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ABSTRACT 

We explore in this work users’ perceived workload, 

desirability, and usability of selecting mid-air targets 

representing TV menu options anchored to physical loci in 

3-D space. Toward this end, we introduce a gesture-based 

selection technique and a spatial user interface for Smart 

TVs that consists of shortcuts to TV channels located in 

mid-air in front of the user’s body. Target selection is 

implemented with pointing and hand gestures recognized 

with the Myo armband. Ten participants evaluated our 

prototype and were elicited for feedback. We report 

empirical results about perceived usability (SUS=77.8), 

desirability (high frequency of positive connotation words), 

and workload (TLX=43.9) of our gesture-based selection 

technique and spatial user interface and discuss future work 

directions. 
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INTRODUCTION 

Interactive television and Smart TVs have witnessed 

remarkable progress facilitated by advances and 

developments in display technology [28,29,44], smart 

devices and implementation of second-screen TV watching 

scenarios [13,15,36], connecting the TV to the Internet and 

to Internet-of-Things (IoT) devices and smart spaces [27, 

32,41,53], new user interface designs for television 

powered by Augmented Reality (AR) technology [19,20, 

49], and new human sensing techniques [8,50,51] that 

enabled rich interactive experiences for users. Controlling 

the TV set has benefited from all these developments. Prior 

work has demonstrated diverse input modalities for viewers 

to operate their TV sets with smart mobile devices, such as 

tablets and smartphones [5,6,23,25], using voice input 

[39,40], free hand movements and whole-body gestures [12, 

47,52], or by operating augmented TV remote controls 

[1,46]. Some of these innovative input devices and 

techniques have already found their way from research 

laboratories and scientific publications to the industry, 

being considered by Smart TV manufacturers for their top 

products [26,34,42]. 

However, current input techniques for operating the TV set 

have their shortcomings. For example, voice input may be 

affected by miss-recognition [18]; gesture input may 

require a training period for users to learn to execute 

commands correctly and accurately, and the gesture set 

design must take into account many usability criteria, such 

as gestures that are ergonomically easy to perform and that 

bear an intuitive mapping to the TV functions they execute 

[47,52]; physical remote controls can get lost or need 

maintenance, such as the need to periodically cleanse them 

or change their batteries. Therefore, there still is room for 

exploring new input devices and techniques to control the 

Smart TV effectively. 

In this paper, we focus on mid-air gesture control for 

operating the TV set. Within this specific application 

context, we collect users’ feedback to understand usability 

aspects about target selection from invisible menus 

anchored in mid-air. Specifically, we investigate users’ 

perceived usability, desirability, and workload of our 

gesture user interface. Our contributions are as follows:  

1. We introduce a gesture-based user interface for 

television control operated by an invisible menu 

located in mid-air in front of the user’s body. We 

 
Figure 1: Snapshot of our spatial user interface and 

prototype for Smart TVs. In this picture, the user changes 

the current channel by pointing to an active locus in mid-

air. Pointing and hand gestures are detected by a Myo 

device worn on the dominant hand. 
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present the technical implementation of our prototype 

(Figure 1) using the Myo armband [24]. 

2. We present empirical results from a user study with 

N=10 participants conducted to understand the 

perceived usability, desirability, and workload of our 

midair gesture user interface. Our findings reveal a 

good level of perceived usability (SUS = 77.8), many 

positive appreciations and feedback, such as a system 

that is easy to use, friendly, and intuitive (reflected in 

the 84 words selected by our participants with the 

Microsoft Desirability Toolkit), but also high physical 

demand (NASA TLX = 64 on the 100 scale). 

RELATED WORK 

In this section, we present an overview of previous work on 

mid-air user interfaces, including gesture-based input, and 

discuss interactive prototypes that used the Myo armband, 

while focusing on applications for Smart TVs. 

