
 - 127 -

Experiments on Computer Game Development
Methodology

Andrei Gabriel Morar

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

andreigabrielmorar@gmail.com

Dorian Gorgan

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

dorian.gorgan@cs.utcluj.ro

ABSTRACT

This paper describes the methodology of creating an

interactive computer game. It analyzes the necessary phases

by which the functional and non-functional requirements

related to a computer game are transformed into a final

product. The presentation of the game development

methodology is based on YAMS interactive multiplayer

dice game. The description of each development phase

includes both different implementation ideas for some

features and changes based on the objective analysis of the

previous phase.

Author Keywords

Interactive Games; Unity; Development Methodology.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

General Terms

Human Factors; Design; Methodology.

INTRODUCTION

Interactive games have experienced a significant evolution

in the themes and interaction models, due to the evolution

of graphics and generally the high processing and storage

capacity of the devices that such applications can run.

Game scenarios are often complex, and the objects scene

can easily simulate the real environment. However,

although the complexity of the games has increased

significantly, certain user experience requirements have to

be respected in order for the game to reach its goal, namely

to attract and maintain as many users as possible [1].

Also, the development of a game requires that specialists in

areas such as computer science, art, media design and

business work together on the same goal. This means they

need a common methodology to guide them. They need to

identify very clearly the development phases of such a

project and understand the requirements that video games

must meet in order to be able to have real success on the

market.

In the development process of a game, it is important to

always make a parallel between the complexity of the

functionalities and the usability degree of the application. A

game creation methodology aims to ensure the dependence

of these two steps at every stage of development, regardless

of the platform the game is addressed to (PC, gaming

console, mobile phone).

Usability is a highly important component that should be

considered in all the methodology steps of development.

According to [2], usability is the extent to which a specific

set of users manage to use a particular product to achieve

specific goals, thereby guaranteeing the user a high level of

efficiency, effectiveness and satisfaction.

Efficiency refers to the ratio between the amount of

resources required to perform a task by the system and the

extent to which users are able to accomplish their purpose

through those actions. Effectivness refferes at the accuracy

of certain tasks which are performed by users. Satisfaction

is the degree of comfort and acceptance that users

experience using the product, which is a subjective

measure, often difficult to predict.

The purpose of this paper is to present a methodology for

developing video games and to prove the importance of

using it. This article proves the benefits of using an iterative

game development methodology. The main goal of this

article is to explain and exemplify the cyclical steps of a

complete development methodology that begins from

general specification of a game theme and results in a

finished product that meets high usability standards.

In the next chapter of this paper there are presented the

main steps necessary for a game development methodology,

along with the advantages of using an iterative method of

implementing the steps. The general phases that make up

the methodology are described too.

In the chapter "Experimentation of the Development

Methodology" there are given relevant examples from the

development process of the YAMS game. It will show the

advantages that the methodology has brought in the

composition of the game scenarios and in establishing the

interaction between the users and the game.

The "Methodology Evaluation" chapter describes a process

for evaluating the quality of the methodology used for game

implementation. There are presented the main

improvements that this methodology has brought to the

development of the game.

 - 128 -

The last chapter will contain various relevant conclusions

related to the process described in the game development

methodology.

Related works

The description of a complete methodology for developing

interactive games is described in [3]. The paper outlines the

importance of a unified methodology through which a team

of specialists from different fields can collaborate to carry

out a joint project. This article introduces the creation of a

series of educational games called "Candy Depot" designed

to help general education students to improve their

knowledge base in various chapters of mathematics. The

article presents the benefits of using a methodology to

simplify the interaction between target audience (general

school students) and application functionalities. In the

article, it was noted that the complexity of the development

process was reduced in the case of the first version of the

"Candy Depot" game for which a development

methodology was used. The article also presents decisions

to improve the development methodology, based on the

analysis of the interaction between the first versions of the

application and the users.

