
 - 5 -

Filter Application on Facial Features in a Smartphone App

Sofia Morar

Ovidius University of Constanta
124 Mamaia Bd., 900527

morarsofia@gmail.com

Elena Pelican

Ovidius University of Constanta
124 Mamaia Bd., 900527

epelican@univ-ovidius.ro

Dorin-Mircea Popovici

Ovidius University of Constanta
124 Mamaia Bd., 900527

dmpopovici@univ-ovidius.ro

ABSTRACT

Filter application on facial features is a rather new field and

it has quickly become essential in all the social network

applications. Fast and accurate filter application is still a

field to be explored. In this paper, an automatic application

of filters of different makeup products (lipstick and blush)

is developed on the facial features of interest (lips and

cheeks). Facial features are recognized and extracted with

the help of a Machine Learning API (Application

Programming Interface), Google Mobile Vision API. The

application of the filters is developed using Bezier curves

and the basic principles of graphics for the correct

rendering of layers. The application of the filters is

developed in an iOS App, with two functionalities,

application on a picture, as well as in real-time through the

phone’s camera, where we also use a Convolutional Neural

Network (CNN) in order to recognize the user’s face, which

introduces us into the field of Augmented Reality (AR) and

Deep Learning.

Author Keywords

Filter Application; Facial Features; Real-Time; Augmented

Reality; Bezier Curves; iOS; Convolutional Neural

Network (CNN); Image Classification; Deep Learning;

Network Architecture;

ACM Classification Keywords

H.5.m. Miscellaneous. H.5.1. Multimedia Information

Systems. D.4.7 Organization and Design; F.2.1. Numerical

Algorithm Problems; F.2.2. Nonnumerical and Algorithm

Problems; H.1.2. User/Machine Systems; I.5. Pattern

Recognition.

INTRODUCTION

Smartphone applications are becoming more popular

everyday, but due to the limited hardware and software

resources, they are harder to use for Machine Learning

development. In the last 5 years, the mobile application

industry has immensely developed creating different APIs,

IDEs, programming languages in order to enhance the

capabilities of smartphones.

Filter application on facial features is becoming mandatory

in every social networking smartphone app, but makeup

apps are still uncommon. In this work, we focus on creating

an easy to use app for every smartphone user.

To this end, we have focused on an existing and accessible

technology such as the iPhone 7. The proposed application

is compatible starting with the iPhone software iOS 8.0 up

until iOS 11.0. The devices that can be used on are both

iPhones and iPads. We chose the Apple devices because of

their performing cameras, and ultra-high video and photo

resolution. The program in which the application has been

developed is a specialized, OS X, iOS etc. application

oriented IDE, Xcode [4].

The benefits of such an application is that the user can

preview different products anytime, anywhere with a few

touches on the smartphone’s touchscreen.

The first contribution of this paper is the fast and cheap

facial feature detection deployment using an open-source

API: Google Mobile Vision [1]. Facial Feature detection is

a well-known problem in the Machine Learning field,

discussed in detail by Paul Viola and Michael J. Jones et al.

[5]. Unfortunately, the process of training the algorithm

with a dataset of thousands of pictures and then detecting

the facial features is a long process. In order to speed up the

process of detecting the human face, and the facial

landmarks afterwards, we have customized the facial

landmark detecting algorithm through the Google Mobile

Vision API.

The second contribution of this paper is to create the filters

and apply them on the features of interest. The filter

rendering [3] is developed using CoreAnimation and

CoreGraphics animation infrastructure (technologies

available for iOS and OS X devices) [6]. Functions using

Bezier curves are created in order to mimic the shape of

real-life makeup looks.

The third contribution of this paper is the introduction into

the augmented reality field. The Real-Time preview of the

filters is a revolutionary way to deliver information to the

user. The rendering of the filters using the frontal and/or

rear-view camera is a step into Augmented Reality (AR)

technology. Through this feature, the user can better

experience the makeup application on their facial features.

The fourth contribution of this paper is the implementation

of a Convolutional Neural Network (CNN) that recognizes

the face of the user, therefore diving into the Deep Learning

field.