Gesture Input with the Myo Armband 

The Myo armband is a wearable gesture input device that 

reports the electrical activity of forearm muscles and hand 

orientation and acceleration. With the embedded 9-axis 

IMU, Myo can be used to recognize 3-D gestures in mid-

air, while the electromyography measurements (EMG) at 

forearm level are used to detect hand poses and gestures. 

The default setup of Myo can recognize five gesture types: 

double tap, fingers spread, wave right, wave left, and fist; 

see Thalmic Labs [24]. 

Myo has found applications in a variety of domains, 

ranging from healthcare [22,33,43] to virtual and 

augmented reality [33,45] and gesture user interfaces 

[11,21]. In healthcare, for instance, one immediate use of 

Myo is to collect patient data. In this direction, Koskimäki 

et al. [22] developed “MyoGym,” an application for 

monitoring user activity during training. MyoGym was 

validated with a controlled user study that evaluated 10 

participants performing 30 gym exercises. Another use for 

Myo in healthcare has been to record and report 

electromyography readings as an alternative to expensive 

clinical equipment. The system developed by Tabor et al. 

[43] implemented EMG recording and analysis to help 

patients train their muscles to accommodate easier to 

prosthetics. Training was achieved with a survival style 

game, “The Falling of Momo,” where the user had to 

navigate a monkey on moving platforms and avoid dangers 

along the way. To make the monkey advance, muscle 

activation was required, sensed through Myo’s array of 

electrodes. The assistive system developed by Munroe et al. 

[33] for children with cerebral palsy also employed a 

computer game: children performed squeeze gestures on 

objects displayed on AR glasses. Other applications of Myo 

include virtual reality or enhancing human performance. 

For example, Tsai et al. [45] preferred the Myo armband for 

their virtual reality system over other gesture input devices, 

such as Leap Motion [17], as Myo proved more flexible in 

terms of the input space in which users performed gestures. 

Dalmazzo et al. [11] used Myo to record the electrical 

activity exerted by the left hand of a user playing the violin. 

Based on data from Myo, machine learning models were 

implemented to help users learn and perfect their violin 

playing skills. 

Kerber et al. [21] conducted an experiment to evaluate the 

recognition accuracy of the five default gestures provided 

by Myo’s software development kit, which was reported at 

68%. The authors proposed an improved recognition 

algorithm and extended the original set to a total of 40 

gestures, for which they reported a recognition accuracy 

rate of 95% [21]. 

Gesture User Interfaces for Smart TVs 

Gesture-based user interfaces for controlling the TV set 

proposed in prior work addressed a wide range of TV 

functions to control, from standard tasks, such as changing 

channels and adjusting the audio volume [47,52] to 

operating complex functions specific to multi-screen 

television systems [46,49]. 

Bailly et al. [1] observed that users perform yaw and pitch 

movements naturally when operating the TV remote control 

and re-purposed such movements into actual commands 

with their “gesture-aware” remote control. Other studies 

also focused on enhancing or even replacing the standard 

TV remote. Devices such as the Wii Nintendo remote [46, 

47,49], the Microsoft Kinect sensor [47,50], or the Leap 

Motion controller [51] have been examined to design new, 

augmented TV remotes that can sense users’ actions, 

gesture commands included. For example, the 

“RemoteTouch” system of Choi et al. [9] employed a 

touchpad; Vatavu [48,49] used the Wii remote control; and 

the elicitation study of Zaiţi et al. [52,54] reported users’ 

preferences for mid-air hand gestures performed with the 

Leap Motion controller. 

New user interfaces and input devices have been proposed 

for multi-screen television [48,49]. For example, the 

Nintendo Wii controller was re-purposed for detecting 

pointing movements and recognizing motion gestures to 

enable users to control multiple TV screens [49]. Plaumann 

et al. [38] examined mid-air interactions for multiple users 

to control the TV at once. Results showed that gestures 

performed by multiple users may cause system 

contradictions that, when handled improperly, lead to 

suboptimal user experience. 

