
 - 141 -

Enhancing player experience using procedural level
generation

Bogdan Maxim

Technical University of Cluj-

Napoca
Str. Memorandumului, Nr. 28

bogdan.maxim@cs.utcluj.ro

Daniel Ciugurean

Technical University of Cluj-

Napoca
Str. Memorandumului, Nr. 28

danielciugurean@outlook.com

Dorian Gorgan

Computer Science Departament,

Technical University of Cluj-

Napoca
Str. Memorandumului, Nr. 28

dorian.gorgan@cs.utcluj.ro

ABSTRACT

In this paper we explore different types of procedurally

generated content to see if and how it can affect the

gameplay experience of the player. We conduct a survey

with different types of procedurally generated content in

order to see if and how it affects the player when playing a

game. The paper presents a simple turn based tactical

strategy game where the objective of the player is to

eliminate the enemy team. The player must achieve this

goal in different circumstances: from a simple grid to a

procedurally random generated levels. The experiments

conducted will show the way procedurally generation will

enhance the gameplay experience of the player and where it

should be used.

Author Keywords

Video games; procedurally generated content; player

experience; gameplay; replayability

INTRODUCTION

Procedural level generation is a great way to add new

content for a game on the fly. The content that can be

created varies from maps, characters, levels, weapons,

powerups, loot boxes etc. The possibilities for procedurally

generated content are endless. They can generate entire

levels for games, they can generate the position of the

enemies, they can generate lootboxes and they can even

generate characters in order to immerse the player into the

world.

Player experience is given by different factors from the

game: graphics, sound, gameplay, artificial intelligence,

immersion and content. All of these elements affects the

way the player perceives the game, the time he enjoys

spending with it and how addictive the game is. Using

procedural generated content, the designers of the game are

able to generate a lot of content on the fly without having to

hand craft everything. While some games which have

employed procedural content generation are successful,

some of them are not.

The objective of this paper is to see how procedural

generated levels affects player experience, when it shall be

employed and when it is enough. This paper is divided into

six sections: Introduction, Related Works, Concepts,

Methods, Tests and Results and Conclusion. The related

works section presents games who had an impact over the

industry and employ procedural content generation from

1980 to present day. The Concepts section presents some

concepts that need to be understood in order to understand

the next sections. The Methods section presents the game

implemented and the iteration made over it in order to be

able to conduct the experiments. Also, this section discusses

the technology and concepts used to implement it and the

way they were constructed. Tests and Results section

presents the extensive way we conducted the experiments

over the subjects in order to find out more about the

gameplay and procedural level generation. It shows an

elaborate way to conduct a research over a group of people

in order to get some conclusions. The conclusion section

reviews the results and presents further work.

RELATED WORKS

In the right formula, procedural content generation is

magical. It elevates the design and highlights the elegance

of the core system loops. The computer games industry is

well known for enhancing games with procedural level

generation. These games have been available even before

the Video Game Crash of 1983. The first game which used

procedural generation is Beneath Apple Manor. This game

is one of the earliest examples of roguelike games, where

the player must navigate a procedural generated dungeon.

But the major breakthrough of rogue like games was

achieved by a game called Rogue in 1980. This was soon

followed by Elite which introduced 3D gameplay

mechanics and procedural generated galaxies. Until 1991,

no major titles made breakthrough in this field. In 1991, a

game called Civilization showed the world that procedural

level generation can be used in order to build maps for turn

based strategies, achieving the possibility to change tactics

for each game you’ve played. The Elder Scrolls: Arena

released in 1994 used procedural content generation for the

map, thus introducing content on the run for the first person

role playing games. Diablo introduced the procedural

content generation for dungeons in action role playing

games, adding new content for the role playing gamers.

This meant that no two playthroughs would be the same.

The next iterations of Civilization and Diablo would

improve and perfect their traditional formulas in order to

 - 142 -

enhance the replayability and the variety of the gameplay.

