
 - 54 -

Speech & Speaker Recognition for Romanian Language

Vezeteu Eugeniu
Faculty of Mathematics and

Informatics

 University “Ovidius” of Constanta
Mamaia 124 Constanta, Romania

vezeteu.eugeniu@yahoo.com

Sburlan Dragos
Faculty of Mathematics and

Informatics

 University “Ovidius” of Constanta
Mamaia 124 Constanta, Romania

dsburlan@univ-ovidius.ro

Pelican Elena
Faculty of Mathematics and

Informatics

 University “Ovidius” of Constanta
Mamaia 124 Constanta, Romania

epelican@univ-ovidius.ro

ABSTRACT

The present paper illustrates the main methods that

can be employed to build a speech and speaker recognition

system for Romanian language. To this aim, we start by

presenting the classical approach of extracting the Mell

Frequency Cepstral Coefficients features from a dataset of

speech signals (which represents some words/phrases in

Romanian language). The recognition is done either by

using Dynamic Time Warping (DTW) or by training an

Convolutional Neural Network. A comparison between

these models is presented and commented.

Once such a system is developed, we proceed

further by implementing an application that listens and

executes some predefined commands. In our setup, the

system performs two main tasks: it recognizes the user by

his voice and executes a task corresponding to the vocal

command.

Source code can be downloaded at: click to download

Author Keywords

Sound processing, feature extraction, pattern recognition.

ACM Classification Keywords

Numerical Algorithms and Problems(fast Fourier

transform), Natural Language Processing (Speech

recognition and synthesis), PATTERN RECOGNTION

(Neural nets, Dynamic Time Warping).

STATE OF THE ART

Nowadays, most of speech recognition systems

perform short time spectral analysis in order to obtain the

Mell Frequency Cepstral Coefficients (MFCC) as features.

For speech and speaker recognition, the feature extraction

module is the same. For speaker modeling, Hidden Markov

Models (HMM) can be used [15][19], with Vector

Quantization technique[12]. In this paper Speaker

recognition was performed by implementing the Nearest

Neighbor algorithm. In proceeding [23] speech recognition

for Romanian language is performed by implementing

HMM in spoken dialogue systems. Other approaches to this

topic are hosted by Google (i.e. Google translate), which

offers the final version of the software or imported as a

library, but does not allow access to see the source code of

the application.

INTRODUCTION

Automatic natural language processing is a wide subject at

the border between scientific fields such as formal language

theory, statistics, artificial intelligence, signal processing,

and linguistics and has had recently a steady development

due to the technological progress.

An implicit application of this field concerns the human

interactions with a computer using the natural language as a

means of communication (regarded as a tool used by people

to express their thoughts and make themselves understood).

In this respect, voice interaction represents a complex task

for an automated system as it generally assumes solving

some fundamental problems:

• recognizing different users by their voices;

• recognizing the words and sentences spoken by the

user;

• understanding the semantics of the transmitted

message;

• developing an answer that is directly and

accurately related to the transmitted information

(by extracting and processing the meaningful

information out of the message);

• translating the answer into a voice form (that is

human understandable).

As the natural language represents the best way of

communication for humans, we aim to develop a system

from scratch in which the human-computer interaction is

achieved through the use of speech. Consequently, in order

to create such a system we firstly recorded a dataset of

speech samples. We considered a set of words and for each

one of them we recorded 5 different speakers for 100 times,

the goal was to capture a wide variety of word

pronunciation. We recognize that this is one of the

limitations, at the moment the dataset is made up of only

700 words. There is no free dataset available, so we had to

register one.

Romanian speech recognition was done in two ways.

The first one employs the Dynamic Time Warping (DTW)

algorithm and the second one is using Convolutional Neural

Network (CNN). For both methods we have used as input

some features extracted from the dataset - they facilitate the

subsequent learning methods.

https://drive.google.com/drive/folders/1WD_Wa_GfoWs00cbyQwHPVtYVUNf5x4Gi

 - 55 -

Feature extraction is done by performing the following

steps:

1) silence removal (a step necessary to determine the words

boundaries in the input sound);

2) framing (a step that splits the sound wave into chunks

out of which the phonemes will be detected);

3) windowing (a step necessary when one wants to analyze

the periodic behavior of the sound wave in a short

duration);

4) Fast Fourier Transform (FFT) (a step necessary to map

time domain signal into frequency domain)[21];

5) Mell Filter (in order to extract the energy from each

frequency band);

6) Discrete Cosine Transform (DCT) (a step necessary to

map the signal from frequency domain to time domain).

