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ABSTRACT 

The aim of this paper is to present a workflow editor 

application meant to facilitate the description of 

parallelizable Earth Data processing algorithms. The 

application was developed as part of the BigEarth project, 

whose overall aim was to improve the execution time of 

large Earth Observation data sets by spreading the 

processing effort over a distributed, high-performance 

computing network. To achieve a simple and flexible 

manner of partitioning the parallel parts of the algorithms 

between different processing nodes, we chose to represent 

them using a simple, workflow-based model. Since one of 

the main purposes of the project was to provide a simple 

and intuitive way of creating algorithms descriptions, we 

chose to implement a Domain Specific Language coupled 

with a visual workflow representation used for providing 

feedback. Throughout this paper, we will be demonstrating 

the use of the workflow editor together with the description 

language in order to define and execute distributed data 

processing algorithms. We will be highlighting the 

effectiveness of the application as a means of providing 

processing algorithms by analyzing its behavior under 

various stress tests. 
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INTRODUCTION 

Society’s ability of acquiring new data has always been a 

challenge to its capabilities for processing them. This is 

especially true nowadays, in the information age. New 

trends, such as the internet of things, continually push the 

limits of data volumes and acquisition rates. These 

attributes are indeed some of the challenges of the Big Data 

phenomenon.  

Increasing data volumes and acquisition rates can prove 

ever more challenging to small and medium level 

organizations, lacking the resources to properly store and 

manage them. This is especially true in the context of the 

newly developing technologies being able to derive 

increasing value from said data. 

While increasing data volumes and acquisition rates are 

seen as generalized problems, some domains, in particular, 

could prove especially affected, due to the nature of the 

data they deal with. One such domain is that of the Earth 

Observation (EO) sciences. Scientists working in EO-

related fields have to deal mostly with large resolution, 

multi-layered satellite and aerial photographic data. 

Processing these types of data in an effective manner is 

often beyond the capabilities of most standalone 

workstations – with respect to available memory, 

processing power and sometimes even raw storage. To 

address this problem, the BigEarth project [1] proposes the 

employment of a distributed computing infrastructure 

meant to take advantage of the task and data parallelism 

identified within the processing algorithms. One of the 

main challenges lies in defining the tasks in such a way as 

to be able to leverage said parallelism. At the same time, 

the task description methodology should prove accessible 

enough to allow the system to effectively cater to the needs 

of as large a user pool as possible. This is where the 

application described within the present paper comes in. It 

aims to provide the common user, lacking in programming 

expertise, with a workflow-based algorithm description 

methodology. Its key attributes should allow for the easy 

and intuitive definition of processing algorithms and, at the 

same time, allow the distributed platform at the other end to 

effectively leverage possible parallelism opportunities.  

RELATED WORKS 

The early versions of Geographical Information Systems 

(GIS), such as GRASS GIS [2] were little more than 

collections of software packages and executable programs 

developed for very specific tasks. GRASS, for example was 

initially designed to serve as a land management tool for the 

US military. Their very nature implied some expertise from 

the user’s part, likely involving at least a basic level of 

programming knowledge, seeing as they usually offered 

sets of Unix shell commands as primary means of user 

interfacing. This practice has carried on to modern times 

and is still encountered in newer systems, such as ArcGIS 

[3] and QGIS [4]. 

By its very nature, the work done by the GIS solutions has a 

visual characteristic. Indeed, virtually all modern solutions 

offer some kind of visual-based processing methodology, 

be it for the definition and execution of processing tasks, 

the selection and manipulation of data or, sometimes, for 
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both types of scenarios. The benefits of employing a 

Graphics User Interface (GUI) are fairly obvious, since this 

practice tends to enlarge the system’s user’s pool, by 

eliminating the requirement for more technical skills from 

the user’s part. It should be noted, however, that the GUI is 

not really the silver bullet when it comes to defining 

processing tasks. The best argument to support this claim is 

the lingering and still strong support for scripting languages 

offered by most GIS solutions out there, both commercial 

and free or open-source. Scripting support tends to cater to 

more experienced users, allowing for quicker access to the 

desired functionality. All the while, GUI-based approaches 

can have their own shortcomings, particularly complex 

ones, presenting cluttered interfaces and requiring steep 

user leaning curves. 

