
 - 76 -

Workflow Editor for Definition and Execution of
Parallelized Earth Data Processing Algorithms

Constantin Nandra

Technical University of

Cluj-Napoca
constantin.nandra@cs.utcluj.ro

Dorian Gorgan

Technical University of

Cluj-Napoca
dorian.gorgan@cs.utcluj.ro

ABSTRACT

The aim of this paper is to present a workflow editor

application meant to facilitate the description of

parallelizable Earth Data processing algorithms. The

application was developed as part of the BigEarth project,

whose overall aim was to improve the execution time of

large Earth Observation data sets by spreading the

processing effort over a distributed, high-performance

computing network. To achieve a simple and flexible

manner of partitioning the parallel parts of the algorithms

between different processing nodes, we chose to represent

them using a simple, workflow-based model. Since one of

the main purposes of the project was to provide a simple

and intuitive way of creating algorithms descriptions, we

chose to implement a Domain Specific Language coupled

with a visual workflow representation used for providing

feedback. Throughout this paper, we will be demonstrating

the use of the workflow editor together with the description

language in order to define and execute distributed data

processing algorithms. We will be highlighting the

effectiveness of the application as a means of providing

processing algorithms by analyzing its behavior under

various stress tests.

Author Keywords

Interactive processing; workflow description; earth data

ACM Classification Keywords

Interactive applications

INTRODUCTION

Society’s ability of acquiring new data has always been a

challenge to its capabilities for processing them. This is

especially true nowadays, in the information age. New

trends, such as the internet of things, continually push the

limits of data volumes and acquisition rates. These

attributes are indeed some of the challenges of the Big Data

phenomenon.

Increasing data volumes and acquisition rates can prove

ever more challenging to small and medium level

organizations, lacking the resources to properly store and

manage them. This is especially true in the context of the

newly developing technologies being able to derive

increasing value from said data.

While increasing data volumes and acquisition rates are

seen as generalized problems, some domains, in particular,

could prove especially affected, due to the nature of the

data they deal with. One such domain is that of the Earth

Observation (EO) sciences. Scientists working in EO-

related fields have to deal mostly with large resolution,

multi-layered satellite and aerial photographic data.

Processing these types of data in an effective manner is

often beyond the capabilities of most standalone

workstations – with respect to available memory,

processing power and sometimes even raw storage. To

address this problem, the BigEarth project [1] proposes the

employment of a distributed computing infrastructure

meant to take advantage of the task and data parallelism

identified within the processing algorithms. One of the

main challenges lies in defining the tasks in such a way as

to be able to leverage said parallelism. At the same time,

the task description methodology should prove accessible

enough to allow the system to effectively cater to the needs

of as large a user pool as possible. This is where the

application described within the present paper comes in. It

aims to provide the common user, lacking in programming

expertise, with a workflow-based algorithm description

methodology. Its key attributes should allow for the easy

and intuitive definition of processing algorithms and, at the

same time, allow the distributed platform at the other end to

effectively leverage possible parallelism opportunities.

RELATED WORKS

The early versions of Geographical Information Systems

(GIS), such as GRASS GIS [2] were little more than

collections of software packages and executable programs

developed for very specific tasks. GRASS, for example was

initially designed to serve as a land management tool for the

US military. Their very nature implied some expertise from

the user’s part, likely involving at least a basic level of

programming knowledge, seeing as they usually offered

sets of Unix shell commands as primary means of user

interfacing. This practice has carried on to modern times

and is still encountered in newer systems, such as ArcGIS

[3] and QGIS [4].

By its very nature, the work done by the GIS solutions has a

visual characteristic. Indeed, virtually all modern solutions

offer some kind of visual-based processing methodology,

be it for the definition and execution of processing tasks,

the selection and manipulation of data or, sometimes, for

 - 77 -

both types of scenarios. The benefits of employing a

Graphics User Interface (GUI) are fairly obvious, since this

practice tends to enlarge the system’s user’s pool, by

eliminating the requirement for more technical skills from

the user’s part. It should be noted, however, that the GUI is

not really the silver bullet when it comes to defining

processing tasks. The best argument to support this claim is

the lingering and still strong support for scripting languages

offered by most GIS solutions out there, both commercial

and free or open-source. Scripting support tends to cater to

more experienced users, allowing for quicker access to the

desired functionality. All the while, GUI-based approaches

can have their own shortcomings, particularly complex

ones, presenting cluttered interfaces and requiring steep

user leaning curves.