About YAMS

YAMS is a multiplayer dice game. It is divided into rounds

and in one round each player is entitled to three consecutive

throws of the dice[4] . Five dice are used for the game and

their throws aim at creating a game configuration. The

configurations are predefined and represent different

combinations of dice that result from their discarding:

simple, full, four-card, five-of-a-kind (similar to the

different categories found in the poker game). If a player

makes a valid configuration, then the predefined score for

that configuration is passed to a score table. Otherwise, the

player chooses another category that is marked with 0

points. The game is finished when all the rounds have been

exhausted (there are no categories to be dotted). The player

who scores the maximum is declared winner.

GAME DEVELOPMENT METHODOLOGY

According to [5], the development of any game must take

into account the following major phases: pre-production,

production, and post-production.

The pre-production phase includes the deciding process of

the main scenarios and task which would be used by the

players in order to accomplish the application required

functionalities. On the business side of the project, it may

include requirements for marketing strategies.

The production phase involves the actual implementation of

the game. As long as the main functionalities has already

been established, this phase is centered on the

implementation of the scenarios directly into the game

scenes, along with sound and graphics. This stage involves

planning decisions (establishing methods for interacting

between objects in game scenes, the flow of certain

operations that make up a scenario, decisions about user

interaction with the game).

The post-production phase involves testing, marketing, and

game advertising. In this last phase, a usability validation of

the implementations from the previous phase is done. This

ensures that the game meets the originally set requirements

and at the same time can be marketed to the target audience

(checking compatibility of the game with the notion of

usability).

The three main phases described above aim to transform

game requirements into an implementation that focuses on

game scenarios and can be accepted by a final user. The

process focuses on getting the correct gaming scenarios,

detailing their implementation in various objects scenes and

checking them to find out the impact that the game may

have on the market.

The development of an interactive game with a high level

of complexity encounters various problems when it comes

to implementing the phases described earlier through a

classic abstraction. The use of the Waterfall model [6] is

inappropriate because it requires explicit assessment of the

requirements and then they are solved in the following

stages (production and post-production) through clear and

preset procedures. Scenarios can change as game

developers receive feedback from test users. Also, some

details about the interaction between objects can be

adapted, so a more appropriate method in developing an

interactive game is proven to be one that accepts regular

changes in planning and development.

Agile development methods [7] are more suited to game

development as it allows changing pre-production

specifications. As during production, it can be concluded

that certain tasks or scenarios are planned inefficiently,

agile allows for an initial version that can sustain further

developments in an iterative way. Designing and solving

certain implementation details (graphical, functional,

interaction details between the user and the application) can

be included in the iterative modification process. The

feedback received from test users is otherwise much easier

to be integrated into the production process of the game.

This method relies on the idea that scenarios, tasks and

details of object scenes can be planned, implemented and

tested in incremental cycles. Pre-production does not define

a complete version of the game to be implemented at

production level and later tested in post-production. Agile

development methods are better suited to the need adaptive

games (to the usability requirements).

The methodology I chose to use in implementing YAMS is

based on an incremental development of the game, based on

a set of initial requirements that have been set according to

the rules of the game. The phases of the methodology are

based on the three principal stages: pre-production,

production and post-production. The development system

chosen for the YAMS game, however, divides development

 - 129 -

cycle of the project into a larger number of phases,

including: establishing the main theme and initial

requirements (pre-production), developing tasks and game

scenarios, designing scenes and interaction techniques,

development of interaction and control algorithms

(production), heuristic evaluation of the game (post-

production). Each of the production and post-production

phases begin with a feedback received from a group of

evaluators who analyze the previous scene and write

recomandations about the implementation details that

should be redesigned or totally changed in a future iteration

cycle. This is a very important step in every phase and

should not be neglected in order to ensure a high degree of

usability for the game.

Establishing the main theme and initial requirements

The first phase focuses on determining the main theme of

the game and what are the fundamental requirements that

the application needs to focus on. This is important because

the main part of the implementation will derive from this.

