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ABSTRACT 

The present paper illustrates the main methods that 

can be employed to build a speech and speaker recognition 

system for Romanian language. To this aim, we start by 

presenting the classical approach of extracting the Mell 

Frequency Cepstral Coefficients features from a dataset of 

speech signals (which represents some words/phrases in 

Romanian language). The recognition is done either by 

using Dynamic Time Warping (DTW) or by training an 

Convolutional Neural Network. A comparison between 

these models is presented and commented.  

Once such a system is developed, we proceed 

further by implementing an application that listens and 

executes some predefined commands. In our setup, the 

system performs two main tasks: it recognizes the user by 

his voice and executes a task corresponding to the vocal 

command.  

Source code can be downloaded at:  click to download 
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STATE OF THE ART 

Nowadays, most of speech recognition systems 

perform short time spectral analysis in order to obtain the 

Mell Frequency Cepstral Coefficients (MFCC) as features. 

For speech and speaker recognition, the feature extraction 

module is the same. For speaker modeling, Hidden Markov 

Models (HMM) can be used [15][19], with Vector 

Quantization technique[12]. In this paper Speaker 

recognition was performed by implementing the Nearest 

Neighbor algorithm. In proceeding [23] speech recognition 

for Romanian language is performed by implementing 

HMM in spoken dialogue systems. Other approaches to this 

topic are hosted by Google (i.e. Google translate), which 

offers the final version of the software or imported as a 

library, but does not allow access to see the source code of 

the application. 

 

INTRODUCTION 

Automatic natural language processing is a wide subject at 

the border between scientific fields such as formal language 

theory, statistics, artificial intelligence, signal processing, 

and linguistics and has had recently a steady development 

due to the technological progress. 

An implicit application of this field concerns the human 

interactions with a computer using the natural language as a 

means of communication (regarded as a tool used by people 

to express their thoughts and make themselves understood).  

In this respect, voice interaction represents a complex task 

for an automated system as it generally assumes solving 

some fundamental problems:  

• recognizing different users by their voices;  

• recognizing the words and sentences spoken by the 

user;  

• understanding the semantics of the transmitted 

message; 

• developing an answer that is directly and 

accurately related to the transmitted information 

(by extracting and processing the meaningful 

information out of the message); 

• translating the answer into a voice form (that is 

human understandable).  

As the natural language represents the best way of 

communication for humans, we aim to develop a system 

from scratch in which the human-computer interaction is 

achieved through the use of speech. Consequently, in order 

to create such a system we firstly recorded a dataset of 

speech samples. We considered a set of words and for each 

one of them we recorded 5 different speakers for 100 times, 

the goal was to capture a wide variety of word 

pronunciation. We recognize that this is one of the 

limitations, at the moment the dataset is made up of only 

700 words. There is no free dataset available, so we had to 

register one. 

Romanian speech recognition was done in two ways. 

The first one employs the Dynamic Time Warping (DTW) 

algorithm and the second one is using Convolutional Neural 

Network (CNN). For both methods we have used as input 

some features extracted from the dataset - they facilitate the 

subsequent learning methods.  

https://drive.google.com/drive/folders/1WD_Wa_GfoWs00cbyQwHPVtYVUNf5x4Gi
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Feature extraction is done by performing the following 

steps:  

1) silence removal (a step necessary to determine the words 

boundaries in the input sound);  

2) framing (a step that splits the sound wave into chunks 

out of which the phonemes will be detected);  

3) windowing (a step necessary  when one wants to analyze 

the periodic behavior of the sound wave in a short 

duration); 

4) Fast Fourier Transform (FFT) (a step necessary to map 

time domain signal into frequency domain)[21]; 

5) Mell Filter (in order to extract the energy from each 

frequency band); 

6) Discrete Cosine Transform (DCT) (a step necessary to 

map the signal from frequency domain to time domain). 

The result of feature extraction is a feature vector which 

will be used by the pattern recognition system to map the 

input sound to a word (or a sequence of words) or to 

recognize the Speaker.  

IMPLEMENTATION 

Elements of acoustic wave theory 

A sound wave represents a longitudinal wave; it defines a 

series of alternative compressions and extensions of the 

environment. An acoustic wave is characterized by several 

properties: 

The frequency of a sound is the number of periods or 

oscillations that a sound wave takes in the unit of time. The 

standard unit for frequency measurement is the Hertz defined 

as 1 Hz = 1 vibration / 1 second. The volume of sound wave 

refers to the sound intensity. Sound intensity measures the 

energy transferred by the sound wave in the unit of time 

through the unit area of a surface orthogonal to the direction 

of the wave propagation. The sound intensity is expressed in 

decibels (dB). The amplitude of the sound wave represents 

the maximum elongation registered by the points from the 

elastic medium with respect to the equilibrium position. The 

amplitude of vibrations is proportional with the intensity of 

the sound. Timber refers to the property of a sound to 

distinguish from another one produced under identical 

conditions by different sources; the timber of a voice is given 

by the superior formats (the spectral peaks of the sound 

spectrum). 