The result of feature extraction is a feature vector which

will be used by the pattern recognition system to map the

input sound to a word (or a sequence of words) or to

recognize the Speaker.

IMPLEMENTATION

Elements of acoustic wave theory

A sound wave represents a longitudinal wave; it defines a

series of alternative compressions and extensions of the

environment. An acoustic wave is characterized by several

properties:

The frequency of a sound is the number of periods or

oscillations that a sound wave takes in the unit of time. The

standard unit for frequency measurement is the Hertz defined

as 1 Hz = 1 vibration / 1 second. The volume of sound wave

refers to the sound intensity. Sound intensity measures the

energy transferred by the sound wave in the unit of time

through the unit area of a surface orthogonal to the direction

of the wave propagation. The sound intensity is expressed in

decibels (dB). The amplitude of the sound wave represents

the maximum elongation registered by the points from the

elastic medium with respect to the equilibrium position. The

amplitude of vibrations is proportional with the intensity of

the sound. Timber refers to the property of a sound to

distinguish from another one produced under identical

conditions by different sources; the timber of a voice is given

by the superior formats (the spectral peaks of the sound

spectrum).

As is stated in [13], sounds are complex combination of

vibrations (with different frequencies and amplitudes). For

example, in Figure 1 three tones with different

characteristics are represented: a) frequency 400 Hz,

amplitude 0.2; b) frequency 550 Hz, amplitude 0.4; c)

frequency 800 Hz, amplitude 0.3.

Figure 1. Three sounds (tones) with different frequencies and

amplitudes.

The composition of these three waves is illustrated in

Figure 2. One can notice that the result is no longer a

sinusoid (however, the oscillatory behavior is preserved).

Figure 2. The composition of the sound waves represented in

Figure 1

The inverse problem (that is, obtaining the frequencies that

compose an acoustic signal) is done by using the Discrete

Fourier Transform (DFT). Fast Fourier Transform represents

a fast algorithm for computing DFT.

A sound spectrum is a representation of a sound in terms of

the amount of vibration at each individual frequency. For

instance, the sound spectrum for the sound wave given in

Figure 2 is presented in Figure 3.

Figure 3. The sound spectrum for a sound wave

Once the sound spectrum is obtained, an important task in

speech recognition (related to recognition of vowels) is the

identification of formants – the peeks from the sound

spectrum.

Audio format

The quality of a digital audio recording depends mainly on

two factors: the sample rate and the sample format or bit

depth. In order to save memory, the items from the dataset

were recorded using a fair quality: a 22050 Hz sample rate,

16 bits unsigned sample format, mono channel.

 - 56 -

Feature extraction

The information contained in a speech wave must be

extracted as a word sign. Actually one needs to process the

short term amplitude spectrum. The feature extraction

algorithm is called Mell Frequency Cepstral Coefficients

(MFCC), this is a standard method to get the representative

points from feature wave and it is widely used for speech

and speaker recognition[22]. The motivation of using

MFCC is because one wants to mimic the human hearing.

Mell scale is linear below 1 kHz for frequency band and it

is logarithmic above. The MFCC algorithm consists of

several parts:

Figure 4. Feature extraction

Pre-Processing

The audio signal is a continue wave which contains not

only meaningful information about the speech, but also

silence and noise. In order to detect the speech segments,

one has to exclude silence and noise from the speech wave.

One common algorithm for silence removal is Endpoint

detection. It consists of 4 parts [24].

• One has to compute the mean µ and the standard

deviation σ for first 200ms. This is done because

the first 200ms samples are usually the silence

(when people speak, they actually need some time

for breathing; these 200ms samples represent the

background noise).

• Next, one has to go from the first sample to the

end of the wave and check if

|x- µ|/ σ > 3 or not. If it is greater than 3, then the

sample is voiced, else it is unvoiced. The threshold

is 3 and can be modified, depending on the quality

of the microphone.

• one needs to divide the whole speech wave intro

frames of 10ms and mark each frame with 1 if it is

voiced and 0 is it is unvoiced.

• One has to go through the entire vector of speech

and collect the frames labeled with 1 (they

represent the voiced frames).

Figure 5. Audio signal for speech “Buna ce faci”

(audio signal is captured with Audacity)

Figure 6. Result of silence removal

The algorithm was used for splitting words from a speech

wave.