While preserving scripting support as a way of user

interaction, the majority of the newer GIS solutions have

since made the transition from the traditional shell scripting

environment to a more user friendly approach, based on

Python scripting. There are certain benefits to be reaped,

especially since Python is a much higher-level

programming/scripting alternative when compared to the

Unix shell environment. Among these benefits, one could

count, lower user training effort and increased productivity.

This is the case with all the aforementioned systems.

Google’s Earth Engine [5] is another major GIS solution

available nowadays. True to the practice of offering script-

based process description capabilities, it offers both Python

and JavaScript APIs (Application Programming Interfaces).

Continuing to develop the potential of language-based

process descriptions, recent research efforts have started

looking into the employment of dedicated, Domain Specific

Languages (DSL) for defining processing tasks. These

efforts span a variety of research fields, while having in

common the processing of large data sets. One such

example is described within [6]. The authors present the

characteristics of a distributed processing solution which

relies on a specialized DSL in order to define the data

processing tasks. Much like in the case of our proposed

solution, it aims to remove the necessity for parallel

programming expertise from the user’s part. This would

normally be required in order to take advantage of a

distributed, parallel processing setup. Instead, the proposed

solution employs the DSL description like an abstract

model, relying on the system to generate distributable

processing tasks.

Another interesting use of a DSL is described within [7].

The language is called Vivaldi and is employed to describe

processing tasks dealing with the analysis of medical tissue

imagery.

In [8], the authors present another DSL, employed for the

purposes of defining processing algorithms for dealing with

high-throughput telescope and microscope image data. The

language is called Diderot and it offers a C-based syntax. It

was designed specifically to be able to break the processing

algorithm into smaller, parallelizable sub-processes having

as end goal the overall shortening of the processing time.

WORDEL EDITOR APPLICATION

The BigEarth platform [1] was designed and built with the

express purpose of handling large amounts of data

processing tasks by taking advantage of the capabilities of a

distributed, multi-processor computing network. To receive

its processing tasks, it relies on a standalone user

application, henceforth referred to as the WorDeL Editor

Application (WEA). This acts as the user’s interface with

the system, providing the means by which said user can:

• Define processing algorithms in the form of workflows

• Launch processes into execution

• Retrieve the processing results

Figure 1: The architecture of the BigEarth platform

BigEarth is meant to provide an easily-accessible big data

processing solution, catering to users who do not

necessarily have much in the way of programming

experience. Therefore, the need for a simple and intuitive

manner of defining the processing algorithms constituted

one of the most important requirements [9]. This is the

main reason why we have opted for the employment of a

Domain Specific Language (DSL) with a simplified

structure, focused on the definition of workflow models.

Compared to a standard programming language, this DSL is

far more simplified, as it has no need for many of the

features that the average programming language offers to its

users. Such features might include constructs for working

with memory, support for complex data structures and

object-oriented programming or other advanced, high-level

constructs such as lambda expressions.

In order to make the interface more intuitive and simpler to

employ by new, untrained users, the workflow description

language is meant to be coupled with a visual

representation of the processing workflow. The general aim

is to offer an interactive experience, showing operator

nodes and connections as defined and modified by the user,

thus reinforcing the degree of intuition when working with

the model. The overall goal is to increase the application’s

usability, as this would directly correlate to an increase in

the effectiveness of the processing platform.

 - 78 -

Figure 2: Screenshot of the WorDeL Editor application.

