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ABSTRACT 

Filter application on facial features is a rather new field and 

it has quickly become essential in all the social network 

applications. Fast and accurate filter application is still a 

field to be explored. In this paper, an automatic application 

of filters of different makeup products (lipstick and blush) 

is developed on the facial features of interest (lips and 

cheeks). Facial features are recognized and extracted with 

the help of a Machine Learning API (Application 

Programming Interface), Google Mobile Vision API. The 

application of the filters is developed using Bezier curves 

and the basic principles of graphics for the correct 

rendering of layers. The application of the filters is 

developed in an iOS App, with two functionalities, 

application on a picture, as well as in real-time through the 

phone’s camera, where we also use a Convolutional Neural 

Network (CNN) in order to recognize the user’s face, which 

introduces us into the field of Augmented Reality (AR) and 

Deep Learning.    
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INTRODUCTION 

Smartphone applications are becoming more popular 

everyday, but due to the limited hardware and software 

resources, they are harder to use for Machine Learning 

development. In the last 5 years, the mobile application 

industry has immensely developed creating different APIs, 

IDEs, programming languages in order to enhance the 

capabilities of smartphones.  

Filter application on facial features is becoming mandatory 

in every social networking smartphone app, but makeup 

apps are still uncommon. In this work, we focus on creating 

an easy to use app for every smartphone user.  

To this end, we have focused on an existing and accessible 

technology such as the iPhone 7. The proposed application 

is compatible starting with the iPhone software iOS 8.0 up 

until iOS 11.0. The devices that can be used on are both 

iPhones and iPads. We chose the Apple devices because of 

their performing cameras, and ultra-high video and photo 

resolution. The program in which the application has been 

developed is a specialized, OS X, iOS etc. application 

oriented IDE, Xcode [4].  

The benefits of such an application is that the user can 

preview different products anytime, anywhere with a few 

touches on the smartphone’s touchscreen. 

The first contribution of this paper is the fast and cheap 

facial feature detection deployment using an open-source 

API: Google Mobile Vision [1]. Facial Feature detection is 

a well-known problem in the Machine Learning field, 

discussed in detail by Paul Viola and Michael J. Jones et al. 

[5]. Unfortunately, the process of training the algorithm 

with a dataset of thousands of pictures and then detecting 

the facial features is a long process. In order to speed up the 

process of detecting the human face, and the facial 

landmarks afterwards, we have customized the facial 

landmark detecting algorithm through the Google Mobile 

Vision API.  

The second contribution of this paper is to create the filters 

and apply them on the features of interest. The filter 

rendering [3] is developed using CoreAnimation and 

CoreGraphics animation infrastructure (technologies 

available for iOS and OS X devices) [6].  Functions using 

Bezier curves are created in order to mimic the shape of 

real-life makeup looks.  

The third contribution of this paper is the introduction into 

the augmented reality field. The Real-Time preview of the 

filters is a revolutionary way to deliver information to the 

user. The rendering of the filters using the frontal and/or 

rear-view camera is a step into Augmented Reality (AR) 

technology. Through this feature, the user can better 

experience the makeup application on their facial features.  

The fourth contribution of this paper is the implementation 

of a Convolutional Neural Network (CNN) that recognizes 

the face of the user, therefore diving into the Deep Learning 

field. 

The rest of this paper reviews the facial feature detection 

API usage and construction; describes the filter application 

process; outlines the implementation of a CNN that 

recognizes the face of the user; introduces us into the AR 

field; describes our experimental results; and concludes 

with discussions.  



 - 6 - 

 

 

Figure 1:  Structure of the application 

RELATED WORKS 

In this section we discuss related works from facial features 

detection, makeup filter application and face recognition. 

However the research topics mostly focus on PC 

applications rather than smartphone applications.  

The problem of facial features detection has been discussed 

in detail in many works which found different approaches 

to extracting the features. In (Priyanka et al. 2015), 

Priyanka, et al. discuss different approaches for facial 

recognition and classification, from PCA (Principal 

component analysis) to the implementation of a neural 

network. In (Wang et al. 2017), Wang et al. review over 

250 papers regarding face feature extraction. Many 

approaches are presented in their review, the use of CNNs 

is listed as one of them. Another approach is the use of a 

framework that includes components such as filtering, 

encoding, spatial pooling and holistic representation. 

Makeup filters have recently begun to draw attention in 

pattern recognition and computer vision areas. In (Liu et al. 

2013), Liu, et al. developed a Very-Deep CNN for makeup 

analysis and application where the application analysis the 

given face of the input picture and determines which 

makeup look is better suited, after that it transfers the 

chosen makeup look on the input face. In (Prasad, et al. 