A MID-AIR GESTURE USER INTERFACE FOR TV 

We designed and implemented a gesture-based user 

interface for controlling a Smart TV using the Myo 

armband [24]. 

Apparatus and Development Tools 

The user interface was implemented using HTML 5, CSS 3, 

and JavaScript 1.7, and was tested under Google Chrome 

(v66.0.3359.139) on a laptop PC connected to a large, 55-

inch Smart TV (Samsung UE55D). The communication 

between the user interface running in the web browser and 
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the Myo armband was implemented with Myo’s JavaScript 

SDK available to developers from the Myo web page [24]. 

For the purposes of our evaluation to collect user feedback 

for our gesture-based user interface, we simulated television 

control by playing video content streamed from YouTube 

using HTML 5 controls and JavaScript API. 

User Interface Design and Implementation 

Our interface enables control of TV channels by detecting 

pointing and hand gestures. Pointing is performed to 

physical loci in mid-air that constitute an invisible menu of 

TV channels located in front of the user’s body. For our 

study, we designed the spatial menu with nine options or 

shortcuts to TV channels, which we positioned in space 

following a 3×3 matrix-like arrangement. The number of 

channels was informed by the upper limit of Miller’s 

“magical” number 7 ± 2 that reflects “the span of absolute 

judgment and the span of immediate memory [that] impose 

severe limitations on the amount of information that we are 

able to receive, process, and remember”; see Miller [31]. 

The matrix arrangement was chosen to mimic the 

placement of numerical keys on familiar devices, such as 

TV remote controls or the T9 keyboard. Channel locations 

were registered before the experiment. 

The user interface shown on the TV screen displays the 

current channel in the top left corner. To implement 

selection of a new channel, we required two interactive 

gestures, for which we chose Myo’s double tap and fist due 

to their ease of execution; see Figure 2 for visual 

illustrations of these gestures. When the user performs the 

double-tap gesture, the “search for channels” mode 

becomes active. In search mode, the orientation of the hand 

in front of the body is used to locate channels mapped to 

physical loci in space. The closest channel in 3-D is 

identified and relevant information is displayed at the 

bottom part of the TV screen: the channel’s number, name, 

and a short description of its contents; see Figure 1. 

Performing the fist gesture confirms the selection. 

Pointing with the Myo Armband 

Myo reports its orientation in the form of a unit quaternion 

qt = (wt, xt, yt, zt) ∈ [0,1]4. To use Myo in pointing mode, 

quaternions need to be corrected by applying an offset with 

respect to a known, fixed location in space. The offset qoffset 

= (woffset, xoffset, yoffset, zoffset) is user-dependent and we 

determined it during a short calibration phase by asking 

each user to point their arm towards the TV. To apply the 

offset, the quaternion qt reported by Myo at time t is 

multiplied with qoffset, which corresponds to the rotation qr = 

(wr, xr, yr, zr) between qt and qoffset, as follows:1 

                                                           

1See 

https://developer.thalmic.com/docs/api_reference/platform/classm

yo_ 1_1_quaternion.html  for details 

 

Figure 2: The two Myo gestures [24] used in our prototype: 

double-tap (left) and the fist gesture (right). 

wr = woffset · wt − xoffset · xt − yoffset · yt − zoffset · zt 

xr = woffset · xt + xoffset · wt + yoffset · zt − zoffset · yt 

yr = woffset · yt − xoffset · zt + yoffset · wt + zoffset · xt 

zr = woffset · zt + xoffset · yt − yoffset · xt + zoffset · wt 

(1) 

While in search mode, the orientation of the hand is used to 

identify the most likely channel in 3-D to which the user is 

pointing. To this end, we compute a measure of distance 

between the orientation of the hand (qhand) and the 

quaternion corresponding to a given channel 

location/orientation in space (qch) using the following 

formula [16]: 

d(qhand, qch) = 1 − < qhand, qch >2 (2) 

where < qhand, qch > denotes the inner product: 