By 2008, roguelike games were almost non-existent, until a

game called Spelunky revived the genre. Each dungeon in

Spelunky is procedurally generated given different game

experience each time one level is being played. Also, in

2008 two major breakthroughs used procedurally generated

content to enhance the content: Spore and Left 4 Dead.

Spore used procedural generated content for the characters

so that they occupy as few bytes as possible. Each character

has a seed which acts like a DNA and from there the

character is generated in combination with pre-made

content by the developers. In Left 4 Dead the game’s

artificial intelligence would observe the players’ effects on

the world and based on that, would adjust the difficulty

accordingly. This is a very intelligent example of using

procedural content generation in combination with artificial

intelligence in order to enhance the player’s experience.

Left 4 Dead II refined this idea and improved the AI. In

2011 a game called Minecraft took the world by surprise

with its gameplay elements and procedural generated

content. The player can build anything in a voxel-based

space which is procedural generated and also could bring

friends in order to join the fun. No Man’s Sky shocked the

world in 2016 by generating over 18 quintillion planets to

explore in the game. Very little game data would be stored

as everything is generated on the fly from a specific seed.

XCOM II(2016) generates level portions on the run in order

to add new content each time it is played. Being a turn

based tile based strategy game, different tactics would be

employed each time a battle is fought.

CONCEPTS

Games are famously hard to define[4]. By games we refer

to the videogames, computer games, board games, puzzles,

card games etc. Games have the role to leisure the user and

to entertain him. Entertaining is the main objective of the

game. The more the user is entertained and wants to spend

his time within the game’s world, the better the game is.

There are different types of video games. The most popular

are: first person shooters, third person shooters, real-time

strategies, turn-based strategies, role playing games,

adventure games, puzzle games, action games and the list

goes on. From these genres, we are going to focus on the

turn-based strategies.

A turn-based strategy game is a genre in which each

player or team has a limited number of units on the board.

Each unit have a limited number of action points that can

take each turn. This action points consist in movement,

attack or calling special abilities in order to achieve victory.

After all the action points are gone for the turn or the player

decides that he won’t do anything for that turn, he will end

his turn, letting the enemy make his moves. Turn-based

strategies are characterized by the fact that the action takes

place in sequential turns. Usually, these kinds of games take

place on a board represented by a grid.

A tactical turn-based strategy is a computer and video

game genre that through stop-action simulates the

consideration and circumstances of operational warfare and

military tactics in generally small-scale confrontations as

opposed to more strategic considerations of turn-based

strategy games.

The grid represents the gameboard with a specific number

of squares arranged in a specific pattern. The grid may have

a rectangular shape or a square shape. By controlling the

dimension of a tile and the number of tiles, different maps

can be achieved.

Procedural content generation is the algorithmic creation

of game content with limited or indirect user input [1]. In

other words, procedural content generation refers to

computer software that can create game content on its own

or togheter with one or many human players or designers. A

key term here is content. In the context of procedurally

generators, content may refer to: characters, maps, levels,

weapons, loot boxes etc. Procedurally generated characters

add detail and depth to characters and multiple characters

can be created in a very short period of time. These can

vary from family dynasties to individual characters with

whom the player can build different relationships.

Procedural generated levels means that each level of the

game will be generated on the fly based on a set of rules

and different assets. In this way, combining the same

mechanics and the same assets in different modes, players

will achieve a different experience each time they play a

level. In the same way, huge universes can be generated in

a short amount of time giving players a huge world in

which they can play. Procedurally generating maps are used

in turn based strategy games. Each battle will be held on

different layouts with different units generated by the

computer so that no two matches will be the same. This

adds to the replayability and life duration of the game. [2,7]

Playability is the ease by which the game can be played or

the quantity or duration that a game can be played and is a

common measure of quality of gameplay[5]. By using

procedural level generation in the right situation, the

playability of a computer game may be boosted which will

give the player extra playtime experience and quality time.

Replay value represents a video game’s potential for

continued play after its first completion. Different

techniques can be used in order to maximize the replay

value: different endings, different party combination or

different levels which can be achivied by building them at

runtime [3].