2014), Prasad et al. present an implementation of the 

Luxand Face SDK for facial feature extraction and cream 

makeup application in a web application. In (Wang, et al. 

2014), Wang et al. propose a makeup detection and 

remover framework using a low-rank dictionary algorithm.  

Face recognition has been a fast growing and challenging 

area in real time applications. A wide selection of methods 

has been developed in the last decades. In (Bhele et al. 

2012), Bhele et al. discuss various implementation methods 

for face recognition.  Algorithms such as PCA, LDA, ICA 

and SVM are presented. However, these algorithms have 

one faulty in common which is that they do not perform 

well enough in real time preview. Therefore, the idea of 

using a CNN is natural. 

In comparison to the previously mentioned works, in this 

paper we implement a free makeup filter rendering and 

facial feature extraction method for a smartphone 

application. We continue the idea of implementing a 

convolutional neural network for the user recognition 

feature. 

RELATED APPLICATIONS 

Many smartphone applications have been developing filter 

application on facial features. The most popular application 

is called Snapchat, and it has face tracking and feature 

detection algorithms implemented. They use Delaunay 

triangulation to extract the facial features and to modify 

them (enlarge eyes, apply filters, modify the shape of the 

lips, etc). Two other phone applications, which can be 

installed on both Android and iOS operating systems are 

YouCam Makeup from Perfect Corp. and MakeupPlus from 

Xiamen Meitu Technology Co. Ltd. Both of these 

applications use the Mood Me SDK in order to detect the 

facial feature points and apply different makeup filters, on 

pictures and in real time preview. The reason we did not opt 

for the use of Mood Me SDK is because we have insisted 

on discovering a free, open-source method for applying 

makeup filters.  

2. OUR IOS APPLICATION 

The iOS application described in this paper presents the 

following structure (Figure 1): 

• The user selects the gallery mode, and the photo gallery 

opens. 

• The user selects a picture from the photo gallery and the 

picture selected is loaded into the application’s interface.  

• The application recognizes the faces and facial features. 

• The facial feature points detected can be adjusted, if 

desired. 

• Makeup filters of different colors are applied, and the 

intensity of the filters adjusted. 

• The edited photograph is saved into the smartphone’s 

photo gallery. 

• If the real time preview is selected, the camera activates. 

• The faces and the facial features in the camera preview 

are detected. 

• The user’s face is recognized.  

• Makeup filters are rendered in real time. 



 - 7 - 

 
3. FACIAL FEATURE DETECTION 

3.1 Google Mobile Vision API 

Google released in 2015 an open-source Machine Learning 

specialized API, part of the ML-Kit (Software Development 

Kit) [7]. The API is easy to integrate in both iOS and 

Android mobile applications. We have used the facial 

features detection sub-package of the framework.  

The first step that the API takes is to detect a face in the 

image or in the live video feed. Xiangxin Zhu et al. [8] 

proposed an algorithm through which they can detect the 

face of a person in a real time environment. They base their 

work on the Viola-Jones algorithm, OpenCV frontal, 

Boosted frontal + profile face detector Z. Kalal et al. [9] 

and DPM (Deformable Part Model).  

The second step is to detect the facial features of interest 

(lips and cheeks) as seen in Figure 2. Michel Valstar et al. 

[10] proposed an algorithm to detect more facial points in 

pictures than the Viola-Jones algorithm. They talk in their 

paper about SVR (Support Vector Regressor) and Markov 

Network implemented in order to create the BoRMaN 

Algorithm for a more precise facial points prediction.  The 

Google Mobile Vision API has another specific feature: the 

smile detection. Yu-Hao Huang et al. [11] speak about a 

video-based solution for smile percentage detection. They 

consider that the distance between the left and right corner 

of the mouth plays an important role in the calculation of 

the smile percentage.  

 

Figure 2: Facial Feature Detection after Implementing the 

Google Mobile Vision API and Top Lip Detection 

3.2 Top Lip Detection 

The Google Mobile Vision API detects only 4 points 

around the mouth area: left corner, right corner, bottom 

middle lip and the middle of the mouth. In order to properly 

apply the lipstick filter we have to detect the top lips cupid 

bow points.  

The first step is to calculate the middle (Figure 3) of the 

cupid bow in order to create the proper shape of the filter. 

We use the bottom lip and the middle of the mouth points 

detected by the API as reference. The point is calculated 

with the symmetry formula.  If the person in the picture is 

smiling, we adjust the formula accordingly.  

 

 

 

 

 

Figure 3: Graphic representation of the symmetry axis 

Algorithm 3.1: Symmetry_point  

 

 

 

 For the left and right part of the cupid bow we approximate 

the values and add or subtract from the symmetry_point 

variable, depending on the axis we are on Ox or Oy. The 

results after implementing the algorithm in the application 

can be seen in the Figure 2. 