Figure 2 shows a screenshot of the editor application. Its

two most important features correspond to its design

purposes: constructing workflow descriptions and

monitoring their execution. Workflows are created through

the use of the WorDeL (Workflow Description Language)

DSL, a compact and visually intuitive means of

representation, especially when coupled with a visual

rendition of the result. At its core, WorDeL is not as much a

programming language, but more of an all-round scripting

language, providing a way of linking together existing

functional elements offered in the form of operators. The

operators can either be pre-established, shipped together

with the application, or they can be created directly by the

user to suit domain-specific needs [10]. This design

decision adds flexibility to the description methodology, as

it is no longer bound to a pre-defined set of existing

operators and can be used to tackle processes from

multiples fields of study.

The center piece of the application is a basic code editor

(Figure 2, left) allowing for the writing and processing of

WorDeL code. This is supported by three main elements.

The first, and most obvious of these, is the workflow

visualization area. It provides a simple and intuitive visual

representation of the workflow defined within the code

editing area. This is meant to help the user better grasp the

structure of the workflow being defined, by clearly laying

out the sub-processes of the algorithm and the data flow

between them. Its second, equally important, role is that of

monitoring process execution. After the user loads the input

data and launches the process into execution, the workflow

representation area will monitor and update, in real time,

the status of each processing node and data connection. The

status is indicated by different color themes applied to the

visual elements (as shown in Figure 2 – right). In addition

to these roles, this element also allows the user to quickly

access the files resulting from the workflow’s execution

with a single click on the relevant connection or workflow

output port.

The second element of note is the error display area. The

editor application interfaces directly with the language

parser component and receives feedback from it pertaining

to the description analysis process. The error display area

compiles the feedback data into error and warning reports,

allowing the user to recognize and correct any syntax and

semantic errors that might appear within the description

code.

The third auxiliary element has to do with the management

of the operator collections. Without some kind of

mechanism for indexing, searching and sorting through

existing operator collection, their employment within user-

defined workflows would be impractical, if not next to

impossible. The operator management mechanism is not

directly visible in the figure. Its functionality can be

accessed through the Operators menu. In the current

version, it involves a basic operator navigation panel

allowing for operations like keyword searching, category

filtering and operator data analysis (Figure 3).

 - 79 -

Figure 3: Operator browsing and sorting functionality

WORKFLOW EXAMPLES

In this section we will showcase the capabilities of the

WorDeL Editor application by following its functionality in

the definition of a set of workflow processes.

The first workflow example represents a simple formula

meant to compute the NDVI (Normalized Vegetation

Index) (1) value for a pair of input image bands. This has

been the subject of our experiments before, within [11] and

[12] while demonstrating WorDeL’s capabilities for the

definition and execution of batch-processing tasks

exploiting data parallelism. Within this paper, the NDVI

workflow will be the baseline example upon which we will

build in complexity in order to showcase the functionality

of our application.

()

The NDVI is implemented in our example using three

arithmetic operators, working at the pixel level (as shown in

Figure 4).

Figure 4: WorDeL Editor – NDVI workflow

One of the most important features of WorDeL is that it

allows for the referencing and reuse of externally defined

workflows into new designs. This is illustrated in the

workflow shown in Figure 5. In this case, the current

workflow (NDVIApp) incorporates the functionality of the

previously defined NDVI workflow to compute the index

and then takes the resulting image and feeds it into a

pseudo-coloring operator. This operator takes a color

palette and applies it to cover certain interval values of the

NDVI result. The final result of this workflow will be a

colored NDVI image, easier to interpret by the human eye.

When dealing with externally referenced workflows, such

as this, WEA makes use of its integrated parser component

to read and process the contents of any and all referenced

files, creating a temporary database which indexes all

workflows defined within those files. This database is then

used to be able to recognize any external workflows

employed by the user as processing nodes and map them

correctly within the current workflow. A welcome side-

effect of this indexing mechanism is that it allows access to

the internal workings of the referenced external workflows.

WEA exploits this, allowing the user to display the contents

of any such workflow by selecting it within the display

area. This is beneficial to the user, since it allows for easier

exploration of embedded workflows in an interactive

manner.