Even though the details of planning and implementation can

change in a cyclical way, erroneous setting of basic

requirements will result in an application that is

inconclusive to the idea of the game. From this stage, it is

determined whether the game creation project is feasible,

and it contains the requirements that the final application

must meet. Also this describes the target audience of the

game, so developers take into account the user profile when

setting interaction methods. Requirements do not have to

cover all the gameplay from the beginning but must clearly

define the main functionalities that users should be able to

find in the game. Also, details about the device

specifications on which the game is running, how users can

use the application (single player, multiplayer) are set in

this phase. For a successful ending of this phase the team

that plans and develops the game needs to understand the

rules of the game. Determining the main requirements

derives to a great extent from these rules.

Developing tasks and game scenarios

In the previous phase, a set of main requirements and

certain details related to the typology of the target audience

of the application have already been established. This can

determine some of the actions that game users should be

able to access in a first release. The game's operating rules

and set of requirements established in the first stage serve

as input for this phase. It is advisable to start this phase

directly with checking the previous one. The team planning

the basic tasks and scenarios must have a set of initial

requirements that cover the rules set for that game. In other

words, the description of the game from the first phase must

be found in the set of requirements, otherwise the tasks and

scenarios required for a first version can't be fully

accomplished. It is not necessary for the first phase to fully

describe the game (changes may be made along the way,

depending on the feedback received from test users), but the

specifications in the initial description must be fully

covered. This requires that users who validate the first

phase verify the extent to which the initial requirements

cover the description of the game. In case of

incompatibilities or incomplete description, some aspects of

the first phase need to be restored (or clarified) before the

planning and development team can move to the second

phase.

The tasks set up at this stage are simple actions. A set of

tasks which are performed into a certain order compose a

scenario. A task is usually lead to the execution of a simple

command (clicking, pressing a button or a group of buttons

that performs an indivisible action). An action associated to

a task cannot be split into sub-actions. These tasks must

cover the needs indicated by the set of initial requirements.

The set of tasks resulting from this phase allows the

creation of scenarios that cover the description of the game

from the previous stage. The task description should also

specify the interaction between the user and the system. It

must be specified which commands should be accessed by

the user (and in what order, if there are several) to execute

the action associated with the task. It will also be specified

whether the task execution will generate a particular

response from the system (a text message displayed on the

screen, a particular sound).

During the iterations of this phase, it is highly

recommended to create a prototyping of the scenes in which

scenarios based on tasks will be developed. The prototype

does not need to be very precise, its purpose being to help

developers more easily understand the context in which

certain game features will unfold. By making a prototype it

can be much easier to find out which tasks are to be

performed for each scenario and especially what would be

their logical execution order.

As soon as we have a set of basic tasks and a prototype of

the game scenes (at least the main scene of the game), it is

possible to create scenarios that satisfy the functional

requirements of the application. Scenarios will step-by-step

describe how a user can interact with certain objects in the

object scene. This objects should be present in the

prototype, even though their design and specifications will

be highly different. Also, the series of actions the user will

execute (or that will notice as being executed by the

system) will be represented as a set of tasks, in the logical

order of their execution.

The interaction metaphors should be chosen in such a way

that the development of a scenario is intuitive and similar to

certain actions of the same type that the user knows from

everyday life. A scenario should be divided into tasks in

such a way that the logic of execution is intuited by the

user, even if that user is not experienced enough. Scenarios

of high complexity are usually easier to be understood

when the tasks of which they are composed of sub-

scenarios groups, divided by a certain element of the scene.

Thus, adding intermediate objects to the prototyping of the

game scene can help reduce the complexity of some

 - 130 -

scenarios (the first sub-scenario will result in a set of simple

actions performed over some objects from the scene which

eventually interact with the link object, while the second

sub-scenario will take place through tasks which act

directly on that object).