3.3 Adjustment of the Feature Points  

In order to make the iOS application user-friendlier we 

have implemented an option to adjust the facial feature 

points in case the algorithm did not perfectly detect them. 
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We have used the Euclidean Distance [12] to locate the 

current point (the point where the user touches on the 

touchscreen). If the distance is smaller than the set 

minimum, the Euclidean distance becomes the new 

minimum. The points can be moved by the user before the 

makeup filters are applied (Figure 4) or after the makeup 

filters are applied (Figure 5).   

Algorithm 3.2: Facial Feature Points Adjustment 

 

 

 

 

 

Figure 4: Adjustment of Facial Feature Points without filter 

 

 

Figure 5: Adjustment of Facial Feature Points with filter 

4. FILTER APPLICATION 

4.1 Filters 

Image editing has been in a continuous development in the 

past years. The newest trend is the filter application feature, 

recognizable in most social media and image editing 

applications. However, makeup filters are still progressing 

as they have not reached a true performance yet. In this 

paper, we have found a solution for creating easy to apply 

makeup filters to a picture and in real-time preview through 

the phone camera. We use Bezier curves [2] to create the 

filters and we apply them with the help of graphical layers 

(CoreAnimation Framework [16]). 

A Bezier curve is a parametric curve that uses the Bernstein 

polynomials as a basis [13].  

 

The  coefficients are the control points, that among with 

the function basis  determine the shape of the curve. 

Michael S. Floater talks in his paper [14] about different 

types of Bezier curves and surfaces and how to apply them 

with computer technology. 

The makeup filters are based on different Bezier curves and 

shapes created by the curves. We have created two different 

filters: one for lips and another one for the cheeks.  

4.2 Filter for Lips 

For the application of the lipstick filter we use the cubic 

Bezier curve. The cubic Bezier curve [15] has 4 points that 

guide the curve it creates: start point, control point 1, 

control point 2 and the endpoint. The distance between the 

start point and the control point 1 shows “how long” the 

curve moves into direction of the control point 1 before 

turning toward the endpoint. We have created a Bezier 

curve for the lower lip, using the left corner of the mouth as 

the start point, the right corner of the mouth as the endpoint 

and the control points formulas were adjusted with the 

combinations between the left and right corner of the mouth 

and the bottom of the mouth. The top lip can be created 

with two methods: if the lip presents a more rounded shape 

we use another cubic Bezier curve, or if the lip appears to 

be more of a sharp shape we simply unite the feature points 

of the lip (Figure 6). 

 

Figure 6: Makeup Filter Application with/without Control 

Points 
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4.3 Filter for Cheeks 

The filter for cheeks was created with Bezier curves based 

on a primitive geometric shape (rectangle). The function 

creates a new Bezier Path object initialized with an oval 

shape inscribes in the specific rectangle. As control point 

for the filter we use the left and right corner of the mouth 

and the left and right ear feature points (the purple points as 

seen in Figure 4). The “gradient” fade effect is created with 

a loop which we apply to the opacity parameter (Figure 6). 

5. USER RECOGNITION 

Convolutional Neural Networks (CNNs) are becoming a 

popular method to classify images [17]. In this paper, we 

use CNNs in order to recognize the user’s face in the real 

time filter rendering. After conducting different 

implementation experiments of projection-like algorithms, 

such as eigenfaces and tensor-like algorithms [30], we have 

concluded that previous mentioned algorithms did not 

obtain the desired results in the real time preview. We 

chose the CNN implementation because this method 

responds quickly and accurately in the real time preview. 

5.1 Implementation Details 

We have built and trained the CNN on a Macbook Pro 

2014, 8GB 1600 MHz DDR3 Memory, 2.6 GHz Intel Core 

i5 CPU, Intel Iris 1536 MB GPU. The CNN was created 

using Tensorflow software [18] and Keras API [19]. The 

deployment for iOS was made by converting the model [20] 

and pickle [21] files with the Coremltools [22] Python 

package that creates a trained machine learning model file 

[23]. The implementation of the trained model into the iOS 

application is made with the Core ML [24] Framework 

(Machine Learning Apple Framework) and Vision [25] 

(Image Classification Apple Framework).  

5.2 Architecture 

The first step was to build a dataset with pictures containing 

the user’s face, and pictures that do not contain the user’s 

face. We have created a dataset that contains five classes 

with a total of 540 pictures, 102 if which contain the user’s 

face, each with a representative subdirectory in order to 

parse the labels easily. The pictures resolution varies from 

303x280 to 1762x1868 pixels. 