Extending content represents the action through which a

game’s lifespan may be extended by adding different levels,

maps, mechanics or characters into the game. By using

procedural content generation, a game content can be easily

extended by generating that content instead of letting a

team of game developers to hand craft that content.

 - 143 -

Fun represents the enjoyment of pleasure, particularly in

leisure activities. This is the main purpose of video games

in general. By having a high fun factor, the game induces

the addiction factor which leads to the case in which the

player thrives for more time spent playing the game.

Procedural content generation helps adding a fun factor in

form of helping the designers add more content in a

convenable time period. The objective of this study is to

find out the right amount of generated content in order to

enhance the fun factor.

METHODS

This section presents the tools, environments and an

incremental approach constructed in order to see how

procedural generated levels affect the content and player

experience. For the testing, we have implemented a simple

tactical turn-based strategy game based on XCOM: Enemy

Unknown. The game consists of 9 different type of units,

each having unique properties, assets and moves. They fight

in a dungeon which, at first it is handcrafted(two rooms)

and then they become procedurally generated by a given

algorithm. The main objective is to destroy the enemy team

by using each unit’s attack. Each unit has a different

number of action points. Playing with different kind of

settings, we observe players interest time, the time until

they get bored and leave the game.

For constructing the simple game, we chose Unreal Engine

for multiple reasons: first, Unreal Engine is free, which

means that we could use all its features. This leads to the

fact that we could focus on implementing the game and

measuring the results and having a high quality game. We

wanted to measure the way procedural content generation

affects users’ experience and we needed a way in order to

focus on that. This meant that things like control or

graphics should be by default good so that the users’

experience isn’t affected by these. Second, XCOM: Enemy

Unknown was built in Unreal Engine so we wanted to keep

the same engine for that kind of game.

By having these tools at our disposal, we incorporated an

incremental approach: we started our tests with the same

level and the same unit for both the player and the enemy.

Then we added procedural map generation in order to

change the layout and do the tests again. After this, we

added different characters for both the player and the

enemies. These are the same characters each time. Only the

layout is changed. After the tests were run on this setting,

we started to add random characters at different positions

on the grid and observe the result. Finally, we experimented

a little bit with the grid’s dimension and the number of

rooms.

Each of the next subsections will describe each iteration of

the algorithm and give details about specific aspects of the

changed part.

Same room and characters

We first started by constructing the grid. The grid is formed

by tiles which are squares specified by a certain dimension.

We chose 100 units in Unreal. To each square we attached a

static mesh. A static mesh is a piece of geometry that

consists of a set of polygons that can be cached in video

memory and rendered by the video card. By using the

caching principle, this means that a static mesh is rendered

efficiently, allowing to efficiently render bigger grids.

Static meshes can be translated, rotated, scaled but can not

be animated. By encoding two parameters, one for the tile

dimension and one for the grid dimension, we will be able

to control the dimension of the grid by adjusting these two

parameters. This will be useful in a future experiment. Once

we generated the grid, we added one giant room and we

placed 5 soldiers for the player’s team and 5 soldier for the

enemy team. We used a basic mesh for the unit with idle

stance, attack stance and death stance so that the player can

visually see what is going on. Each unit has health

represented by a points(health points). The default unit has

500 health points. When a unit attacks, it deals a specific

type of damage, represented by damage points. The default

unit has a 100 damage points. To compute the health of the

attacked unit, we just subtract from the total health points of

that unit the damage points dealt by the other unit. The units

can not regenerate health. This allows for a very basic

strategy turn based game in order to see how fast the fun

factor runs out. Each unit has an exact number of 7 action

points. After 7 actions have taken place, the unit can not do

anything for this turn.

Generated rooms and same characters

While maintaining the same characters as before, we added

procedural map generation for the rooms. In this way, each

map will be different so each player will have a different

experience each time. No two games will be the same. For

this, we employed a space partitioning algorithm. We used

a quadtree [6] in order to partition the grid. In the quadtree,

each quadrant will contain a single room(placed

stochastically) as well as an empty space. Corridors will be

added after the entire generation process is completed. We

hold an array for the cells in memory. Each tile has, besides

the size and the world position, an integer value which

specifies where does that tile belong to. A value of 1

indicates that the tile belongs to a room, a value of 2

indicates that the tile belongs to a corridor and a tile of 0

indicates that the tile belongs to an inaccessible space.