While preserving scripting support as a way of user 

interaction, the majority of the newer GIS solutions have 

since made the transition from the traditional shell scripting 

environment to a more user friendly approach, based on 

Python scripting. There are certain benefits to be reaped, 

especially since Python is a much higher-level 

programming/scripting alternative when compared to the 

Unix shell environment. Among these benefits, one could 

count, lower user training effort and increased productivity. 

This is the case with all the aforementioned systems.  

Google’s Earth Engine [5] is another major GIS solution 

available nowadays. True to the practice of offering script-

based process description capabilities, it offers both Python 

and JavaScript APIs (Application Programming Interfaces). 

Continuing to develop the potential of language-based 

process descriptions, recent research efforts have started 

looking into the employment of dedicated, Domain Specific 

Languages (DSL) for defining processing tasks. These 

efforts span a variety of research fields, while having in 

common the processing of large data sets. One such 

example is described within [6]. The authors present the 

characteristics of a distributed processing solution which 

relies on a specialized DSL in order to define the data 

processing tasks. Much like in the case of our proposed 

solution, it aims to remove the necessity for parallel 

programming expertise from the user’s part. This would 

normally be required in order to take advantage of a 

distributed, parallel processing setup. Instead, the proposed 

solution employs the DSL description like an abstract 

model, relying on the system to generate distributable 

processing tasks. 

Another interesting use of a DSL is described within [7]. 

The language is called Vivaldi and is employed to describe 

processing tasks dealing with the analysis of medical tissue 

imagery. 

In [8], the authors present another DSL, employed for the 

purposes of defining processing algorithms for dealing with 

high-throughput telescope and microscope image data. The 

language is called Diderot and it offers a C-based syntax. It 

was designed specifically to be able to break the processing 

algorithm into smaller, parallelizable sub-processes having 

as end goal the overall shortening of the processing time. 

WORDEL EDITOR APPLICATION 

The BigEarth platform [1] was designed and built with the 

express purpose of handling large amounts of data 

processing tasks by taking advantage of the capabilities of a 

distributed, multi-processor computing network. To receive 

its processing tasks, it relies on a standalone user 

application, henceforth referred to as the WorDeL Editor 

Application (WEA). This acts as the user’s interface with 

the system, providing the means by which said user can: 

• Define processing algorithms in the form of workflows 

• Launch processes into execution 

• Retrieve the processing results 

 

Figure 1:  The architecture of the BigEarth platform 

BigEarth is meant to provide an easily-accessible big data 

processing solution, catering to users who do not 

necessarily have much in the way of programming 

experience. Therefore, the need for a simple and intuitive 

manner of defining the processing algorithms constituted 

one of the most important requirements [9]. This is the 

main reason why we have opted for the employment of a 

Domain Specific Language (DSL) with a simplified 

structure, focused on the definition of workflow models. 

Compared to a standard programming language, this DSL is 

far more simplified, as it has no need for many of the 

features that the average programming language offers to its 

users. Such features might include constructs for working 

with memory, support for complex data structures and 

object-oriented programming or other advanced, high-level 

constructs such as lambda expressions.  

In order to make the interface more intuitive and simpler to 

employ by new, untrained users, the workflow description 

language is meant to be coupled with a visual 

representation of the processing workflow. The general aim 

is to offer an interactive experience, showing operator 

nodes and connections as defined and modified by the user, 

thus reinforcing the degree of intuition when working with 

the model. The overall goal is to increase the application’s 

usability, as this would directly correlate to an increase in 

the effectiveness of the processing platform.  
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Figure 2:  Screenshot of the WorDeL Editor application. 

Figure 2 shows a screenshot of the editor application. Its 

two most important features correspond to its design 

purposes: constructing workflow descriptions and 

monitoring their execution. Workflows are created through 

the use of the WorDeL (Workflow Description Language) 

DSL, a compact and visually intuitive means of 

representation, especially when coupled with a visual 

rendition of the result. At its core, WorDeL is not as much a 

programming language, but more of an all-round scripting 

language, providing a way of linking together existing 

functional elements offered in the form of operators. The 

operators can either be pre-established, shipped together 

with the application, or they can be created directly by the 

user to suit domain-specific needs [10]. This design 

decision adds flexibility to the description methodology, as 

it is no longer bound to a pre-defined set of existing 

operators and can be used to tackle processes from 

multiples fields of study.  

The center piece of the application is a basic code editor 

(Figure 2, left) allowing for the writing and processing of 

WorDeL code. This is supported by three main elements. 