As is stated in [13], sounds are complex combination of 

vibrations (with different frequencies and amplitudes). For 

example, in Figure 1 three tones with different 

characteristics are represented: a) frequency 400 Hz, 

amplitude 0.2; b) frequency 550 Hz, amplitude 0.4; c) 

frequency 800 Hz, amplitude 0.3. 

 

Figure 1. Three sounds (tones) with different frequencies and 

amplitudes. 

The composition of these three waves is illustrated in 

Figure 2.  One can notice that the result is no longer a 

sinusoid (however, the oscillatory behavior is preserved). 

 

Figure 2. The composition of the sound waves represented in 

Figure 1 

The inverse problem (that is, obtaining the frequencies that 

compose an acoustic signal) is done by using the Discrete 

Fourier Transform (DFT).  Fast Fourier Transform represents 

a fast algorithm for computing DFT. 

A sound spectrum is a representation of a sound in terms of 

the amount of vibration at each individual frequency. For 

instance, the sound spectrum for the sound wave given in 

Figure 2 is presented in Figure 3. 

 

 

Figure 3. The sound spectrum for a sound wave 

Once the sound spectrum is obtained, an important task in 

speech recognition (related to recognition of vowels) is the 

identification of formants – the peeks from the sound 

spectrum.  

Audio format 

The quality of a digital audio recording depends mainly on 

two factors: the sample rate and the sample format or bit 

depth. In order to save memory, the items from the dataset 

were recorded using a fair quality: a 22050 Hz sample rate, 

16 bits unsigned sample format, mono channel. 
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Feature extraction 

The information contained in a speech wave must be 

extracted as a word sign. Actually one needs to process the 

short term amplitude spectrum. The feature extraction 

algorithm is called Mell Frequency Cepstral Coefficients 

(MFCC), this is a standard method to get the representative 

points from feature wave and it is widely used for speech 

and speaker recognition[22]. The motivation of using 

MFCC is because one wants to mimic the human hearing. 

Mell scale is linear below 1 kHz for frequency band and it 

is logarithmic above. The MFCC algorithm consists of 

several parts: 

 

Figure 4. Feature extraction 

Pre-Processing 

The audio signal is a continue wave which contains not 

only meaningful information about the speech, but also 

silence and noise. In order to detect the speech segments, 

one has to exclude silence and noise from the speech wave. 

One common algorithm for silence removal is Endpoint 

detection. It consists of 4 parts [24]. 

• One has to compute the mean µ and the standard 

deviation σ for first 200ms. This is done because 

the first 200ms samples are usually the silence 

(when people speak, they actually need some time 

for breathing; these 200ms samples represent the 

background noise). 

• Next, one has to go from the first sample to the 

end of the wave and check if  

|x- µ|/ σ > 3 or not. If it is greater than 3, then the 

sample is voiced, else it is unvoiced. The threshold 

is 3 and can be modified, depending on the quality 

of the microphone. 

• one needs to divide the whole speech wave intro 

frames of 10ms and mark each frame with 1 if it is 

voiced and 0 is it is unvoiced. 

• One has to go through the entire vector of speech 

and collect the frames labeled with 1 (they 

represent the voiced frames). 

 

 

Figure 5. Audio signal for speech “Buna ce faci” 

(audio signal is captured with Audacity) 

 

 

Figure 6. Result of silence removal 

The algorithm was used for splitting words from a speech 

wave. 

Framing and windowing 

Because Speech is a continuous signal, it means that 

statistical properties are different during the time. We need 

to extract feature points from a small window. We assume 

that statistically the signal does not change much. We shall 

frame signal into 20-40ms frames. If the frame is too short, 

we lose the relevant information, if it is longer the signal 

changes too much, so we can not get relevant points. We 

use block of frames with 25ms with overlapping 10ms. 

 

Figure 7. Framing the audio signal 

 After framing the audio signal, we obtained a list of 

frames. Using Audacity one can zoom in the frame and see 

how the speech wave is represented (see Figure 9). 

Extracting the spectral features of each frame was done by 

using the FFT algorithm (because FFT algorithm has as 

input a sequence of length of power of 2, in our setup each 

frame has 512 data points).  