< qhand, qch >= whand · wch + xhand · xch+yhand · ych + zhand · zch 

The result is converted to an angle measurement: 

θ(qhand, qch) = acos (1 − 2 (1 − < qhand, qch >2)) (3) 

The following pseudocode describes the Nearest-Neighbor 

classification algorithm that we use to identify the TV 

channel pointed by the user in search mode. The 

pseudocode assumes that qchannels[..] represents an array 

of quaternions corresponding to the orientations of the TV 

channels in the vertical plane in front of the user’s body, 

while q describes the orientation of the hand at time t. 

function findChannelPointedByHand(Quaternion q): 

        minimum = maxfloat 

        selectedChannel = na 

        for i, channels, i += 1: 

                d = quaternionDistance(q, qchannels[i]) 

                if d < minimum: 

                        minimum = d 

                        selectedChannel = qchannels[i] 

                endif 

        endfor 

        return (selectedChannel) 

 

 

https://developer.thalmic.com/docs/api_reference/platform/classmyo_%201_1_quaternion.html
https://developer.thalmic.com/docs/api_reference/platform/classmyo_%201_1_quaternion.html
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USER STUDY 

We conducted a controlled experiment to understand the 

perceived usability, desirability, and workload of our mid-

air gesture-based user interface for Smart TVs. 

Participants 

Ten (10) participants (5 male, 5 female) volunteered for the 

experiment, ages between 22 and 28 years old (M=24.6, 

SD=2.3 years). Nine participants were right handed. 

Participants reported spending on average 2.4 hours on a 

daily basis (SD=0.95 hours) watching TV or streaming 

online videos. 

Task 

The experiment started with an accommodation phase, 

during which participants followed a tutorial on how to use 

Myo and practiced the double tap and fist gestures. The 

next step consisted in trying out our prototype, 

accommodating to the user interface and the matrix-like 

arrangement of TV channels in mid-air. Once participants 

were confident about their performance, they were asked to 

change channels by following the instructions of the 

experimenter, e.g., “Please change the TV channel to 

channel #7.” The order of channels was randomized across 

participants. At the end of the experiment, participants were 

asked to fill in a questionnaire with demographic 

information, take a NASA TLX test [35] using an on-line 

version,2 fill in the SUS questionnaire [7], and select as 

many words as they wished from a Microsoft Desirability 

Toolkit sheet [4] to describe their experience with our 

gesture-based spatial user interface for Smart TVs. 

RESULTS 

In this section, we report our participants’ subjective 

perceptions regarding usability, desirability, and workload. 

Usability 

The SUS tool [7] consists of ten 5-point Likert scale 

questions, for which the answers are aggregated into a score 

from 0 to 100, with 100 denoting a perfect usability result. 

The average SUS score for our prototype was 77.8 (SE = 

5.3).3 Based on prior work that analyzed the distribution of 

SUS scores [2,3], our result is above average near the 

“good” threshold of 70 suggested by Bangor et al. [2] and it 

falls inside the “high acceptability” range, according to the 

scale of Bangor et al. [3]. As participants experienced 

problems with their gestures not always detected by Myo, 

we have reasons to believe that the SUS score is likely to 

increase with more accurate recognition algorithms [21]. 

Desirability 

Our participants selected an average of 8.4 words (SE = 

1.4) from the Microsoft Desirability Toolkit sheets [4] to 

describe their experience with our prototype. 

                                                           

2http://www.keithv.com/software/nasatlx/  

3We report standard error values (SE) instead of the standard 

deviation of the sample (SD) to show how far our sample mean, 

77.8 in this case, is likely to be from the population mean. 

 

Figure 3: Word cloud generated using the 84 words selected 

by our participants with the Microsoft Desirability Toolkit [4] 

to describe their experience with our prototype. Note: world 

cloud generated with https://worditout.com. 