After generating the grid(with the mention that each tile

starts with value 0), we create the quadtree and assign to

each tile in the grid a place in the quadtree. After this, we

randomly assign some tiles value for a room and start to

build the room around it. The value of the size of the room

is chosen randomly. Then we iterate over and stochastically

drop some rooms in order to keep them in a playable

fashion.

For corridors, we find the nearest room from the room that

we are in, find the closest edges and find the line from A to

 - 144 -

B. Then we walk that line and add the specific numbers to

the tile.

After each tile has a number assigned to it, we have a

component which takes the grid as the input and builds the

mesh for that grid. It will start by building the room and

then the walls and corridors and then the inaccessible part.

Figure 1 shows the generated rooms from above with the

status bar of all the units.

Figure 1. Procedurally generated rooms in the game

Generated rooms and multiple characters at the same
locations

After having different dungeons for each level, the next

iteration of our method added characters instead of the

same default unit. For each game, different characters will

be used, but in this iteration, they will be the same from one

game to another. We added the following classes: Assault(

500 health points, 150 damage points), Heavy(1000 health

points, 100 damage points), Medic(500 health points, 50

damage points), Specialist(500 health points, 100 damage

points).

Generated rooms and multiple characters at random
locations

The next iteration consists in choosing a random place for

start. All the units of the player will be situated in a random

room which was selected at the beginning and all the units

which belong to the enemy will be situated in another room,

different from the room of the player. For this, when we

generate the room, we keep their middle position in a

separate array and we mark if we have something in that

room. For random placement, we choose a random index in

the range of that array and make the necessary

computations. In the room, we spawn random positions for

the characters. We also employ an array for all the

characters classes we have and we random generate a

number in the range of that array in order to spawn a

random character.

Generated rooms, multiple characters at random
locations and different grid dimensions

The last iteration for our tests consist in having everything

we had up until this point, but playing with the map

dimensions. Randomly choosing the size of the map by

adjusting the dimension of the tiles and different tile

numbers for the length and width, we procedurally generate

levels in this way in order to see its impact over the players.

TESTS AND RESULTS

This section presents the tests and results which we

employed over the iterations presented above.

By having this incremental approach at our disposal, we

wanted to measure the flow[8] of the player. By this we

asked students from our University in order to playtests all

the iterations presented above and after that we employed

two playtests methods in order to see what iteration made

an impact over them. The two playtest methods are

traditional methods and technical approaches. Traditional

methods consist of direct observations and verbal reports,

while technical approaches consist of design experiments

and surveys[9].

We are going through all the iterations and present the

results. For each iteration we applied the direct observation

and then we conducted the technical approaches in order to

emphasize the results.

Same room and characters

We start by presenting the players the basic level we

constructed. Naturally, we expected the fact that the fun

factor should go away extremely fast. This was confirmed

by direct observation where we watched the people play the

game and observing their behavior. After a few minutes

they would stand up and leave the game as it is. Having the

same characters and same level repeated drains the fun

factor pretty fast. The verbal reports confirmed. Player

complained about the repetitive nature of the level and the

fact that the enemy is making the same moves over and

over again.

Generated rooms and same characters

When presented with the procedural generated rooms,

players had a positive reaction and the direct observations

confirmed this. They were motivated to clear every room

and attack enemy soldiers in order to achieve victory. This

was confirmed by the time they spent with the game. They

didn’t want to leave the game as soon as the possibility

above. By having a different layout every time, they needed

to rethink their strategy in order to achieve victory which

opened various possibilities in gameplay terms. Their

verbal communication gave us positive results, with the

only complain that fully different tactical possibilities will

be achieved when different characters will be presented on

the screen. The verbal reports were positive

Generated rooms and multiple characters at the same
locations

 - 145 -

From a tactical point of view, multiple characters add to the

possibilities that can be employed, together with random

generated rooms. The main complaint we had here is the

fact that players needed a way to change the characters in

order to open up the variety of tactical possibilities that

these kind of games offer. The verbal reports continued to

be positive

Generated rooms and multiple characters at random
locations

Even though the players loved this combination, they stated

that the impact given by random characters at random

locations was not as big as the procedurally generated

rooms, in terms of their perception over the game world.

