disabling

the bots (R1). One of them also proposed the inclusion of

some awareness messages – e.g., a message showing when

someone is typing a new contribution (R2).

With regards to the priorities of these recommendations,

R1 might be helpful for users’ interaction with the

platform, but it is not beneficial to certain educational

conditions that we want to setup. R2 might also be

beneficial, but our experience with other applications

showed that this kind of messages are displayed when only

two participants are involved in a conversation; otherwise,

the chances are extremely high that someone from a group

of 5 persons is typing at a certain moment, thus making the

message less helpful.

CONCLUSIONS

This paper introduced our new chat application – Talk –

integrated with the ReaderBench framework. The

application allows multiple users to connect to a chat room

and discuss. It also provides multiple analyses making use

of the ReaderBench API and the corresponding advanced

NLP functionalities. The aim of this application is to

support users discuss various topics and even solve tasks in

a collaborative manner, encourage creativity, as well as

active participation.

In order to test the environment, multiple students were

asked to discuss on a specific topic specific to the course

curriculum. Their conversations were exported and saved

for future analyses. Students were also asked to provide

feedback, which helped us identify the strengths, the

issues, and some recommendations for future development.

In general, students found the application as being useful

for collaboration. The identified issues and the provided

recommendations were mainly related to the interface and

to users’ interactions. Overall, students were able to solve

the assignment without encountering severe problems. The

provided feedback will be used to improve our application

in subsequent releases.

ACKNOWLEDGMENTS

This work was partially funded by the 644187 EC H2020

Realising an Applied Gaming Eco-system (RAGE) project.

REFERENCES

1. Stahl, G., Group cognition. Computer support for

building collaborative knowledge. MIT Press,

Cambridge, MA, 2006.

2. Trausan-Matu, S., 2010. The polyphonic model of

hybrid and collaborative learning. In Handbook of

Research on Hybrid Learning Models: Advanced

Tools, Technologies, and Applications, F. Wang, L., J.

Fong. and R.C. Kwan Eds. Information Science

Publishing, Hershey, NY, 466–486.

3. Manning, C.D. and Schütze, H., Foundations of

statistical Natural Language Processing. MIT Press,

Cambridge, MA, 1999.

4. Gutu, G., Dascalu, M., Rebedea, T., and Trausan-

Matu, S., 2017. Time and Semantic Similarity – What

is the Best Alternative to Capture Implicit Links in

CSCL Conversations? In 12th Int. Conf. on Computer-

Supported Collaborative Learning (CSCL 2017) ISLS,

Philadelphia, PA, 223–230.

5. Trausan-Matu, S., Dascalu, M., Rebedea, T., and

Gartner, A., (2010) Corpus de conversatii multi-

participant si editor pentru adnotarea lui. Revista

Romana de Interactiune Om-Calculator 3, (1), 53–64.

6. Holmer, T., Kienle, A., and Wessner, M., 2006.

Explicit Referencing in Learning Chats: Needs and

Acceptance. In Innovative Approaches for Learning

and Knowledge Sharing, First European Conference

on Technology Enhanced Learning, EC-TEL 2006, W.

Nejdl and K. Tochtermann Eds. Springer, Crete,

Greece, 170– 184.

7. Dascalu, M., Dessus, P., Bianco, M., Trausan-Matu,

S., and Nardy, A., 2014. Mining texts, learner

productions and strategies with ReaderBench. In

Educational Data Mining: Applications and Trends, A.

Peña-Ayala Ed. Springer, Cham, Switzerland, 345–

377.

8. Dascalu, M., Analyzing discourse and text complexity

for learning and collaborating, Studies in

Computational Intelligence. Springer, Cham,

Switzerland, 2014.

9. Trausan-Matu, S., Stahl, G., and Zemel, A., 2005.

Polyphonic Inter-animation in Collaborative Problem

Solving Chats. Drexel University.

10. Mühlpfordt, M. and Wessner, M., 2005. Explicit

referencing in chat supports collaborative learning.

Proceedings of the Proceedings of th 2005 conference

on Computer support for collaborative learning:

learning 2005: the next 10 years! (Taipei,

Taiwan2005), International Society of the Learning

Sciences, 1149353, 460-469.

 - 70 -

11. Trausan-Matu, S. and Stahl, G., 2007. Polyphonic

inter-animation of voices in chats. In CSCL'07

Workshop on Chat Analysis in Virtual Math Teams

ISLS, New Brunwick, NJ, 12.

12. Dascalu, M., Gutu, G., Paraschiv, I.C., Ruseti, S.,

Dessus, P., McNamara, D.S., Crossley, S., and

Trausan-Matu, S., 2017. Cohesion-Centered Analysis

of CSCL Environments using ReaderBench.

Proceedings of the 18th Int. Conf. on Artificial

Intelligence in Education (AIED 2017) – Interactive

Event (Wuhan, China2017).

13. Dascalu, M., McNamara, D.S., Trausan-Matu, S., and

Allen, L.K., (2018) Cohesion Network Analysis of

CSCL Participation. Behavior Research Methods 50,

(2), 604–619.

14. Gutu, G., Dascalu, M., Trausan-Matu, S., and Dessus,

P., 2016. ReaderBench goes Online: A

Comprehension-Centered Framework for Educational

Purposes. In Romanian Conference on Human-

Computer Interaction (RoCHI 2016), A. Iftene and J.

Vanderdonckt Eds. MATRIX ROM, Iasi, Romania,

95–102.

15. Dascalu, M., Trausan-Matu, S., McNamara, D.S., and

Dessus, P., (2015) ReaderBench – Automated

Evaluation of Collaboration based on Cohesion and

Dialogism. International Journal of Computer-

Supported Collaborative Learning 10, (4), 395–423.