The rest of this paper reviews the facial feature detection

API usage and construction; describes the filter application

process; outlines the implementation of a CNN that

recognizes the face of the user; introduces us into the AR

field; describes our experimental results; and concludes

with discussions.

 - 6 -

Figure 1: Structure of the application

RELATED WORKS

In this section we discuss related works from facial features

detection, makeup filter application and face recognition.

However the research topics mostly focus on PC

applications rather than smartphone applications.

The problem of facial features detection has been discussed

in detail in many works which found different approaches

to extracting the features. In (Priyanka et al. 2015),

Priyanka, et al. discuss different approaches for facial

recognition and classification, from PCA (Principal

component analysis) to the implementation of a neural

network. In (Wang et al. 2017), Wang et al. review over

250 papers regarding face feature extraction. Many

approaches are presented in their review, the use of CNNs

is listed as one of them. Another approach is the use of a

framework that includes components such as filtering,

encoding, spatial pooling and holistic representation.

Makeup filters have recently begun to draw attention in

pattern recognition and computer vision areas. In (Liu et al.

2013), Liu, et al. developed a Very-Deep CNN for makeup

analysis and application where the application analysis the

given face of the input picture and determines which

makeup look is better suited, after that it transfers the

chosen makeup look on the input face. In (Prasad, et al.

2014), Prasad et al. present an implementation of the

Luxand Face SDK for facial feature extraction and cream

makeup application in a web application. In (Wang, et al.

2014), Wang et al. propose a makeup detection and

remover framework using a low-rank dictionary algorithm.

Face recognition has been a fast growing and challenging

area in real time applications. A wide selection of methods

has been developed in the last decades. In (Bhele et al.

2012), Bhele et al. discuss various implementation methods

for face recognition. Algorithms such as PCA, LDA, ICA

and SVM are presented. However, these algorithms have

one faulty in common which is that they do not perform

well enough in real time preview. Therefore, the idea of

using a CNN is natural.

In comparison to the previously mentioned works, in this

paper we implement a free makeup filter rendering and

facial feature extraction method for a smartphone

application. We continue the idea of implementing a

convolutional neural network for the user recognition

feature.

RELATED APPLICATIONS

Many smartphone applications have been developing filter

application on facial features. The most popular application

is called Snapchat, and it has face tracking and feature

detection algorithms implemented. They use Delaunay

triangulation to extract the facial features and to modify

them (enlarge eyes, apply filters, modify the shape of the

lips, etc). Two other phone applications, which can be

installed on both Android and iOS operating systems are

YouCam Makeup from Perfect Corp. and MakeupPlus from

Xiamen Meitu Technology Co. Ltd. Both of these

applications use the Mood Me SDK in order to detect the

facial feature points and apply different makeup filters, on

pictures and in real time preview. The reason we did not opt

for the use of Mood Me SDK is because we have insisted

on discovering a free, open-source method for applying

makeup filters.

2. OUR IOS APPLICATION

The iOS application described in this paper presents the

following structure (Figure 1):

• The user selects the gallery mode, and the photo gallery

opens.

• The user selects a picture from the photo gallery and the

picture selected is loaded into the application’s interface.

• The application recognizes the faces and facial features.

• The facial feature points detected can be adjusted, if

desired.

• Makeup filters of different colors are applied, and the

intensity of the filters adjusted.

• The edited photograph is saved into the smartphone’s

photo gallery.

• If the real time preview is selected, the camera activates.

• The faces and the facial features in the camera preview

are detected.

• The user’s face is recognized.

• Makeup filters are rendered in real time.

 - 7 -

3. FACIAL FEATURE DETECTION

3.1 Google Mobile Vision API

Google released in 2015 an open-source Machine Learning

specialized API, part of the ML-Kit (Software Development

Kit) [7]. The API is easy to integrate in both iOS and

Android mobile applications. We have used the facial

features detection sub-package of the framework.

The first step that the API takes is to detect a face in the

image or in the live video feed. Xiangxin Zhu et al. [8]

proposed an algorithm through which they can detect the

face of a person in a real time environment. They base their

work on the Viola-Jones algorithm, OpenCV frontal,

Boosted frontal + profile face detector Z. Kalal et al. [9]

and DPM (Deformable Part Model).