They knew what to expect from the game and they stated

that this part didn’t add too much to the fun factor and flow.

Generated rooms, multiple characters at random
locations and different grid dimensions

By employing different grid dimension, the length of the

games varied but still, players knew what to expect. This

meant that procedural generation content did not had too

much impact over the players and they stated this verbally.

This led us to the next phase where we compared each of

the iterations and drawing a line after where the procedural

generated content will not affect too much the experience of

the player.

Survey

After each iteration, the player was asked five questions for the

survey. The questions are:

- How interesting did you find this level?(1 not

interesting at all to 5 extremely interesting)

- Rank the following features: procedural generated

rooms, multiple characters, different map size,

random locations(1 most liked, 4 least liked)

- How much did you changed tactics according to

the level?(1 not at all, 5 changed my way of

playing)

- How distorted was your experience of time?(1 not

at all, 5 fully lost the notion of time)

- Rank the levels from a replayability point of

view(1 has the most replayability value, 5 has the

least replayability value)
The questions refer to the iterations presented above, unless

notified.

The most interesting level was the one with random

generated positions, multiple characters and procedurally

generated levels. This had all the variety that a gamer

would expect.

The procedurally generated rooms were the favorite feature

of the gamer and the reason for that is that by having a

different map every time, each player must think the

strategy different in order to win. This lead to an intense

thought process which kept the players entertained.

Surprisingly, the biggest change in tactics came from the

procedural generated rooms, not from the characters which

lead us to believe that this is the core procedural generated

content element that makes the difference.

The gamers related that they mostly lost the notion of time

on every level, except the first one which was extremely

boring. We specifically design that level in order to

approach incrementally the fun factor through different

iterations.

The biggest replayability value was the one with different

characters simply because the game had different start

positions with different characters and different rooms

generated each time. In this way, the tactical approaches

that the players would embrace will be different for each

game, leading to different playtime experience at each run.

Design experiments

Our design experiments method consisted in establishing

the hypothesis that procedural generation content can

enhance player experience up until a specific point, where

hand crafted content starts to take over. We used the

iterations we have built for this experiment together with

the testing methods presented above in order to confirm the

hypothesis. The immediate confirmation that we had was in

the verbal communication series where, through our

questions and the feedback given by the users, we could

assert that this hypothesis was confirmed. When the users

started to play the second iteration and they lost the sense of

time, we draw the conclusion that procedural generated

content helps with a lot with the content addition. When

they said that the impact on different characters was not as

big as the impact of procedural generated rooms, the

hypothesis was confirmed.

By comparing the iterations, one after another, we could see

where the line is being drawn. After procedural content was

added for the first time(in the second iteration), players

have a totally different notion of gameplay and they wanted

to play more. After characters were added, their gameplay

was enhanced from their tactical point of view. After

random positions were generated, they knew what to expect

so procedural content generation didn’t helped too much in

this case(as it was almost the same as before). At this point,

a different hand-crafted technique should be employed in

order to enhance the gameplay(like unique characters,

abilities or missions). By trying different dungeon maps, the

gameplay experience was enhanced but not with an impact

as before in the sense that the users knew what to expect

and this variation didn’t come up with a new gameplay

factor.

We gathered the results in the surveys and we observed that

for them, the procedural generated rooms with the same

characters and procedural generated rooms with different

 - 146 -

characters at random positions almost got the same score.

This means that the huge gap was made from the first

iteration to the second iteration where the procedural

generated content helps building a better player experience.

This third fact confirms the hypothesis.