Figure 5: WorDeL – externally referenced workflow example

 - 80 -

The mechanism for workflow inclusion and visualization

works on multiple recursive levels. The number of levels is

only limited by the capabilities of the machine and the

available resources. Ultimately, it is also a matter related to

the effectiveness of the application in complex usage

scenarios, as highlighted towards the end of this paper.

In order to maximize its processing effectiveness, the

BigEarth platform allows for the batch processing of

massive data loads with little to no extra effort required

from the user’s part. For this reason, we envisaged the

introduction of a repetitive statement meant to facilitate the

running of a given process with different data sets. This is

the role of the for-each statement. Its employment and

usefulness have been demonstrated within [11] and [12]. In

our example, we make use of this construct to apply the

previously-defined NDVI workflow on a series of input

images. As seen in Figure 6, the input is given in the form

of two sets, representing the near-infrared and red band

images.

Figure 6: WorDeL – FOR-EACH repetitive workflow

To accommodate the need for repetitive processing,

WorDeL offers the List data type, allowing for the

aggregation of similar data items into collections. These are

then and then fed as input to the for-each element. WEA

allows its users to specify the data lists explicitly, within the

WorDeL code (Figure 7) or, if needed, it can read the list of

files from a user-provided indexing file.

The for-each node repeatedly applies a given workflow or

workflow portion on different data sets. In our example, the

repeated functionality is represented by the NDVI

workflow. This construct then iterates over the two input

lists, creating input pairs with members from each list. It

then applies said input pairs as inputs to the replicated

workflow, creating multiple, distinct processing instances.

Once all the processes are completed, the application will

take care of collating the results into a result list, making its

location available to the user. This is done in a completely

transparent manner from the user’s point of view. It has the

obvious benefit of automating the definition and execution

of batch processing tasks, generated from large data sets

with high refresh rates, such as in the case of EO data. This

kind of functionality goes to show the potential to be

achieved by combining a simplified workflow modelling

language with a dedicated support application like the

workflow editor.

Figure 7: FOR-EACH workflow - WorDeL syntax

EFFICIENCY AND USABILITY EVALUATION

As a measure of the WEA’s usability we have decided to

prove its viability as a process description tool by

subjecting it to a series of stress tests involving the

development of increasingly complex workflow scenarios.

These tests are concerned with the application’s ability to

perform its tasks in conditions involving high-level, multi-

layer processing workflows. They closely follow the

application’s usage of the CPU and memory resources.

Given that the application was developed in Java, we have

employed the VisualVM tool in order to monitor the

resource utilization within the java virtual machine (JVM).

The tests have been run on a single, mid-tier, Windows-

based desktop workstation, with a four-core 3.20GHz CPU,

8GB of RAM and a maximum JVM heap size of 2GB.

These tests have been performed as part of the BigEarth

project in order to ascertain the viability of the platform at

the user interface level, under various stress conditions

dictated by the complexity of the workflow models. The

following sections will present our results.

Workflow Operator Capacity

This is the most basic test, and it attempts to determine the

maximum number of operators within a single workflow

that the application can manage to process while

maintaining interface responsiveness. We henceforth define

the application’s behavior as meeting the responsiveness

criterion if the application manages to process the workflow

description within a five seconds time limit.

 - 81 -

For this test, we have procedurally generated WorDeL

workflow descriptions housing increasing numbers of

operators. The following figures present the relationship

between the number of nodes within a given workflow and

the resources required by the editor application in order to

process them. Figure 8 and Figure 9 show the memory and

CPU loads observed while monitoring the resource

consumption of the java virtual machine.

Figure 8: Operator capacity – memory load

 Figure 9: Operator capacity – CPU load

This test revealed promising results, with the application

proving able to handle up to 1000 operator instances within

a single workflow description file. As seen in the charts, the

CPU utilization evened out at about 60%. After a threshold

of around 1050 operators, the application itself would

become blocked and cease to respond. Following an

analysis of the program, we found that the limiting factor

was with the applications display area, which was unable to

generate visual representations for workflows with more

than 1050 nodes. A number of 1000 operators within a

workflow is however, more than reasonable, since such a

workflow would really be too complex for any user to

grasp. This number of operators comes with pretty modest

memory requirements (roughly 90MB). Looking at the

memory usage chart, one can notice a steep increase after

about 200 nodes per workflow (circa 43MB of JVM

memory). However, in terms of workflow size, even this is

quite a large number, as in real world scenarios users would

break up such complex designs to make them more

manageable.