The second step is to detect the facial features of interest

(lips and cheeks) as seen in Figure 2. Michel Valstar et al.

[10] proposed an algorithm to detect more facial points in

pictures than the Viola-Jones algorithm. They talk in their

paper about SVR (Support Vector Regressor) and Markov

Network implemented in order to create the BoRMaN

Algorithm for a more precise facial points prediction. The

Google Mobile Vision API has another specific feature: the

smile detection. Yu-Hao Huang et al. [11] speak about a

video-based solution for smile percentage detection. They

consider that the distance between the left and right corner

of the mouth plays an important role in the calculation of

the smile percentage.

Figure 2: Facial Feature Detection after Implementing the

Google Mobile Vision API and Top Lip Detection

3.2 Top Lip Detection

The Google Mobile Vision API detects only 4 points

around the mouth area: left corner, right corner, bottom

middle lip and the middle of the mouth. In order to properly

apply the lipstick filter we have to detect the top lips cupid

bow points.

The first step is to calculate the middle (Figure 3) of the

cupid bow in order to create the proper shape of the filter.

We use the bottom lip and the middle of the mouth points

detected by the API as reference. The point is calculated

with the symmetry formula. If the person in the picture is

smiling, we adjust the formula accordingly.

Figure 3: Graphic representation of the symmetry axis

Algorithm 3.1: Symmetry_point

 For the left and right part of the cupid bow we approximate

the values and add or subtract from the symmetry_point

variable, depending on the axis we are on Ox or Oy. The

results after implementing the algorithm in the application

can be seen in the Figure 2.

3.3 Adjustment of the Feature Points

In order to make the iOS application user-friendlier we

have implemented an option to adjust the facial feature

points in case the algorithm did not perfectly detect them.

 - 8 -

We have used the Euclidean Distance [12] to locate the

current point (the point where the user touches on the

touchscreen). If the distance is smaller than the set

minimum, the Euclidean distance becomes the new

minimum. The points can be moved by the user before the

makeup filters are applied (Figure 4) or after the makeup

filters are applied (Figure 5).

Algorithm 3.2: Facial Feature Points Adjustment

Figure 4: Adjustment of Facial Feature Points without filter

Figure 5: Adjustment of Facial Feature Points with filter

4. FILTER APPLICATION

4.1 Filters

Image editing has been in a continuous development in the

past years. The newest trend is the filter application feature,

recognizable in most social media and image editing

applications. However, makeup filters are still progressing

as they have not reached a true performance yet. In this

paper, we have found a solution for creating easy to apply

makeup filters to a picture and in real-time preview through

the phone camera. We use Bezier curves [2] to create the

filters and we apply them with the help of graphical layers

(CoreAnimation Framework [16]).

A Bezier curve is a parametric curve that uses the Bernstein

polynomials as a basis [13].

The coefficients are the control points, that among with

the function basis determine the shape of the curve.

Michael S. Floater talks in his paper [14] about different

types of Bezier curves and surfaces and how to apply them

with computer technology.

The makeup filters are based on different Bezier curves and

shapes created by the curves. We have created two different

filters: one for lips and another one for the cheeks.

4.2 Filter for Lips

For the application of the lipstick filter we use the cubic

Bezier curve. The cubic Bezier curve [15] has 4 points that

guide the curve it creates: start point, control point 1,

control point 2 and the endpoint. The distance between the

start point and the control point 1 shows “how long” the

curve moves into direction of the control point 1 before

turning toward the endpoint. We have created a Bezier

curve for the lower lip, using the left corner of the mouth as

the start point, the right corner of the mouth as the endpoint

and the control points formulas were adjusted with the

combinations between the left and right corner of the mouth

and the bottom of the mouth. The top lip can be created

with two methods: if the lip presents a more rounded shape

we use another cubic Bezier curve, or if the lip appears to

be more of a sharp shape we simply unite the feature points

of the lip (Figure 6).