Framing and windowing

Because Speech is a continuous signal, it means that

statistical properties are different during the time. We need

to extract feature points from a small window. We assume

that statistically the signal does not change much. We shall

frame signal into 20-40ms frames. If the frame is too short,

we lose the relevant information, if it is longer the signal

changes too much, so we can not get relevant points. We

use block of frames with 25ms with overlapping 10ms.

Figure 7. Framing the audio signal

 After framing the audio signal, we obtained a list of

frames. Using Audacity one can zoom in the frame and see

how the speech wave is represented (see Figure 9).

Extracting the spectral features of each frame was done by

using the FFT algorithm (because FFT algorithm has as

input a sequence of length of power of 2, in our setup each

frame has 512 data points).

In order to eliminate/enhance some spectral features of the

audio signal we used the Hamming window. The equation

describing the window is:

 - 57 -

where

Figure 8. The Hamming window

After framing, we multiplied each frame with the Hamming

window. If the signal is denoted by s(n), where 1 n N, N

being the length of each frame, then the result is:

The resulted signal takes the shape of the window and

become smoother and flatter.

Figure 9. A sound wave before and after windowing

One can notice that at both ends of the frame, the

amplitude of the signal is reduced; consequently, the

periodic „jumps” that appear while computing DFT

are more diminished (recall that DFT assumes the

existence of a infinite long signal while here we

worked with a finite one). It follows that, by using the

Hamming window, some artificial peeks in the

spectral analysis are removed, while the „useful” ones

are preserved.

Short time energy and Zero crossing rate

After framing and windowing one needs to remove the

silence from each frame. To this aim we computed the

energy of each frame by the formula:

Figure 10. Plot of the sound energy for a sound wave

One can notice that energy is high for the “speech” frames

and low for the “silence” ones (because in the Energy

formula, highest amplitude values contribute mostly, see

Figure 10). It follows that one can define a threshold based

on which the frames are classified.

However, it is not enough to calculate the energy for

removing the silence. In our model for speech recognition

we also calculated the zero crossing rate (ZCR) for each

frame.

Figure 11. Plot of the zero crossing rate

Statistically it was determined that ZCR has higher values

in the regions corresponding to silence and a smaller values

in the regions corresponding to speech (see Figure 11).

By computing for each frame the ZCR and Energy we were

able to remove the silence from each frame[20].

 - 58 -

Fast Fourier Transform

Fourier Transform gives an alternative representation of a

function by showing how it can be written as a sum of

sinusoidal functions.

Fast Fourier Transform is an algorithm used to extract the

frequencies from a windowed signal. By running the FFT

algorithm we obtained the energy at each discrete frequency

band (see Figure 12).

Figure 12. Time domain vs frequency domain

 The algorithm works with the Complex numbers, because

𝑹𝟐≈ C. We assume that each point from 𝑹𝟐 has the

coordinates (x ,y), and each point can be viewed as a

complex number x + i* y.

The general formula is:

𝑋𝑘 = ∑ 𝑥𝑛
𝑁−1
𝑛=0 *𝑒−

2𝜋𝑖𝑘𝑛

𝑁

Our speech is a sum of the sinusoids functions. Using the

Fourier transform we want to separate them in functions

with the same frequency.

Using the Euler’s formula 𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥 our

formula becomes:

𝑋𝑘 = ∑ 𝑥𝑛
𝑁−1
𝑛=0 *𝑒−

2𝜋𝑖𝑘𝑛

𝑁 = ∑ [cos (
2πkn

𝑁
) − 𝑖 ∗ sin(

2πkn

𝑁
)]𝑁−1

𝑛=0

Firstly, we create an array of complex numbers where the

real part of each complex number is the point from time

domain speech, and imaginary part is zero. The algorithm

gets as input a vector of complex numbers and returns

another vector of complex numbers. We make this because

we need to extract the power spectral density from each

frame.

Figure 13. Power spectral density

We know that the form of the complex number is

Z=x +i * y.

To extract the spectrum we just calculate the module of the

complex number |Z|= √𝑥2 + 𝑦2 so, we obtain the vector

of frequencies for each frame.

MFCC

An approximation which captures the properties of human

hearing perception is represented by Mel scale filtering. To

pass from frequency (Hz) to Mell one needs the following

formulas:

Fo

The frequencies range resulted from the FFT algorithm is

very wide so one has to normalize the voice signal. By

applying the Mell-Scale filter bank one converts the

frequency to Mell scale[22].

We use these filters to mimic the human hearing.