Designing scenes and interaction techniques

It's important to determine from how many scenes the game

will be composed. Their number may vary depending on

the platform for which the game is designed, but the

complexity of the game and the number of game-related

options contribute decisively to this detail. Typically,

games are designed in such a way that the user has a first

contact with the options the application offers. The easiest

way to do this is by creating a menu for the users to

understand what the general options are (how to access the

actual game scene, how to change the settings in order to

gain a better playing experience, how to see details related

to the rules of the game or how to access the history of the

user's results in the game).

The main scene of the game must be built in such a way

that the end user of the application can identify in an

intuitive manner what are the objects needed to perform the

specific actions related to the game theme. A user must also

be able to understand which are interacting metaphors used

to control those objects. The first decisions related to the

creation of a scene are centered on establishing an

environment in which the scenarios described in the

previous stage can be implemented as easily as possible.

The details linked to the graphic design of the objects in the

scene are a little less important for the first iterations of this

phase. The accent at first should be put on creating objects

that can be placed and interact with other objects in such a

manner that the scenarios can be easily implemented.

Also, in the construction process of the objects scene, it will

be taken into account the freedom of movement degree that

must be assigned to the user. There are applications in

which the user can move freely across the entire surface of

the object scene, while other applications restrict the user to

a limited number of movements. This is determined by the

degree of user involvement in the scenarios that make up

the application. If the user interacts with many dynamic

objects whose position in the scene varies in a way that is

not entirely controlled by the application, then the user's

mobility degree must be high. If the user can control

interaction with various objects in the scene through

minimal commands, accessible regardless of the position of

objects in the scene, then the user's position can be fixed.

Some of the objects that make up the scene are static

objects, keeping a fixed position throughout the game.

Objects whose position can be modified are dynamic

objects, and for these, a logic of interaction must be defined

in order to understand how their movement or state is

influenced by situations in which they are manipulated by

the users or situations in which they interact with other

objects in the scene. It is important for dynamic objects to

establish certain additional properties (collision, weight,

specification of translation and rotation of objects when

interacting with other objects), depending on the

possibilities offered by the program through which the

game is created. Also, for objects whose status can be

modified, it is necessary to define the set of controls (mouse

clicks, keyboard buttons, joysticks buttons) through which

the user gets to manipulate the objects. This set of controls

is attributed to certain functionalities that can be equated

with the tasks previously defined in the second phase of the

game development methodology. In practice, users interact

with the objects in the scene through the set of controls

defined in this phase, and the result of the interaction is

represented by a previously set task. A sum of this tasks

allow the user to perform a certain scenario in which are

involved one or more of the objects created in this phase.

The process of assigning certain controls to the objects in

the scene is done based on the tasks that are performed on

the objects in question. Their definition allows game

developers to create the logical implementation on which

different aspects of the game are decided. Techniques of

interaction between the user and the objects in the scene

allow the game development team to manage the input the

game receives from the user and develop various complex

algorithms to manage the evolution of the game as the user

performs various tasks.

The feedback received from the testing group that has

verified the tasks and scenarios described in the previous

phase should be taken into account before creating any of

the scene's objects. If the scenarios are inconsistent, a

mistake has probably been made in understanding the

requirements of the first phase, or the prototyping on which

the scenarios were set did not take into account the main

flow that the game must follow. In such situations, certain

scene objects created at this stage may not involve the

necessary functionalities of the game and thus reach a

situation in which they can not be used.

The scenes made at this stage may need to be modified in

the following iterations and the probability that their

condition will remain unchanged throughout the

development cycles is very small. However, objects that

can be used very easily (minimum interaction) and that

match the theme of the game (can be used in many of the

game's scenarios) are more likely to remain in the game

scene. It is understandable that advanced customization

(complex graphic design) of objects recently added to the

scene is not recommended because their state is due to be

changed during the next few iterations.