Figure 6: Makeup Filter Application with/without Control

Points

 - 9 -

4.3 Filter for Cheeks

The filter for cheeks was created with Bezier curves based

on a primitive geometric shape (rectangle). The function

creates a new Bezier Path object initialized with an oval

shape inscribes in the specific rectangle. As control point

for the filter we use the left and right corner of the mouth

and the left and right ear feature points (the purple points as

seen in Figure 4). The “gradient” fade effect is created with

a loop which we apply to the opacity parameter (Figure 6).

5. USER RECOGNITION

Convolutional Neural Networks (CNNs) are becoming a

popular method to classify images [17]. In this paper, we

use CNNs in order to recognize the user’s face in the real

time filter rendering. After conducting different

implementation experiments of projection-like algorithms,

such as eigenfaces and tensor-like algorithms [30], we have

concluded that previous mentioned algorithms did not

obtain the desired results in the real time preview. We

chose the CNN implementation because this method

responds quickly and accurately in the real time preview.

5.1 Implementation Details

We have built and trained the CNN on a Macbook Pro

2014, 8GB 1600 MHz DDR3 Memory, 2.6 GHz Intel Core

i5 CPU, Intel Iris 1536 MB GPU. The CNN was created

using Tensorflow software [18] and Keras API [19]. The

deployment for iOS was made by converting the model [20]

and pickle [21] files with the Coremltools [22] Python

package that creates a trained machine learning model file

[23]. The implementation of the trained model into the iOS

application is made with the Core ML [24] Framework

(Machine Learning Apple Framework) and Vision [25]

(Image Classification Apple Framework).

5.2 Architecture

The first step was to build a dataset with pictures containing

the user’s face, and pictures that do not contain the user’s

face. We have created a dataset that contains five classes

with a total of 540 pictures, 102 if which contain the user’s

face, each with a representative subdirectory in order to

parse the labels easily. The pictures resolution varies from

303x280 to 1762x1868 pixels.

Karen Simonyan et al. propose a CNN architecture solution

for large-scale image recognition [26] that we have adapted

for our dataset. During training, the input to our Network is

a fixed-size 96x96 pixels with 3 channels (i.e. RGB). We

subtract the mean RBG value from each pixel from the

training set. We use 3x3 convolutional layers stacked on top

of each other in increasing depth. The image is passed

through the stack of layers, where we use filters to extract

the features from the image. The first CNN layer has 32

filters with a 3x3 kernel. Every new added layer doubles the

amount of filters it uses keeping the 3x3 kernel. All layers

use a ReLU, , activation function

(Kriehevsky et al., 2012). After that, we normalize the

batches in order to speed up the learning process. Batch

normalization process normalizes the output of a previous

activation layer, subtracts the batch mean and divides it by

a batch standard deviation. We use three spatial pooling

layers, one for each layer of the CNN, in order to

downsample the size of the image. By reducing the size of

the picture we allow the CNN to make assumptions about

features contained in the sub-regions binned. In the first

layer, Max-pooling is performed on a 3x3 pixel window

with a stride 3, whereas in the next two layers we decrease

the size, using 2x2 pixel windows with stride 2. We use the

dropout [27] function,

to randomly disconnect nodes from the current layer to the

next layer in order to naturally introduce redundancy into

the model. The fully-connected layer is specified with a

rectified linear unit activation and batch normalization.

Finally we use the softmax [28] function,

, to output the

probability distribution.

5.3 Training

The training of the CNN was made on the Macbook Pro’s

CPU. For resulting dataset we have decided to train 20

epochs (i.e. how many times our network “sees” each

training example and learns patterns from it). The batch size

we chose to use is 32 (the CNN is trained in image

batches). We chose the Adam optimizer to update the

network weights iterative based in training data, because of

its computational efficiency and little memory

requirements. The performance of the model was measured

with the cross-entropy classification loss function. We split

the dataset into 80% for training and 20% for testing. The

training took 20 minutes, approximately 60 seconds per

epoch. The accuracy value on the first epoch started with

0.6973 and by the last epoch grew to 0.9373, whereas the

loss value started with 1.1771 and decreased to 1.735 as

seen in Figure 7.