Figure 14. Mell Filter bank

We used a set of triangular filters to compute the spectral

components. We used 26 triangular filters to get the

approximation of the Mell scale. The input for each

triangular filter is represented by the corresponding power

spectrum. The output obtained after applying a filter is a

vector of spectral energies.

-1

 - 59 -

After filtering the frequencies one has to sum the

coefficients and take the logarithm of their values (this

procedure is also motivated by the human hearing because

hearing is not linear, by applying the logarithmic function

one reduces the amplitudes of the frequencies).

Figure 15. Sum & log energy

Discrete cosine transform (DCT)

Next step one has to go back from frequency domain to

time domain by performing DCT.

𝑌(𝑘) =∑cos[

𝐿

𝑙=0

π

𝐿
(𝑙 +

1

2
)𝑚]𝐸𝑘; 0 ≤ 𝑚 ≤ 𝐿 − 1

We compact the energy from Mell scale and we get 26

coefficients. We keep only 12 coefficients from 26, because

higher coefficients are characterized by small changes in

energy. Dropping them, we get a small improvement.

We get feature vector, size = [number of frames, 12]

This feature vector can be used for pattern recognition,

using Dynamic Time Warping or for training a

Convolutional Neuronal Network.

Dynamic Time Warping (DTW)

For recognizing a test file one has to compare the test

feature vector with each feature vector from the dataset.

However, the test and the training files have different

lengths. Consequently, the feature vector is a two

dimensional array (number of frames times number of

feature points in each frame, i.e. 12). If the vectors were of

the same length, one could use Euclidean or cosine norms

to determine the distance between them. The problem is

how to compute the norm of two time series, which have

the different length. Dynamic time warping is a dynamic

programming algorithm for measuring the similarities

between two time series with different sizes. The algorithm

assumes that in each point one has to compute the distance

between the test and reference files in the following way:

Figure 16. DTW

𝐷(𝑖, 𝑗) = |𝑡(𝑖) − 𝑟(𝑗)| + 𝑚𝑖𝑛 {

𝐷(𝑖 − 1, 𝑗)
𝐷(𝑖 − 1, 𝑗 − 1)

𝐷(𝑖, 𝑗 − 1)
}

where t is the test vector, r is the reference vector, and D is

a matrix of distances between two time series.

The purpose is to minimize the final D(I,J) which represents

the similarities between the test and reference vectors[16].

Train-Test Time(minutes) Accuracy (%)

90% - 10% 4.15 100%

80% - 20% 8.3 99.9%

70% - 30% 12.45 99.8%

Table 1. Testing DTW .

We have noticed that as the number of test files increases,

the accuracy rate decreases. This is because the words

variability decreases there are some words that are similar

to each other.

SPEAKER RECOGNITION

We shall teach the computer to recognize not just the

speech but also the speaker. A half of work is done by

feature extraction used by speech recognition. Firstly, we

shall compute the FFT for each user. Each user shall speak

the same phrase 3 times (we need this to extract user band

of frequency)[10]. Then we need to take the maxim

amplitude of each frequency, and save the point of

frequency where amplitude is maxim.

Figure 17. Spectrum of speaker

 - 60 -

From the Figure 17 we see the maximum amplitude of

frequency. We shall keep the frequency from this point, and

use it as feature point for speaker recognition. To recognize

someone, we need to compute the distances between test

point and each point from dataset, and take the nearest one.

To optimize the calculations we can use the K-means

clustering 1D. For each user we will have a centroid, which

represents all feature points of a specific user. Speaker

recognition is done with Nearest Neighbor.

Artificial Neuronal Network

The main drawback of the DTW is that it takes a lot of time

to compute the similarity between the test file and whole

dataset. For example, if the dataset contains 1000 words, it

will compute 1000 times. To avoid this, we trained a

Convolutional Neural Network model, so that the test file is

recognized “instantly”.

Figure 18. Convolutional Neural Network

We trained the computer to recognize the speech by using a

neural net defined as in Figure 18. Our dataset consisted of

700 words (in the future we shall increase it), each word

being spoken 20 times by different persons, so we got

different pronunciation for each word. For each file from

dataset we computed MFCC and extracted feature vectors.

Feature vectors represented the input data for our neurons.

For Convolutional Network we used TensorFlow with

Keras[6]. Firstly, we needed to represent the data in order to

train our model. We used one hot encoding from Keras to

represent out labels (labels represent words name). We get

the unit matrix, with 1 on the main diagonal and 0 in rest.