Development of interaction and controll algorithms

At this stage, it is assumed that there is already a scene

containing the objects necessary for the scenarios described

so far. Also, the basic methods for object control (setting

controls) have already been done at the previous stage, and

 - 131 -

so the tasks defined so far for the game can be applied to

various objects in the scene. This phase consists in

achieving the complex logic of interaction. Interaction

between objects and various actions made by the user

generally have various direct effects on the game scene.

This phase contains algorithms that define complex

movements of certain objects in the scene. This movements

are usually triggered by the users but controlled by the

application. This phase also contains the answer that the

game returns to the user when it tries to act a certain

command. It is very important to keep in mind that the

users need feedback from the system to understand if the

actions they are doing are good. This feedback can come in

various forms: displaying warning / error messages,

emitting various sounds, changing the status of objects that

the user has directly acted, changing the scene or even

ending the game.

This phase must include the control logic of the scene

(developers should implement some details planned during

some of the previous phases): limit the user's posibility to

move outside the scene, strategy of generating special

motion effects for certain objects (to increase the visual

effect in the case a specific task is performed on a particular

object), implementing a control logic to allow game objects

to return to a previous state in the event of non-

concordance. As well, this phase defines the management

techniques used to controll the whole flow of the game

(how to move from one scenario to another, how to

measure the scores, how to skip certain steps, how the game

manages certain actions / scenarios which are incompletely

executed).

Heuristic evaluation of the game

This phase is very important because it checks the usability

level of the game version obtained at the end of each

iteration of planning and development. This methodology

uses the heuristic evaluation model proposed by Jakob

Nielsen. The reason why this evaluation method is so

popular is the fact that Jakob Nielsen's set of rules is easy to

use, detects many of the common usability issues and

requires low costs. The method is composed of a set of ten

general rules.[8]

The first rule assumes that the status of the game should be

available any time.

The second rule refers to the need for a correspondence

between the real world and the virtual world of the game.

The third rule refers to the level of control and freedom that

the user has in the game.

The fourth heuristic states that there must be certain

standards in the game that are respected in a consistent

manner.

The fifth rule claims that errors should be prevented and

treated so that the user has a pleasant experience.

The sixth rule specifies that the application should be

intuitive so that the user does not have to memorize it.

The seventh rule assumes that the application can be easy

and flexible in use.

The eighth rule says designing should be simple and

aesthetic

the ninth heuristic implies that the user must be able to

identify error states and be helped to recover from them.

The last rule assumes that the application is accompanied

by a help menu and an explicit documentation

EXPERIMENTATION OF THE DEVELOPMENT
METHODOLOGY

YAMS theme and requirements

YAMS has been developed with the help of Unity

technology. This allows the creation of interactive scenes.

Objects composing the scene can be customized by adding

textures for graphic design, adding collisions for interaction

management, and adding scripts written in C # language to

control their movement and state.

The first development phase of the YAMS game began

with the clear definition of the theme of the game.

Subsequently, the general rules of the game were taken

over. The understanding of these rules identified the main

requirements. These requirements include: creating an

arena containing the dice as objects of central interest,

creating a score table on which dice configurations can be

marked, allowing individual dice to be manipulated by the

user, creates a method by which the dice selected can be

mixed and discarded separately from the dice that the user

did not want to select.

It was also inferred from the regulation that the game must

be able to be played in multiplayer mode. The target

audience of the game is formed by people of all ages (the

rules of the game are easely understood). It is thus inferred

that the application must be implemented in such a way that

it can interact with very different age users (common,

simple language, with clear examples and explicit rules).

The variety of user ages (some of them may not be very

familiarized with computer games techniques) requires

another fundamental requirement: development team

should choose interaction metaphors from a list of those

which are known by the users from everyday life (simple

clicks, movement using keystrokes, drag and drop

technique).

To ensure a high level of interactivity in the game, a

requirement is to add a bonus dice object that will be

collected by users so they can gain extra points.