Included Workflows – Horizontal Test

The second test starts from the reasonable assumption that

users would tend to fragment larger, complex workflows

into smaller pieces and make use of the include mechanism

in order to make their designs more modular and easier to

understand and employ. Therefore, the test was intended to

determine the upper limit of the number of include

statements within a single workflow description file. In this

case, each include statement represented one external file,

containing one workflow description.

The results of this test proved particularly successful, as

seen at first glance at the figures 10 and 11. We managed to

process workflows with upwards of 2200 included files,

before reaching the responsiveness limit of 5 seconds for

the main workflow. In the case of this test set we got quite

significant memory hogging, since the application needed

to open, parse and store the contents of each description file

- and it does that for upwards of 2200 files.

Figure 10: Horizontal include test – memory load

Figure 11: Horizontal include test – CPU load

While the resources required to reach the 2200 included

workflows limit are not negligible, the fact that the

application can achieve this has relevance for the

description method as a whole. This is because, to build

workflows of even moderate complexity, a user needs to be

able to partition the design and rely on externally

referenced workflows to even stand a chance of grasping its

 - 82 -

functionality. Thus, the development of ever more complex

included workflow networks is bound to put a strain on the

application’s capabilities to process them. In light of the

obtained results, we ascertain that a number of 2200

included workflows is a reasonable achievement which

could allow for the definition of medium to high-

complexity designs without much of an effect on the

application’s responsiveness.

Included Workflows – Vertical Test

The previous test was meant to ascertain the number of

maximum allowable included workflows within a single

description file – a horizontal, or breadth-wise test. To test

the capabilities of the include mechanism, we decided to

also perform a vertical, or depth extension test. To this end,

we have generated workflows with increasing numbers of

include levels. To illustrate an example, we’ve defined a

workflow description file containing one reference to an

external file as being a two-level include workflow.

Following our tests, we managed to process workflows of

up to a depth of 2000 include levels.

As seen in figures 12 and 13, we managed to get similar

results to the horizontal tests, both in terms of included

workflow numbers and resource requirements.

Figure 12: Vertical include test – memory load

Figure 13: Vertical include test – CPU load

Nested Workflow Repetitions

The fourth and final test set was aimed at gauging the

ability of the application to service the needs of the user in

terms of the for-each loop employment (as mentioned

within the last section). Specifically, we wanted to

determine the application’s ability to deal with multiple,

nested for-each loops. The for-each example showcased

previously was a one-level loop. A two-level nested loop

would involve the processing of a for-each workflow inside

another for-each element. This raises a number of issues,

the first of which would be the required inputs. A two-level

for-each loop would work on a list containing lists of

elements. Therefore, even such a nester loop could prove

challenging to understand and effectively employ, with

three and four level loops probably being the maximum

actual useful depth.

Even though the usable depth level of a for-each loop

would probably be situated at about two or three, we

wanted to prove the capabilities of the application and the

language itself. Therefore, we started by dynamically

generating input file lists, and incrementally building multi-

level lists, which we employed as inputs for multi-level for-

each loops.

Figure 14: Nested for-each loop test – memory load

Figure 15: Nested for-each loop test – CPU load

As seen in figures 14 and 15, we managed to process

workflows of up to 19 nested loops, by which point we got

to the limits of our available resources. In this case, the

memory load was the first to reach its limit, with CPU loads

 - 83 -

following closely behind. Considering the previously

mentioned facts, this is a pretty impressive result, as its

shows the potential of the WorDeL language and its

application in helping to define high-level process

descriptions.