In order to eliminate/enhance some spectral features of the 

audio signal we used the Hamming window. The equation 

describing the window is: 
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where  

 

 

Figure 8. The Hamming window 

After framing, we multiplied each frame with the Hamming 

window. If the signal is denoted by s(n), where 1 n  N, N 

being the length of each frame, then the result is: 

 

The resulted signal takes the shape of the window and 

become smoother and flatter. 

 

Figure 9. A sound wave before and after windowing 

One can notice that at both ends of the frame, the 

amplitude of the signal is reduced; consequently, the 

periodic „jumps” that appear while computing DFT  

are more diminished (recall that DFT assumes the 

existence of a infinite long signal while here we 

worked with a finite one). It follows that, by using the 

Hamming window, some artificial peeks in the 

spectral analysis are removed, while the „useful” ones 

are preserved.  

 

Short time energy and Zero crossing rate 

After framing and windowing one needs to remove the 

silence from each frame. To this aim we computed the 

energy of each frame by the formula: 

 

 

Figure 10. Plot of the sound energy for a sound wave 

One can notice that energy is high for the “speech” frames 

and low for the “silence” ones (because in the Energy 

formula, highest amplitude values contribute mostly, see 

Figure 10).  It follows that one can define a threshold based 

on which the frames are classified. 

However, it is not enough to calculate the energy for 

removing the silence. In our model for speech recognition 

we also calculated the zero crossing rate (ZCR) for each 

frame. 

 

 

Figure 11. Plot of the zero crossing rate 

Statistically it was determined that ZCR has higher values 

in the regions corresponding to silence and a smaller values 

in the regions corresponding to speech (see Figure 11).  

By computing for each frame the ZCR and Energy we were 

able to remove the silence from each frame[20].  
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Fast Fourier Transform 

Fourier Transform gives an alternative representation of a 

function by showing how it can be written as a sum of 

sinusoidal functions. 

Fast Fourier Transform is an algorithm used to extract the 

frequencies from a windowed signal. By running the FFT 

algorithm we obtained the energy at each discrete frequency 

band (see Figure 12). 

  

Figure 12. Time domain vs frequency domain 

 The algorithm works with the Complex numbers, because  

𝑹𝟐≈ C.  We assume that each point from 𝑹𝟐  has the 

coordinates (x ,y), and each point can be viewed as a 

complex number x + i* y. 

The general formula is: 

𝑋𝑘 = ∑ 𝑥𝑛
𝑁−1
𝑛=0 *𝑒−

2𝜋𝑖𝑘𝑛

𝑁  

Our speech is a sum of the sinusoids functions. Using the 

Fourier transform we want to separate them in functions 

with the same frequency. 

Using the Euler’s formula 𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥 our 

formula becomes: 

𝑋𝑘 = ∑ 𝑥𝑛
𝑁−1
𝑛=0 *𝑒−

2𝜋𝑖𝑘𝑛

𝑁  = ∑ [cos (
2πkn

𝑁
) − 𝑖 ∗ sin(

2πkn

𝑁
)]𝑁−1

𝑛=0  

Firstly, we create an array of complex numbers where the 

real part of each complex number is the point from time 

domain speech, and imaginary part is zero. The algorithm 

gets as input a vector of complex numbers and returns 

another vector of complex numbers.  We make this because 

we need to extract the power spectral density from each 

frame. 

 

Figure 13. Power spectral density 

We know that the form of the complex number is            

Z=x +i * y. 

To extract the spectrum we just calculate the module of the 

complex number |Z|= √𝑥2 + 𝑦2  so, we obtain the vector 

of frequencies for each frame. 

MFCC 

An approximation which captures the properties of human 

hearing perception is represented by Mel scale filtering. To 

pass from frequency (Hz) to Mell one needs the following 

formulas: 

 

Fo 

The frequencies range resulted from the FFT algorithm is 

very wide so one has to normalize the voice signal. By 

applying the Mell-Scale filter bank one converts the 

frequency to Mell scale[22]. 

We use these filters to mimic the human hearing. 

 

Figure 14. Mell Filter bank 

We used a set of triangular filters to compute the spectral 

components. We used 26 triangular filters to get the 

approximation of the Mell scale. The input for each 

triangular filter is represented by the corresponding power 

spectrum. The output obtained after applying a filter is a 

vector of spectral energies.  

 

-1  
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After filtering the frequencies one has to sum the 

coefficients and take the logarithm of their values (this 

procedure is also motivated by the human hearing because 

hearing is not linear, by applying the logarithmic function 

one reduces the amplitudes of the frequencies). 