The first, and most obvious of these, is the workflow 

visualization area. It provides a simple and intuitive visual 

representation of the workflow defined within the code 

editing area. This is meant to help the user better grasp the 

structure of the workflow being defined, by clearly laying 

out the sub-processes of the algorithm and the data flow 

between them. Its second, equally important, role is that of 

monitoring process execution. After the user loads the input 

data and launches the process into execution, the workflow 

representation area will monitor and update, in real time, 

the status of each processing node and data connection. The 

status is indicated by different color themes applied to the 

visual elements (as shown in Figure 2 – right). In addition 

to these roles, this element also allows the user to quickly 

access the files resulting from the workflow’s execution 

with a single click on the relevant connection or workflow 

output port. 

The second element of note is the error display area. The 

editor application interfaces directly with the language 

parser component and receives feedback from it pertaining 

to the description analysis process. The error display area 

compiles the feedback data into error and warning reports, 

allowing the user to recognize and correct any syntax and 

semantic errors that might appear within the description 

code. 

The third auxiliary element has to do with the management 

of the operator collections. Without some kind of 

mechanism for indexing, searching and sorting through 

existing operator collection, their employment within user-

defined workflows would be impractical, if not next to 

impossible. The operator management mechanism is not 

directly visible in the figure. Its functionality can be 

accessed through the Operators menu. In the current 

version, it involves a basic operator navigation panel 

allowing for operations like keyword searching, category 

filtering and operator data analysis (Figure 3).  
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Figure 3:  Operator browsing and sorting functionality 

WORKFLOW EXAMPLES 

In this section we will showcase the capabilities of the 

WorDeL Editor application by following its functionality in 

the definition of a set of workflow processes. 

The first workflow example represents a simple formula 

meant to compute the NDVI (Normalized Vegetation 

Index) (1) value for a pair of input image bands. This has 

been the subject of our experiments before, within [11] and 

[12] while demonstrating WorDeL’s capabilities for the 

definition and execution of batch-processing tasks 

exploiting data parallelism. Within this paper, the NDVI 

workflow will be the baseline example upon which we will 

build in complexity in order to showcase the functionality 

of our application.  

                                                           
() 

The NDVI is implemented in our example using three 

arithmetic operators, working at the pixel level (as shown in 

Figure 4). 

 

Figure 4:  WorDeL Editor – NDVI workflow 

One of the most important features of WorDeL is that it 

allows for the referencing and reuse of externally defined 

workflows into new designs. This is illustrated in the 

workflow shown in Figure 5. In this case, the current 

workflow (NDVIApp) incorporates the functionality of the 

previously defined NDVI workflow to compute the index 

and then takes the resulting image and feeds it into a 

pseudo-coloring operator. This operator takes a color 

palette and applies it to cover certain interval values of the 

NDVI result. The final result of this workflow will be a 

colored NDVI image, easier to interpret by the human eye. 

When dealing with externally referenced workflows, such 

as this, WEA makes use of its integrated parser component 

to read and process the contents of any and all referenced 

files, creating a temporary database which indexes all 

workflows defined within those files. This database is then 

used to be able to recognize any external workflows 

employed by the user as processing nodes and map them 

correctly within the current workflow. A welcome side-

effect of this indexing mechanism is that it allows access to 

the internal workings of the referenced external workflows. 

WEA exploits this, allowing the user to display the contents 

of any such workflow by selecting it within the display 

area. This is beneficial to the user, since it allows for easier 

exploration of embedded workflows in an interactive 

manner. 

 

Figure 5:  WorDeL – externally referenced workflow example  
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The mechanism for workflow inclusion and visualization 

works on multiple recursive levels. The number of levels is 

only limited by the capabilities of the machine and the 

available resources. Ultimately, it is also a matter related to 

the effectiveness of the application in complex usage 

scenarios, as highlighted towards the end of this paper. 

In order to maximize its processing effectiveness, the 

BigEarth platform allows for the batch processing of 

massive data loads with little to no extra effort required 

from the user’s part. For this reason, we envisaged the 

introduction of a repetitive statement meant to facilitate the 

running of a given process with different data sets. This is 

the role of the for-each statement. Its employment and 

usefulness have been demonstrated within [11] and [12]. In 

our example, we make use of this construct to apply the 

previously-defined NDVI workflow on a series of input 

images. As seen in Figure 6, the input is given in the form 

of two sets, representing the near-infrared and red band 

images. 