YAMS tasks and game scenarios

From the requirements described in the first phase, it was

understood that the tasks and scenarios for YAMS must be

 - 132 -

closely related to lifting, throwing and mixing the dice.

Also, tasks that allow movement through the scene and

tasks that allow the dice configuration marking on the score

table are required. As interacting metaphors have to be

simple, intuitive, I chose that individual dice manipulation

(dice lifting) should be done by drag-and-drop technique

(mouse click and mouse movement). Movement through

the scene was projected in an intuitive way (using the arrow

keys on the keyboard). The scoring task was accomplished

by using the mouse click (the mouse was already used for

the dice lifting and moving task, so the number of controls

used remains small).

Initial prototyping consisted of an outer arena surrounded

by four walls. The dice were placed in the center of the

arena, being the main objects of the game. The scoreboard

will be placed on the front wall of the arena so that it is

easily accessible to users. It is understood from the

requirements analysis that there must be a distinction

between the individual lifting of the dice to be thrown and

their simultaneous discarding. Thus, the initial prototyping

contains another important object: the dice thrower. It is

projected as a mug in which the user throws the individual

dice that should be considered in a throwing step. This

object (Figure 1) will be used to perform the throwing

scenario.

Figure 1. Throwing dice container

The main scenarios identified in this phase are: selecting

dice to be thrown, blending the dice (using the throwing

mug object), marking scores on the scoreboard and

collecting bonus dice. A special situation is represented by

the scenario of mixing dice and throwing them. Initially, the

user started picking up the mixing container and simulating

dice mixing (drag and drop technique). Subsequently, the

user had to press a certain button on the keyboard to throw

dice on the playing surface. Feedback from users was

negative because the move was complicated and difficult to

synchronize. In addition, dice mixing was not done in a

random manner (the drag and drop technique did not allow

the mixing mug to rotate). In a second iteration, the

scenario was changed: the user presses a simple command

(mouse click) and the actual mixing is done by the game.

Designing YAMS scenes and interaction techniques

The original prototype was used to create the main stage of

the game. The dice used for throwing are placed in the

center of the stage and are small enough to fit in the

throwing mug. Bonus dice (Figure 2) have been designed

differently (larger sizes and different colors) than normal

ones, in order not to mislead the user. In order to be able to

inform the user about the current state of the game, the

scene must also contain a set of information to be

permanently visible (in the top - left corner of the screen):

the current player, the last throw configuration, the number

of remaining rounds, the number of remaining throws. The

throwing mug should conveniently be placed close to the

dice (so users can easily add the dice inside) and be sized

enough for the dice to blend in. Scoreboard object must be

built in such a way that users can easily identify the

categories they can play and see from any part of the scene

the scores they have recorded inside the table up to a certain

point in the game.The tasks defined at the previous stage

should be attached to objects, so control scripts for those

objects have been created. Controls defined for task action

have been attached to the scene objects so they can be

manipulated directly by the user. Colliders were used for

the interaction between the dice and the rest of the scene

(floor and walls of the arena, the throwing mug, the other

dice in the scene).

Figure 2. Bonus dice

YAMS development

The development part of the application was made in

successive interactions. It started from the logic of

interaction between the user and the objects. Shuffling and

throwing the dice involves synchronizing the dice

movement with the rotating motion of the dropper. At this

stage, you can also simulate the random dice throw. The

scenario is available only after the user has added the dice

to the recipient. By pressing a click on the mixing mug,

random rotation vectors will be generated to be assigned to

each dice. Rotational angles will also be generated

randomly. The direction of moving the dice when they

leave the container has a random component (motion on the

 - 133 -

oz axis). Thus, throwing is hard to predict. In this phase, the

dice throw scenario is simplified, as the dice mixing logic is

shifted from the user to the application. However, the user

remains involved in the process (choose which dice should

be discarded and access the throwing mug). The throwing

process is presented in Figure 3.