 

Figure 15. Sum & log energy 

 

Discrete cosine transform (DCT) 

Next step one has to go back from frequency domain to 

time domain by performing DCT.  

𝑌(𝑘) =∑cos[

𝐿

𝑙=0

π

𝐿
(𝑙 +

1

2
)𝑚]𝐸𝑘; 0 ≤ 𝑚 ≤ 𝐿 − 1 

We compact the energy from Mell scale and we get 26 

coefficients. We keep only 12 coefficients from 26, because 

higher coefficients are characterized by small changes in 

energy.  Dropping them, we get a small improvement. 

We get feature vector, size = [number of frames, 12] 

This feature vector can be used for pattern recognition, 

using Dynamic Time Warping or for training a 

Convolutional Neuronal Network. 

Dynamic Time Warping (DTW) 

For recognizing a test file one has to compare the test 

feature vector with each feature vector from the dataset.  

However, the test and the training files have different 

lengths. Consequently, the feature vector is a two 

dimensional array (number of frames times number of 

feature points in each frame, i.e. 12). If the vectors were of 

the same length, one could use Euclidean or cosine norms 

to determine the distance between them. The problem is 

how to compute the norm of two time series, which have 

the different length. Dynamic time warping is a dynamic 

programming algorithm for measuring the similarities 

between two time series with different sizes. The algorithm 

assumes that in each point one has to compute the distance 

between the test and reference files in the following way: 

 

Figure 16. DTW 

𝐷(𝑖, 𝑗) = |𝑡(𝑖) − 𝑟(𝑗)| + 𝑚𝑖𝑛 {

𝐷(𝑖 − 1, 𝑗)
𝐷(𝑖 − 1, 𝑗 − 1)

𝐷(𝑖, 𝑗 − 1)
} 

where t is the test vector, r is the reference vector, and D is 

a matrix of distances between two time series. 

The purpose is to minimize the final D(I,J) which represents 

the similarities between the test and reference vectors[16].  

Train-Test Time(minutes) Accuracy (%) 

90% - 10% 4.15 100% 

80% - 20% 8.3 99.9% 

70% - 30% 12.45 99.8% 

Table 1. Testing DTW . 

We have noticed that as the number of test files increases, 

the accuracy rate decreases. This is because the words 

variability decreases there are some words that are similar 

to each other.  

SPEAKER RECOGNITION 

We shall teach the computer to recognize not just the 

speech but also the speaker. A half of work is done by 

feature extraction used by speech recognition. Firstly, we 

shall compute the FFT for each user. Each user shall speak 

the same phrase 3 times (we need this to extract user band 

of frequency)[10]. Then we need to take the maxim 

amplitude of each frequency, and save the point of 

frequency where amplitude is maxim. 

 

Figure 17. Spectrum of speaker 
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From the Figure 17 we see the maximum amplitude of 

frequency. We shall keep the frequency from this point, and 

use it as feature point for speaker recognition. To recognize 

someone, we need to compute the distances between test 

point and each point from dataset, and take the nearest one. 

To optimize the calculations we can use the K-means 

clustering 1D. For each user we will have a centroid, which 

represents all feature points of a specific user. Speaker 

recognition is done with Nearest Neighbor. 

Artificial Neuronal Network 

The main drawback of the DTW is that it takes a lot of time 

to compute the similarity between the test file and whole 

dataset. For example, if the dataset contains 1000 words, it 

will compute 1000 times. To avoid this, we trained a 

Convolutional Neural Network model, so that the test file is 

recognized “instantly”.   

 

Figure 18. Convolutional Neural Network 

We trained the computer to recognize the speech by using a 

neural net defined as in Figure 18. Our dataset consisted of 

700 words (in the future we shall increase it), each word 

being spoken 20 times by different persons, so we got 

different pronunciation for each word. For each file from 

dataset we computed MFCC and extracted feature vectors. 

Feature vectors represented the input data for our neurons. 

For Convolutional Network we used TensorFlow with 

Keras[6]. Firstly, we needed to represent the data in order to 

train our model. We used one hot encoding from Keras to 

represent out labels (labels represent words name). We get 

the unit matrix, with 1 on the main diagonal and 0 in rest. 

Then we split our data in 80% for training and 20% for 

testing. First layer is convolutional 2D [11], with kernel size 

= (2,2) and activation function Rectified Linear Unit (ReLU) 

[3]. This layer creates a convolution kernel that is convolved 

with the layer input to produce a tensor of outputs.  Input 

shape is (20 x 45 x 1), where 20 is the number of feature 

points from each frame, 45 is the number of frames, and 1 is 

the number of channels. Each frame has 20 feature points, 

but not all speech files have the same number of frames. To 

avoid this inequality, we created the same number of frames 

for all files, and the free space was filled with zeros. We used 

ReLU because this activation function makes zero the 

negative weights while leaving the positive weights as they 

are (see Figure 19). 