 

Figure 6:  WorDeL – FOR-EACH repetitive workflow 

To accommodate the need for repetitive processing, 

WorDeL offers the List data type, allowing for the 

aggregation of similar data items into collections. These are 

then and then fed as input to the for-each element. WEA 

allows its users to specify the data lists explicitly, within the 

WorDeL code (Figure 7) or, if needed, it can read the list of 

files from a user-provided indexing file. 

The for-each node repeatedly applies a given workflow or 

workflow portion on different data sets. In our example, the 

repeated functionality is represented by the NDVI 

workflow. This construct then iterates over the two input 

lists, creating input pairs with members from each list. It 

then applies said input pairs as inputs to the replicated 

workflow, creating multiple, distinct processing instances. 

Once all the processes are completed, the application will 

take care of collating the results into a result list, making its 

location available to the user. This is done in a completely 

transparent manner from the user’s point of view. It has the 

obvious benefit of automating the definition and execution 

of batch processing tasks, generated from large data sets 

with high refresh rates, such as in the case of EO data. This 

kind of functionality goes to show the potential to be 

achieved by combining a simplified workflow modelling 

language with a dedicated support application like the 

workflow editor.  

 

Figure 7:  FOR-EACH workflow - WorDeL syntax 

EFFICIENCY AND USABILITY EVALUATION 

As a measure of the WEA’s usability we have decided to 

prove its viability as a process description tool by 

subjecting it to a series of stress tests involving the 

development of increasingly complex workflow scenarios. 

These tests are concerned with the application’s ability to 

perform its tasks in conditions involving high-level, multi-

layer processing workflows. They closely follow the 

application’s usage of the CPU and memory resources. 

Given that the application was developed in Java, we have 

employed the VisualVM tool in order to monitor the 

resource utilization within the java virtual machine (JVM). 

The tests have been run on a single, mid-tier, Windows-

based desktop workstation, with a four-core 3.20GHz CPU, 

8GB of RAM and a maximum JVM heap size of 2GB. 

These tests have been performed as part of the BigEarth 

project in order to ascertain the viability of the platform at 

the user interface level, under various stress conditions 

dictated by the complexity of the workflow models. The 

following sections will present our results. 

Workflow Operator Capacity 

This is the most basic test, and it attempts to determine the 

maximum number of operators within a single workflow 

that the application can manage to process while 

maintaining interface responsiveness. We henceforth define 

the application’s behavior as meeting the responsiveness 

criterion if the application manages to process the workflow 

description within a five seconds time limit. 
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For this test, we have procedurally generated WorDeL 

workflow descriptions housing increasing numbers of 

operators. The following figures present the relationship 

between the number of nodes within a given workflow and 

the resources required by the editor application in order to 

process them. Figure 8 and Figure 9 show the memory and 

CPU loads observed while monitoring the resource 

consumption of the java virtual machine. 

 

Figure 8:  Operator capacity – memory load 

 Figure 9:  Operator capacity – CPU load 

This test revealed promising results, with the application 

proving able to handle up to 1000 operator instances within 

a single workflow description file. As seen in the charts, the 

CPU utilization evened out at about 60%. After a threshold 

of around 1050 operators, the application itself would 

become blocked and cease to respond. Following an 

analysis of the program, we found that the limiting factor 

was with the applications display area, which was unable to 

generate visual representations for workflows with more 

than 1050 nodes. A number of 1000 operators within a 

workflow is however, more than reasonable, since such a 

workflow would really be too complex for any user to 

grasp. This number of operators comes with pretty modest 

memory requirements (roughly 90MB). Looking at the 

memory usage chart, one can notice a steep increase after 

about 200 nodes per workflow (circa 43MB of JVM 

memory). However, in terms of workflow size, even this is 

quite a large number, as in real world scenarios users would 

break up such complex designs to make them more 

manageable. 

Included Workflows – Horizontal Test 

The second test starts from the reasonable assumption that 

users would tend to fragment larger, complex workflows 

into smaller pieces and make use of the include mechanism 

in order to make their designs more modular and easier to 

understand and employ. Therefore, the test was intended to 

determine the upper limit of the number of include 

statements within a single workflow description file. In this 

case, each include statement represented one external file, 

containing one workflow description.  

The results of this test proved particularly successful, as 

seen at first glance at the figures 10 and 11. We managed to 

process workflows with upwards of 2200 included files, 

before reaching the responsiveness limit of 5 seconds for 

the main workflow. In the case of this test set we got quite 

significant memory hogging, since the application needed 

to open, parse and store the contents of each description file 

- and it does that for upwards of 2200 files. 