Karen Simonyan et al. propose a CNN architecture solution 

for large-scale image recognition [26] that we have adapted 

for our dataset. During training, the input to our Network is 

a fixed-size 96x96 pixels with 3 channels (i.e. RGB). We 

subtract the mean RBG value from each pixel from the 

training set. We use 3x3 convolutional layers stacked on top 

of each other in increasing depth. The image is passed 

through the stack of layers, where we use filters to extract 

the features from the image. The first CNN layer has 32 

filters with a 3x3 kernel. Every new added layer doubles the 

amount of filters it uses keeping the 3x3 kernel. All layers 

use a ReLU, , activation function 

(Kriehevsky et al., 2012). After that, we normalize the 

batches in order to speed up the learning process. Batch 

normalization process normalizes the output of a previous 

activation layer, subtracts the batch mean and divides it by 

a batch standard deviation. We use three spatial pooling 

layers, one for each layer of the CNN, in order to 

downsample the size of the image. By reducing the size of 

the picture we allow the CNN to make assumptions about 

features contained in the sub-regions binned. In the first 

layer, Max-pooling is performed on a 3x3 pixel window 

with a stride 3, whereas in the next two layers we decrease 

the size, using 2x2 pixel windows with stride 2. We use the 

dropout [27]  function, 

to randomly disconnect nodes from the current layer to the 

next layer in order to naturally introduce redundancy into 

the model. The fully-connected layer is specified with a 

rectified linear unit activation and batch normalization. 

Finally we use the softmax [28] function, 

, to output the 

probability distribution. 

5.3 Training  

The training of the CNN was made on the Macbook Pro’s 

CPU. For resulting dataset we have decided to train 20 

epochs (i.e. how many times our network “sees” each 

training example and learns patterns from it). The batch size 

we chose to use is 32 (the CNN is trained in image 

batches). We chose the Adam optimizer to update the 

network weights iterative based in training data, because of 

its computational efficiency and little memory 

requirements. The performance of the model was measured 

with the cross-entropy classification loss function. We split 

the dataset into 80% for training and 20% for testing. The 

training took 20 minutes, approximately 60 seconds per 

epoch. The accuracy value on the first epoch started with 

0.6973 and by the last epoch grew to 0.9373, whereas the 

loss value started with 1.1771 and decreased to 1.735 as 

seen in Figure 7. 

 

Figure 7: Training and Loss Accuracy  
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5.4 Testing 

We have decided to test the CNN on the Macbook before 

converting it into an iOS app appropriate format. The 

testing was made on different pictures of the user. Given a 

trained CNN model and an input image, it is classified in 

the following way. The first step is to pre-process the image 

for classification. We resize the image to 96x96 pixels to fit 

out network, we extract the RBG pixel values from the 

image, and convert it into an array.  

After the model and labels are loaded, the classification is 

made. If the input image filename contains the predicted 

label text, the result will be predicted as correct. Depending 

on the background of the picture, the results varied: if the 

picture was a close-up of the user’s face the results came 

close to 100% as seen in the first picture in Figure 8, 

otherwise the results were around the 90 percentile (Figure 

9 and Figure 10). 

 

Figure 8: Testing of the CNN on PC and iOS  

5.5 Results 

After finding an appropriate architecture for the given 

dataset, and testing thoroughly the trained CNN model we 

converted the model in order to integrate it into the iOS 

application. The converter saves the network training 

results and the labels accordingly. The iOS application 

extracts the data from the trained model through the Core 

ML and Vision frameworks. The user recognition in the 

iOS application is made in a real time environment through 

the smartphone’s front and back camera as seen in Figure 9 

and in Figure 10. The results from the trained CNN varied 

on computer and phone testing. The difference of results on 

the phone are due to different external disturbing factors, 

such as: hand trembling, light change, the movement of the 

phone camera to and from the user’s face. Evenso, the 

results were very good, even if the user was wearing glasses 

as seen in the second picture of Figure 9.  

 

Figure 9: Testing of the CNN on PC and iOS 

 

Figure 10: Testing of the CNN on PC and iOS 

CONCLUSIONS  

We have proposed a novel method for finding facial feature 

points calculated with the help of those created by the API 

and for applying filters on an image and in real-time 

preview. The filter application is based on graphical 

rendering with algorithms which include Bezier curves 

functions. The proposed method is sensitive to loaded 

backgrounds in pictures and moderate variations in head. 

The real-time filter application introduces us into the AR 

filed and we propose on rendering more real-time accurate 

filters. The user’s face recognition through a Convolutional 

Neural Network based solution is a new way to personalize 

the user’s preferences in the application. 

Moreover, these preliminary results motivate us to extend 

our efforts at other facial features as user’s eyes and eye 

gaze, as natural interaction techniques with ubiquitous 

systems. 
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