CONCLUSIONS

To increase the effectiveness of the workflow modelling

methodology employed within the BigEarth platform, we

have developed a support editor application, designed to

help the user visualize and modify the workflow model in a

simplistic and intuitive manner. The application provides

close support for visualizing the workflow model, allowing

for in-depth, multi-layered workflow analysis. This is

meant to offer a simple, interactive and intuitive manner of

defining processing algorithms, without requiring any

programming experience from the user’s part.

Throughout the paper we have touched upon the editor

application’s design and purpose and have shown its use in

helping the user develop workflows of increasing levels of

complexity. While simple workflows certainly have their

merits in that they are quick and intuitive to set up,

sometimes there are scenarios in which more complex

setups might prove more effective. Such is the case of the

workflow include and for-each mechanisms. In these

situations, relying on the specialized model visualization

tools offered by our application can greatly help the user in

grasping the inner workings of a given design.

The stress test that we ran on the editor application show

that it can easily provide support for the definition and

processing of workflows consisting of considerable

numbers of elements and levels of complexity. With these

results, one ca conclude that our application can help

provide a suitable interface between the user and the high-

performance processing network constituting the BigEarth

platform. Ultimately, the platform as a whole can provide

users lacking programming skills with a simple and

effective way to build and run parallelizable tasks over

large data volumes while taking advantage of the

capabilities offered by a network of processing nodes.

ACKNOWLEDGMENTS

The application employed for the experiments presented
within this paper was developed as part of a research project
supported by ROSA (Romanian Space Agency) through
Contract CDI-STAR 106/2013, BIGEARTH – Flexible
Processing of Big Earth Data over High Performance
Computing Architectures. The scientific consultancy and
technology transfer has been supported by MEN-UEFISCDI
through Contract no. 344/2014, PECSA – Experimental

High Performance Computing Platform for Scientific
Research and Entrepreneurial Development.

REFERENCES

1. BIGEARTH Project Home [Online] -

http://cgis.utcluj.ro/projects/bigearth/

2. GRASS GIS [Online] -

http://grass.osgeo.org/documentation/general-overview/

3. ArcGIS [Online] -

https://www.esri.com/en-us/arcgis/products/index

4. QGIS [Online] - https://qgis.org/en/site

5. Google Earth Engine -

 https://earthengine.google.com/faq

6. M. Krämer, I. Senner, “A modular software architecture

for processing of big geospatial data in the cloud”, in

Computers and Graphics, vol. 49, pp. 69-81, 2015

7. H. Choi, W. Choi, T.M. Quan, D. G. Hildebrand, H.

Pfister, W. K. Jeong, “Vivaldi: A Domain-Specific

Language for Volume Processing and Visualization on

Distributed Heterogeneous Systems”, in IEEE

transactions on visualization and computer graphics,

pp. 2407-2416, 2014

8. Chiw, C., Kindlmann, G., Reppy, J., Samuels, L. and

Seltzer,N., 2012. Diderot: A parallel dsl for image

analysis and visualization. Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language

Design and Implementation 47(6), pp. 111–120.

9. V. Bacu, T.. Stefanut, D. Gorgan, “Adaptive Processing

of Earth Observation Data on Cloud Infrastructures

based on Workflow Description”, in Proceedings of the

Intelligent Computer Communication and Processing

(ICCP), pp.449-454, 2015.

10. D. Mihon, V. Bacu, V.D. Colceriu, D. Gorgan,

“Modeling of Earth Observation Use Cases through the

KEOPS System”, in Proceedings of the Intelligent

Computer Communication and Processing (ICCP),

pp.455-460, 2015.

11. C. Nandra, D. Gorgan, “Defining earth data batch

processing tasks by means of a flexible workflow

description language” in ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial

Information Sciences, vol. III-4, pp. 59-66, July 2016.

12. C. Nandra, V. Bacu, D. Gorgan, “Parallel Earth Data

Processing on a Distributed, Cloud Based Computing

Architecture”, in Proceedings of the 21st International

Conference on Control Systems and Computer Science

(CSCS), pp. 677-684, 2016