Figure 7: Training and Loss Accuracy

 - 10 -

5.4 Testing

We have decided to test the CNN on the Macbook before

converting it into an iOS app appropriate format. The

testing was made on different pictures of the user. Given a

trained CNN model and an input image, it is classified in

the following way. The first step is to pre-process the image

for classification. We resize the image to 96x96 pixels to fit

out network, we extract the RBG pixel values from the

image, and convert it into an array.

After the model and labels are loaded, the classification is

made. If the input image filename contains the predicted

label text, the result will be predicted as correct. Depending

on the background of the picture, the results varied: if the

picture was a close-up of the user’s face the results came

close to 100% as seen in the first picture in Figure 8,

otherwise the results were around the 90 percentile (Figure

9 and Figure 10).

Figure 8: Testing of the CNN on PC and iOS

5.5 Results

After finding an appropriate architecture for the given

dataset, and testing thoroughly the trained CNN model we

converted the model in order to integrate it into the iOS

application. The converter saves the network training

results and the labels accordingly. The iOS application

extracts the data from the trained model through the Core

ML and Vision frameworks. The user recognition in the

iOS application is made in a real time environment through

the smartphone’s front and back camera as seen in Figure 9

and in Figure 10. The results from the trained CNN varied

on computer and phone testing. The difference of results on

the phone are due to different external disturbing factors,

such as: hand trembling, light change, the movement of the

phone camera to and from the user’s face. Evenso, the

results were very good, even if the user was wearing glasses

as seen in the second picture of Figure 9.

Figure 9: Testing of the CNN on PC and iOS

Figure 10: Testing of the CNN on PC and iOS

CONCLUSIONS

We have proposed a novel method for finding facial feature

points calculated with the help of those created by the API

and for applying filters on an image and in real-time

preview. The filter application is based on graphical

rendering with algorithms which include Bezier curves

functions. The proposed method is sensitive to loaded

backgrounds in pictures and moderate variations in head.

The real-time filter application introduces us into the AR

filed and we propose on rendering more real-time accurate

filters. The user’s face recognition through a Convolutional

Neural Network based solution is a new way to personalize

the user’s preferences in the application.

Moreover, these preliminary results motivate us to extend

our efforts at other facial features as user’s eyes and eye

gaze, as natural interaction techniques with ubiquitous

systems.

ACKNOWLEDGMENTS

This work was supported by grant of the Romanian

Ministry of Research and Innovation, CCCDI – UEFISCDI,

project number PN-III-P1-1.2-PCCDI-2017-0917 / contract

no. 21PCCDI/2018, within PNCDI III.

 - 11 -

REFERENCES

1.Google Mobile Vision website:

https://developers.google.com/vision/ last visited May 29

2018.

2. Ha Jong Wong, Choe Chun Hwa, Li Kum Song. On the

mathematic modeling of non-parametric curves based on

Bézier curves. Eprint arXiv 1411.6365 (11/2014).

3. Peter Shirley, Michael Ashikhmin, Michael Gleicher,

Stephen R. Marschner, Erik Reinhard, Kelvin Sung,

William b. Thompson, Peter Willemsen. Fundamentals of

Computer Graphics. A K Peters Wllesey, Massachusetts.

4. Xcode website: https://developer.apple.com/xcode/ last

visited May 22 2018.

5. Michael Jones, Paul Viola. Fast Multi-View Face

Detection. Mitsubishi Electric Research Laboratories

Inc., 2003.

6. Core Graphics Framework Apple website:

https://developer.apple.com/documentation/coregraphics?

changes=_7 Last visited at May 24 2018.

7. ML-Kit website: https://developers.google.com/ml-kit/

last visited May 18 2018.

8. Xiangxin Zhu, Deva Ramanan. Face Detection, Pose

Estimation, and Landmark Localization in the Wild.

Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference.

9. Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted

sampling for large-scale boosting. In BMVC 2008.

10. Michel Valstar, Brais Martinez, Xavier Binefa. Facial

Point Detection using Boosted Regression and Graph

Models. Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference. 1063-6919.

11. Huang, Yu-Hao & Fuh, Chiou-Shann. (2018). Face

Detection and Smile Detection.