Figure 3 shows a word cloud generated using all the 84 

words selected by our participants. We found that the words 

with the highest frequency were positive, such as easy to 

use (frequency = 6, more than half of the participants 

considered the user interface to be easy to use), friendly 

(f=5), attractive (f=5), satisfying (f=4), intuitive (f=4), 

creative (f=4), and innovative (f=4). 

Perceived Workload 

The NASA TLX test measures the subjective rating of 

perceived workload on a scale from 1 (low perceived 

workload) to 100 (high workload) along six dimensions: 

mental demand, physical demand, temporal demand, 

performance, effort, and frustration. Figure 4 shows the 

perceived workload, averaged across all participants, for 

each dimension. 

The mental demand scale reports on the amount of 

cognitive effort required to use our prototype. Results 

showed a mental demand of 42 (SE=6.8), showing a 

medium level of cognitive effort to locate and select TV 

channels in space. This result is explained by the fact that 

channels were arranged in a matrix-like structure, easy to 

visualize and operate in space. Also, the experiment 

included an accommodation phase, during which 

participants practiced Myo gestures and selected TV 

channels. We estimate the value of the mental demand to 

decrease with further practice. 

Physical demand measures the amount of physical effort 

required to use our prototype, for which we found an 

average value of 64 (SE=7.2). This high level of physical 

demand is a direct effect of using the Myo armband in our 

prototype, which required firm gestures to deliver accurate 

recognition results from electromyography measurements. 

As reported by Kerber et al. [21], the standard gesture 

recognition algorithm delivered with the Myo’s software 

development kit [24] has an accuracy rate of just 68%. 

Therefore, there were times when our participants had to 

perform a gesture repeatedly until it was detected. We 

believe that this aspect affected the perceived level of 

physical demand. This result was complemented by a 

http://www.keithv.com/software/nasatlx/
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frustration level of 29.5 (SE=7.2) and a perceived effort of 

43.5 (SE=4.3) − the effort scale indicates how hard 

participants had to work on both mental and physical levels 

to accomplish the tasks of the experiment. 

Temporal demand evaluates the pressure that participants 

felt during the experiment. On average, temporal demand 

was 41 (SE=4.1). During the experiment, participants were 

asked to change channels as fast as possible to stimulate 

performance. Thus, the NASA TLX test reflected the 

pressure induced by the experimental setup, which we 

expect to be much less during normal everyday use. As 

participants had to perform firm gestures for proper 

recognition, this fact led to the perception of high effort. 

The performance scale measures how successful 

participants thought they were with our prototype. Overall, 

our participants scored an average of 34.5 (SE=7.4). The 

reason for a low perceived performance may be due to Myo 

not detecting hand gestures from time to time. 

CONCLUSION AND FUTURE WORK 

We presented empirical results on the perceived usability, 

desirability, and workload of a gesture-based user interface 

for Smart TVs consisting in pointing to active loci in mid-

air. The magnitude of the SUS usability measure and the 

high frequency of positive words (the Microsoft 

Desirability Toolkit) employed by participants to describe 

their experience with our prototype showed good usability 

and high desirability, despite medium to high workload 

indicated by the TLX test. 

These results recommend future work directions. Firstly, 

our sample of participants was too small to run statistical 

tests,4 such as to understand the effect of gender or spatial 

orientation skills on user performance. Secondly, other 

gesture sensing devices might alleviate the problems of 

Myo not detecting gestures effectively. Examples include 

the Microsoft Kinect sensor [30,47,50], the Leap Motion 

controller [17,52,54], or wearable devices, such as 

                                                           

4 For example, it would have been interesting to contrast the 

performance of men and women with our user interface, or of 

different groups of participants with different spatial orientation 

skills, but the power of the t-test was estimated at about 20% for a 

δ -level of 0.8. 

smartwatches [10], smart rings [14], or networks or body 

sensors [37]. Another direction of interesting work is 

understanding users’ preferences for customization of mid-

air menus for Smart TVs with both custom gestures and 

custom channel locations in 3-D space. 
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