Another major observation that should be drawn from the

rest of the survey answers is the way procedural generation

content should be used. The main difference between

procedural generation content and hand crafted content is

that hand crafted content has more soul and unicity, while

the procedural generated content can be repetitive

sometimes. By analyzing the rest of the survey answers we

can conclude that procedural generated maps have a very

big impact over the players . After we tried to add different

ways to generate data(like the position of the player or

different map dimension), the impact over the player was

almost the same. Games who implement very good a single

element which consist of procedural generated data have a

much higher rate of success than these who add multiple

techniques in order to add more content. This observation is

drawn from the first, third and fifth question of the survey,

in combination with the observations given to us by the

players.

CONCLUSION

Our research proved the fact that procedurally generated

content can enhance the player experience when used right.

There is a thin line between effectively using procedural

content generation in order to maximize gameplay

replayability and using procedural content generation and

not achieve any impact.

Different types of procedural content generation affect

different parts of gameplay: while procedural character

generation can emphasize the relationship of the player with

the world around him, procedural level generation can open

up different tactical possibilities and let the user learn the

game mechanics, not the levels. This will determine the

user to think more and to expand its way of thinking.

The experiments carried out support this fact and are a

strong basis of proving that procedural content generation

should be much more employed in games and used as a tool

by different developers, rather than taking their jobs.

As further work, we plan to experiment with different

objectives and gameplay mechanics and to see a way the

procedural generated content can enhance these

capabilities. Also, we can employ an artificial intelligence

in order to generate a level to see its impact over the player.

ACKNOWLEDGMENTS

This research has been carried out in the Computer

Graphics and Interactive Systems Laboratory (CGIS) of the

Computer Science Department, in The Technical University

of Cluj-Napoca.

REFERENCES

1. Togelius, Julian, et al. "What is procedural content

generation?: Mario on the borderline." Proceedings of

the 2nd international workshop on procedural content

generation in games. ACM, 2011.

2. Shaker, Noor, Julian Togelius, and Mark J. Nelson.

Procedural content generation in games. Springer

International Publishing, 2016.

3. Fyn, Amy F. "Sources: Encyclopedia of Video Games:

The Culture, Technology, and Art of Gaming."

Reference & User Services Quarterly 52.4 (2013): 353-

353.

4. Wittgenstein, Ludwig. "Philosophische Untersuchungen

I Philosophical investigations (GEM. Anscombe & R.

Reesh, Eds.,)." (1953).

5. Usability First: Usability Glossary: playability Archived

2009-10-18 at the Wayback Machine. -

http://www.usabilityfirst.com/glossary/term_657.txl

6. Shaker, Noor, et al. "Constructive generation methods

for dungeons and levels." Procedural Content

Generation in Games. Springer, Cham, 2016. 31-55.

7. 7 uses of procedural generation that all developers

should study(Available: May 2018) -

https://www.gamasutra.com/view/news/262869/7_uses_

of_procedural_generation_that_all_developers_should_s

tudy.php

8. Cognitive Flow: The Psychology of Great Game

Design(Available: May 2018) -

https://www.gamasutra.com/view/feature/166972/cognit

ive_flow_the_psychology_of_.php

9. Mike Ambinder March 2009. “Valve’s Approach to

Playtesting: The Application of Empiricism.” Game

Developer Conference

http://www.usabilityfirst.com/glossary/term_657.txl
https://web.archive.org/web/20091018082237/http:/www.usabilityfirst.com/glossary/term_657.txl
https://en.wikipedia.org/wiki/Wayback_Machine
http://www.usabilityfirst.com/glossary/term_657.txl
https://www.gamasutra.com/view/news/262869/7_uses_of_procedural_generation_that_all_developers_should_study.php
https://www.gamasutra.com/view/news/262869/7_uses_of_procedural_generation_that_all_developers_should_study.php
https://www.gamasutra.com/view/news/262869/7_uses_of_procedural_generation_that_all_developers_should_study.php
https://www.gamasutra.com/view/feature/166972/cognitive_flow_the_psychology_of_.php
https://www.gamasutra.com/view/feature/166972/cognitive_flow_the_psychology_of_.php