12.Dokmanic

Ivan, Parhizkar Reza, Ranieri Juri, Vetterli Martin.

Euclidean Distance Matrices: Essential theory,

algorithms, and applications. IEEE Signal Processing

Magazine, vol. 32, issue 6, pp. 12-30.

13. S. Barnett, Polynomials and Linear Control Systems,

Marcel Dekker, New York, USA, 1983.

14. Michael S. Floater. Bézier Curves and Surfaces.

http://www.mn.uio.no/math/english/people/aca/michaelf/

papers/bezier.pdf.

15. Khan, Khalid & Lobiyal, Daya & Kilicman, Adem.

(2015). Bezier curves and surfaces based on modified

Bernstein polynomials. CoRR, 2015, vol.1511.06594

16. Nick Lockwood .iOS Core Animatio: Advanced

Techniques. Addison-Wesley 2014.

17. M Hakeem Selamat, Helmi Md Rais, "Enhancement on

image face recognition using Hybrid Multiclass SVM

(HM-SVM)", Computer and Information Sciences

(ICCOINS) 2016 3rd International Conference on, pp.

424-429, 2016.

18. Tensorflow Software website:

https://www.tensorflow.org last visited May 30 2018.

19. Keras API website: https://keras.io last visited May 30

2018.

20. Python Model Documentation: http://scikit-

learn.org/stable/modules/model_persistence.html last

visited May 30 2018.

21. Python Pickle Documentation:

https://docs.python.org/2/library/pickle.html last visited

May 30 2018.

22. Coremltools Documentation:

https://pypi.org/project/coremltools/ last visited May 29

2018.

23. M. Zhang and Z. Zhou, "A Review on Multi-Label

Learning Algorithms," in IEEE Transactions on

Knowledge & Data Engineering, vol. 26, no. 8, pp. 1819-

1837, 2014.

24. Core ML Framework website:

https://developer.apple.com/documentation/coreml last

visited May 28 2018.

25. Vision Framework website:

https://developer.apple.com/documentation/vision last

visited May 28 2018.

26. Simonyan, K. & Zisserman, A. (2014). Very Deep

Convolutional Networks for Large-Scale Image

Recognition. CoRR, abs/1409.1556.

27. Pierre Baldi, Peter Sadowski. Artificial Intelligence

Volume 210, May 2014, pages 78-122. ISSN: 0004-3702.

Elsevier B.V.

28. Duan K., Keerthi S.S., Chu W., Shevade S.K., Poo

A.N. (2003) Multi-category Classification by Soft-Max

Combination of Binary Classifiers. In: Windeatt T.,

Roli F. (eds) Multiple Classifier Systems. MCS 2003.

Lecture Notes in Computer Science, vol 2709.

Springer, Berlin, Heidelberg.

29. R.L. Burden, J.D. Faires - Numerical Analysis, 9th

edition, Brooks/ Cole, 2011. 

30. Elena Pelican and Lăcrămioară Liță. Algoritmi

pentru recunoasterea fețelor, MatrixRom, Bucuresti,

2015.

https://developers.google.com/vision/
https://developer.apple.com/xcode/
https://developer.apple.com/documentation/coregraphics?changes=_7
https://developer.apple.com/documentation/coregraphics?changes=_7
https://developers.google.com/ml-kit/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6235193
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6235193
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5521876
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5521876
http://adsabs.harvard.edu/cgi-bin/author_form?author=Parhizkar,+R&fullauthor=Parhizkar,%20Reza&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Ranieri,+J&fullauthor=Ranieri,%20Juri&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Vetterli,+M&fullauthor=Vetterli,%20Martin&charset=UTF-8&db_key=PHY
http://www.mn.uio.no/math/english/people/aca/michaelf/papers/bezier.pdf
http://www.mn.uio.no/math/english/people/aca/michaelf/papers/bezier.pdf
https://www.tensorflow.org/
https://keras.io/
http://scikit-learn.org/stable/modules/model_persistence.html
http://scikit-learn.org/stable/modules/model_persistence.html
https://docs.python.org/2/library/pickle.html
https://pypi.org/project/coremltools/
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/vision