 

Figure 10:  Horizontal include test – memory load 

 

Figure 11:  Horizontal include test – CPU load 

While the resources required to reach the 2200 included 

workflows limit are not negligible, the fact that the 

application can achieve this has relevance for the 

description method as a whole. This is because, to build 

workflows of even moderate complexity, a user needs to be 

able to partition the design and rely on externally 

referenced workflows to even stand a chance of grasping its 
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functionality. Thus, the development of ever more complex 

included workflow networks is bound to put a strain on the 

application’s capabilities to process them. In light of the 

obtained results, we ascertain that a number of 2200 

included workflows is a reasonable achievement which 

could allow for the definition of medium to high-

complexity designs without much of an effect on the 

application’s responsiveness. 

Included Workflows – Vertical Test 

The previous test was meant to ascertain the number of 

maximum allowable included workflows within a single 

description file – a horizontal, or breadth-wise test. To test 

the capabilities of the include mechanism, we decided to 

also perform a vertical, or depth extension test. To this end, 

we have generated workflows with increasing numbers of 

include levels. To illustrate an example, we’ve defined a 

workflow description file containing one reference to an 

external file as being a two-level include workflow. 

Following our tests, we managed to process workflows of 

up to a depth of 2000 include levels.  

As seen in figures 12 and 13, we managed to get similar 

results to the horizontal tests, both in terms of included 

workflow numbers and resource requirements. 

 

Figure 12:  Vertical include test – memory load 

 

Figure 13:  Vertical include test – CPU load 

 

Nested Workflow Repetitions 

The fourth and final test set was aimed at gauging the 

ability of the application to service the needs of the user in 

terms of the for-each loop employment (as mentioned 

within the last section). Specifically, we wanted to 

determine the application’s ability to deal with multiple, 

nested for-each loops. The for-each example showcased 

previously was a one-level loop. A two-level nested loop 

would involve the processing of a for-each workflow inside 

another for-each element. This raises a number of issues, 

the first of which would be the required inputs. A two-level 

for-each loop would work on a list containing lists of 

elements. Therefore, even such a nester loop could prove 

challenging to understand and effectively employ, with 

three and four level loops probably being the maximum 

actual useful depth.  

Even though the usable depth level of a for-each loop 

would probably be situated at about two or three, we 

wanted to prove the capabilities of the application and the 

language itself. Therefore, we started by dynamically 

generating input file lists, and incrementally building multi-

level lists, which we employed as inputs for multi-level for- 

each loops.  

 

Figure 14:  Nested for-each loop test – memory load 

 

Figure 15:  Nested for-each loop test – CPU load 

As seen in figures 14 and 15, we managed to process 

workflows of up to 19 nested loops, by which point we got 

to the limits of our available resources. In this case, the 

memory load was the first to reach its limit, with CPU loads 
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following closely behind. Considering the previously 

mentioned facts, this is a pretty impressive result, as its 

shows the potential of the WorDeL language and its 

application in helping to define high-level process 

descriptions. 

CONCLUSIONS 

To increase the effectiveness of the workflow modelling 

methodology employed within the BigEarth platform, we 

have developed a support editor application, designed to 

help the user visualize and modify the workflow model in a 

simplistic and intuitive manner. The application provides 

close support for visualizing the workflow model, allowing 

for in-depth, multi-layered workflow analysis. This is 

meant to offer a simple, interactive and intuitive manner of 

defining processing algorithms, without requiring any 

programming experience from the user’s part. 

Throughout the paper we have touched upon the editor 

application’s design and purpose and have shown its use in 

helping the user develop workflows of increasing levels of 

complexity. While simple workflows certainly have their 

merits in that they are quick and intuitive to set up, 

sometimes there are scenarios in which more complex 

setups might prove more effective. Such is the case of the 

workflow include and for-each mechanisms. In these 

situations, relying on the specialized model visualization 

tools offered by our application can greatly help the user in 

grasping the inner workings of a given design. 

The stress test that we ran on the editor application show 

that it can easily provide support for the definition and 

processing of workflows consisting of considerable 

numbers of elements and levels of complexity. With these 

results, one ca conclude that our application can help 

provide a suitable interface between the user and the high-

performance processing network constituting the BigEarth 

platform. Ultimately, the platform as a whole can provide 

users lacking programming skills with a simple and 

effective way to build and run parallelizable tasks over 

large data volumes while taking advantage of the 

capabilities offered by a network of processing nodes. 
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