Then we split our data in 80% for training and 20% for

testing. First layer is convolutional 2D [11], with kernel size

= (2,2) and activation function Rectified Linear Unit (ReLU)

[3]. This layer creates a convolution kernel that is convolved

with the layer input to produce a tensor of outputs. Input

shape is (20 x 45 x 1), where 20 is the number of feature

points from each frame, 45 is the number of frames, and 1 is

the number of channels. Each frame has 20 feature points,

but not all speech files have the same number of frames. To

avoid this inequality, we created the same number of frames

for all files, and the free space was filled with zeros. We used

ReLU because this activation function makes zero the

negative weights while leaving the positive weights as they

are (see Figure 19).

Figure 19. Activation function Rectified Linear Unit

The next layer in our model is MaxPooling2d with

pool size = (2,2). It is used to make the down sampling. To

avoid overfitting in Keras, we used Dropout[1] with α=20,

that is, our model will drop out 20% of weights and will

learn only from 80%. Then we used Flatten layer and added

a fully connected layer with 128 neurons, the activation

function being the same (ReLU). After another Dropout we

used a fully connected layer with 7 neurons, (7 because our

dataset is composed from 7 words, each spoken by 100

times), activation function being ‘softmax’ [17].

The Keras model from Figure 17 can be created in Python

this way:

model =Sequential()

model.add(Conv2D(32,kernel_size=(2, 2),

activation='relu', input_shape=(20, 45, 1)))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(7, activation='softmax'))

We trained our model with four optimizers and the results

are depicted in Table 1.

Optimizer Loss (%) Accuracy (%)

SGD 85.13 14.86

Adamax 4,47 96.43

Adam 4.99 95

Adadelta 2.21 97.78

Table 2. Training CNN on 150 epochs with different

optimizers.

The loss function is categorical cross entropy, it is objective

function for minimize [2]. It is the sum in the smallest

 - 61 -

squares. It finds network weights to minimize the training

error between target and output labels of training examples.

𝐸(𝑤) = ∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑖)
2

𝑁

𝑖=1

Next we update weights by gradient descend:

𝑤 = 𝑤 − α
∂E

∂w

Where w is a weight, α is learning rate and E is total error.

As optimizer we used Adadelta - an adaptive learning rate

method for gradient-based optimization algorithm. We

trained our model for 150 epochs, accuracy is 97.78%. An

epoch consists of feedforward and backpropagation

functions. The training was done locally on the computer's

CPU. The application was implemented in Python, and

extended on android phone with Android Studio platform,

using TCP/IP communication.

Figure 20. Graphic user interface of the application

To compile our model in Keras:

model.compile(loss=keras.losses.categorical_crossentropy,o

ptimizer=keras.optimizers.Adadelta(),metrics=['accuracy'])

model.fit(X_train, y_train_hot, batch_size=30, epochs=150,

verbose=2, validation_data=(X_test, y_test_hot))

The application allows the user to interact with the computer

by using voice authentication and several voice commands.

CONCLUSION

We observed that the system was very fast when the

Convolutional Neural Network was used (less than 1

second for recognizing a phrase on a mid-range personal

computer). However, CNN accuracy is not 100%. Using

DTW we achieved 100% recognition, but it takes a lot of

time. DTW have to match test file with each file from

dataset, and if our dataset contains 1 million patterns, the

algorithm will check all of them. To improve our score, we

need to increase our dataset, more people to record more

data. Another solution is to combine DTW with Neural

Network. The Convolutional Neural Network must learn

how to compare two time series and get the best score in

less time. In Table 2 we compared the execution time and

the recognition rate for DTW and CNN. The testing files

are randomly selected from the dataset. We have noticed

that by increasing the number of test files, the recognition

rate decreases for both DTW and CNN.

Number of

samples

Time

(minutes)
Accuracy (%)

 DTW CNN DTW CNN

50 3.05 0.25 100 98.5

100 6 0.51 100 97.8

200 13 1 99.95 97.8

500 30 2.5 99.9 97.3

Table 2. Time and Accuracy DTW vs CNN

The final conclusion is that DTW is good to use for small

data set, as long as the recognition rate is about 99.9%, the

runtime for the small set of data is acceptable. When we

have larger datasets, it is recommended to use a

convolutional neural network because its recognition rate

can be improved as the number of training files increases.

Feature work

In the future, we plan to increase the number of words

recorded in the dataset. We will model a neural network for

recognizing the speaker and add more speakers to the data

set.