Figure 3. Throwing process

In subsequent iterations of the implementation process, the

methods by which the system sends an answer to the user as

a result of its actions have been added. Also, the

implementation process also manages to display the game's

status, which is important for usability. After going through

certain scenarios (throwing the dice, marking the result in

the table), the current user data, the number of remaining

rounds, the result of the last throw will be changed. These

will be updated in the scene using the information panel

added in the previous step.

In this phase, messages have been added to guide the user

in the process of the game. If a user tries to use the

throwing mung without some dice inside, the system will

display a corresponding message on the center of the

screen. Also, if a user runs out of throws, the system will

not allow a new dice throw, but will ask the current user to

choose a category to be scored. To simplify the user's work,

the score calculation process is done automatically when

the user chooses the category.

METHODOLOGY EVALUATION

The usefulness degree of the methodology previously

described must be evaluated according to certain defining

criteria for the resulting game. It is therefore necessary to

determine an evaluation metric to determine the impact that

the methodology has had on the development process of the

game.

At the beginning of the article it was described the

argument of the high complexity of technology that allows

the creation of video games with complex scenes and

advanced interactions. The problem of meeting high quality

standards in terms of usability has also been identified. As

such, this application development model has been

proposed to involve multiple development cycles and to

focus on creating user-friendly versions. The initial analysis

of the game has been divided into sets of requirements that

have been developed interactively in well-defined phases,

precisely because the game can be constantly changed, but

the end result of the implementation cycle is stable and

user-friendly.

Degree of functional coherence

A first evaluation criterion involves determining the degree

of functional coherence. It is considered that the

methodology was appropriate for implementing the game

when the basic functionality of the application respects the

original description of the game. While users can use the

application to reproduce the features for which it was

designed, it means that the planning and development

iterative cycles have had a positive effect on the project.

Such a result would also prove the necessity of the first two

phases which are included in the methodology, namely the

requirement specification phase and scenario building

phase.

In the case of YAMS, the initial requirement was to create a

game that complies with the rules of the real YAMS game.

The to-do game allows you to select dice that can be thrown

to create YAMS-specific configurations. Those

configurations had to be marked on a scoreboard. Also, the

resulting game should adapt to certain rules imposed by the

regulation (maximum three consecutive throws per player,

marking the score after each throwing round). The final

version of the game exactly respects the game flow: Users

can individually select the dice, dice can be thrown to

create a configuration and the scoreboard allows marking

all the categories described by the game's rules. Thus, it can

be said that the level of functional coherence in this project

is high, so the methodology was useful from this point of

view.

Degree of usability

Among the main reasons to use a project development

methodology was to reach a user-oriented end-product.

Complex functionalities and advanced graphical design

have to go through the end-user acceptance filter to be able

to talk about the success of the project. If the game's

requirements were transformed into scenes with complex

interaction and advanced design, but it respects the usability

rigors described in Jakob Nielsen's heuristics, then the

iterative phases like design and implementation had a

positive impact. Moreover, each iterative cycle provides an

assessment of the current version, while each phase of the

game development process begins with a brief evaluation

(with test users) of the previous phase. Thus, the

development team has the ability to constantly modify the

game to accommodate user needs through feedback.

According to the YAMS game evaluation, the status of the

game is permanently displayed on the screen (in the panel

in the left-hand corner). This has been achieved by

following the instructions received from users over several

iterations. Following the implementation of the score

marking functionality and the precalculation of the score

shown in the table, test users noted the correspondence

between the original YAMS game and the one created on

 - 134 -

the basis of this technology. Users have confirmed that the

game provides explicit messages to help them prevent

errors and avoid difficult situations. This was done during

the implementation phase, also based on the feedback

received during the iterative development of the game. The

task and scenario planning stage has allowed the

establishment of a set of interaction metaphors that could be

reused, which was remarked by users through the high

degree of recognition of object control modalities. The

stages creation phase (placed before the implementation

phase) has allowed for a high degree of freedom for the

user, yet he has the possibility to control the objects with

which he interacts.