 

Figure 19. Activation function Rectified Linear Unit 

The next layer in our model is MaxPooling2d with          

pool size = (2,2). It is used to make the down sampling. To 

avoid overfitting in Keras, we used Dropout[1] with α=20, 

that is, our model will drop out 20% of weights and will 

learn only from 80%. Then we used Flatten layer and added 

a fully connected layer with 128 neurons, the activation 

function being the same (ReLU). After another Dropout we 

used a fully connected layer with 7 neurons, (7 because our 

dataset is composed from 7 words, each spoken by 100 

times), activation function being ‘softmax’ [17].  

The Keras model from Figure 17 can be created in Python   

this way: 

model =Sequential() 

model.add(Conv2D(32,kernel_size=(2, 2), 

activation='relu', input_shape=(20, 45, 1))) 

model.add(MaxPooling2D(pool_size=(2, 2)))   

model.add(Dropout(0.2)) 

model.add(Flatten()) 

model.add(Dense(128, activation='relu')) 

model.add(Dropout(0.2)) 

model.add(Dense(7, activation='softmax')) 

We trained our model with four optimizers and the results 

are depicted in Table 1. 

Optimizer Loss (%) Accuracy (%) 

SGD 85.13 14.86 

Adamax 4,47 96.43 

Adam 4.99 95 

Adadelta 2.21 97.78 

Table 2. Training CNN on 150 epochs with different 

optimizers. 

The loss function is categorical cross entropy, it is objective 

function for minimize [2]. It is the sum in the smallest 
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squares. It finds network weights to minimize the training 

error between target and output labels of training examples. 

𝐸(𝑤) = ∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑖)
2

𝑁

𝑖=1

 

Next we update weights by gradient descend: 

𝑤 = 𝑤 − α
∂E

∂w
 

Where w is a weight, α is learning rate and E is total error. 

As optimizer we used Adadelta - an adaptive learning rate 

method for gradient-based optimization algorithm. We 

trained our model for 150 epochs, accuracy is 97.78%. An 

epoch consists of feedforward and backpropagation 

functions. The training was done locally on the computer's 

CPU. The application was implemented in Python, and 

extended on android phone with Android Studio platform, 

using TCP/IP communication.  

 
Figure 20. Graphic user interface of the application 

To compile our model in Keras: 

model.compile(loss=keras.losses.categorical_crossentropy,o

ptimizer=keras.optimizers.Adadelta(),metrics=['accuracy']) 

model.fit(X_train, y_train_hot, batch_size=30, epochs=150, 

verbose=2, validation_data=(X_test, y_test_hot)) 

The application allows the user to interact with the computer 

by using voice authentication and several voice commands. 

 

CONCLUSION 

We observed that the system was very fast when the 

Convolutional Neural Network was used (less than 1 

second for recognizing a phrase on a mid-range personal 

computer). However, CNN accuracy is not 100%. Using 

DTW we achieved 100% recognition, but it takes a lot of 

time. DTW have to match test file with each file from 

dataset, and if our dataset contains 1 million patterns, the 

algorithm will check all of them. To improve our score, we 

need to increase our dataset, more people to record more 

data. Another solution is to combine DTW with Neural 

Network. The Convolutional Neural Network must learn 

how to compare two time series and get the best score in 

less time. In Table 2 we compared the execution time and 

the recognition rate for DTW and CNN. The testing files 

are randomly selected from the dataset. We have noticed 

that by increasing the number of test files, the recognition 

rate decreases for both DTW and CNN.  

 

Number of 

samples 

Time 

(minutes) 
Accuracy (%) 

 DTW CNN DTW CNN 

50 3.05 0.25 100 98.5 

100 6 0.51 100 97.8 

200 13 1 99.95 97.8 

500 30 2.5 99.9 97.3 

Table 2. Time and Accuracy DTW vs CNN 

The final conclusion is that DTW is good to use for small 

data set, as long as the recognition rate is about 99.9%, the 

runtime for the small set of data is acceptable. When we 

have larger datasets, it is recommended to use a 

convolutional neural network because its recognition rate 

can be improved as the number of training files increases. 

Feature work 

In the future, we plan to increase the number of words 

recorded in the dataset. We will model a neural network for 

recognizing the speaker and add more speakers to the data 

set. 
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