ACKNOWLEDGMENTS

This work was supported by a grant of the Romanian

Ministry of Research and Innovation, CCCDI - UEFISCDI,

project number PN-III-P1-1.2-PCCDI-2017-0917 / contract

no. 21PCCDI ⁄ 2018, within PNCDI III.

REFERENCES

1. Lee, C.-y., Gallagher, P. W. Generalizing pooling

functions in convolutional neural networks: Mixed,

gated, and tree. In AISTATS, (2016).

2. Ioffe, S. and Szegedy C. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. In ICML, (2015).

3. Xu, B., Wang, N., Chen, T. Empirical evaluation of

rectified activations in convolutional network. In ICML

Workshop, (2015).

4. Campbell W., Gleason T., Advanced Language

Recognition using Cepstral and Phonetic: MITLL

System Performance on the NIST 2005 Language

Recognition Evaluation, Speaker and Language

Recognition Workshop, IEEE Odyssey, (2006),1-8

5. Espy-Wilson C., Manocha S., A new set of features for

text independent speaker identification, INTERSPEECH

- ICSLP, (2006), 1475–1478.

 - 62 -

6. Keras: The Python Deep Learning library.

https://keras.io/#keras-the-python-deep-learning-library

7. Furui S., Digital Speech Processing, Synthesis and

Recognition, CRC Press, USA, (2000).

8. Gajic B., Paliwal K., Robust parameters for speech

recognition based on subband spectral centroid

histograms, Proc. 7th Eur. Conf. Speech Commun.

Technol. EUROSPEECH, Aalborg, Denmark, (2001).

9. Glass J., Victor Zue, Speech Recognition, Open Course

Ware, MIT, (2003).

10. Kinnunen T., Spectral Features for Automatic Text-

Independent Speaker Recognition, University of

Joensuu, Dpt. of Computer Science, Finland, (2003).

11. Knill K., (Deep) Neural Networks for Speech

Processing, Cambridge University Engineering

Department, (2015).

12. Linde Y., Buzo A., Gray R.M., An Algorithm for Vector

Quantizer Design, IEEE Transactions on

Communications, 28, (1980), 84–95.

13. Popovci D.M., Zaharescu E., Rusu A., Puchianu C.M.,

Sburlan D., Medii virtuale multimodale distribuite, vol.

III., Editura Universitaria, Craiova, (2015).

14. Rabiner L.R., Juang B. H., Fundamentals of Speech

Recognition, Prentice Hall, Englewood Cliffs, N.J.,

(1993).

15. Rabiner L. R., A Tutorial on Hidden Markov Models

and Selected Applications in Speech Recognition, Proc.

of the IEEE, 77, 2 (1989), 257–286.

16. Salvador S., Chan P., Toward Accurate Dynamic Time

Warping in Linear Time and Space, Journal of

Intelligent Data Analysis, 11, 5 (2007), 561–580.

17. Soltau H., Saon G., Sainath T.N., Joint Training of

Convolutional and NonConvolutional Neural Networks,

Acoustics, Speech and Signal Processing (ICASSP),

(2014), 5609–5613.

18. Saheli A. A., Abdali G.A., Abolfazl A., Speech

recognition from PSD using neural network, Proc. of the

International MultiConference of Engineers and

Computer Scientists, vol. 1, (2009), 174–176.

19. Tiwari G., Pandey M., Shrestha M., Text-Prompted

Remote speaker authentication, Department Of

Electronics And Computer Engineering, Nepal, (2011).

20.Short-time Energy and Zero Crossing Rate.

https://www.mathworks.com/matlabcentral/fileexchange/

23571-short-time-energy-and-zero-crossing-

rate?focused=3805785&tab=function

visited on 05.05.2018

21. Brigham E., Fast Fourier Transform and Its

Applications. Prentice-Hall, USA, (1988).

22. Black W.A. Speech Processing Lecture notes Fall,

Carnegie Mellon, (2011).

23. Burileanu C., Popescu V., Buzo A., Petrea C.S.,

Ghelmez-Hanes D. Spontaneous Speech recognition for

Romanian in spoken dialogue systems. PROCEEDINGS

OF THE ROMANIAN ACADEMY, Series A, Volume

11, Number, (2010), 83–91.

24. Denilson C.S., A Robust Endpoint Detection Algorithm

Based on Identification of the Noise Nature, ITRW on

Nonlinear Speech Processing (NOLISP 07) Paris,

France May (2007), 22-25.