Adaption to often changes

Certain requirements related to the interaction between

objects or the role of certain objects in the scene are

changed as games evolve. The methodology will prove

useful if the implementation of the game has come to a

regular occurrence in situations where certain stage or

implementation details need to be changed.

During the implementation of the YAMS game, most

changes were due to the adaptation of the game to the

requirements of the test users. In the score marking

scenario, an object of a pencil marking the results was

initially used, but the test users considered that the use of

the object is too complicated because it requires two

additional steps compared to the current method (direct use

of the mouse pointer for marking the result). Thus, the

object was removed from the scene. The methodology

proposes that at the first stages of scene development, an

object is created only if there is a close connection between

that object and the requirements of the game. Also, it is

recommended that in the first iterations (until it can be

determined exactly the utility of the object), the object is

not personalized in terms of design. This has greatly

reduced workloads to setting final scenes. Also, iterative

development has allowed some functionality to be moved

from the user's responsibility (mixing the dice) to the

system. This has resulted in improved (simplified) user

experience and a better algorithm for generating random

values.

CONCLUSIONS

An interactive game with a high degree of complexity in

playing scenarios and interaction techniques requires a

well-defined development methodology. The phases of

such methodology divide production steps to reduce waste

and avoid unnecessary work. A methodology allows teams

with diverse specializations to work together on a common

project. Also, a methodology allows the theme of the

project to be transformed into a set of requirements that can

then be processed in the form of game scenarios. These

scenarios can be implemented independently as a set of

tasks that act directly on objects in the game scene. Thus,

game scenes can be designed in such a way that the

algorithm development team can directly implement the

established scenarios. A methodology is useful when

attempting to obtain a finished product that is mapped to the

initial requirements and which can meet certain market-

imposed expectencies.

Using an iterative methodology allows developers to focus

from the very beginning on a small set of requirements that

are considered the most important. Also, iterative design

and development provide versions of the game whose

usability degree can be estimated, controlled, and improved.

An iterative methodology allows the design team to modify

the object scene to simplify the interaction methods, which

is beneficial to the end user. Also, a methodology based on

cyclical implementation allows for better management of

game flow logic (unwanted functionality can be eliminated

and scenarios can be adapted to increase interactivity).

The methodology proposed in this article involves a pre-

implementation analysis that focuses on the player's profile

and the type of device the game is intended for. This is very

useful as this information helps to establish interaction

metaphors that users can easily understand and identify.

Also, the structure of this methodology improves the game

development process as it proposes creating the scene only

after a rigorous analysis of the game theme. This will allow

the design team to identify only those scene objects that are

required in scenarios.

REFERENCES

1. Chad Hadzinsky, A Look into the Industry of Video

Games Past, Present, and Yet to Come, 2014.

2. Adriana-Mihaela Guran, Grigoreta Sofia Cojocar,

Abordări în evaluarea automată a utilizabilităţii. Studiu

comparativ, 2008.

3. Serdar Aslan, Digital Educational Games:

Methodologies for Development and Software Quality,

2016.

4. Yams Game Rules, http://www.stratozor.com/en/yams-

rules.php

5. Saiqa Aleem, Luiz Fernando Capretz, Faheem Ahmed,

Game development software engineering process life

cycle: a systematic review, 2016.

6. Ann Osborne O’Hagan , Rory V. O’Connor, Towards

an Understanding of Game Software Development

Processes: A Case Study, 2015.

7. Fabio Petrillo, Marcelo Pimenta, Is agility out there?

Agile practices in game development, 2010

8. Jakob Nielsen, R. Molich, Heuristic evaluation of user

interfaces, 1990.

http://www.stratozor.com/en/yams-rules.php
http://www.stratozor.com/en/yams-rules.php

