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ABSTRACT 
Artistic images are becoming trendier and recent researches 
in computer vision have showcased specific use cases of 
style transfer in which two images are combined together. 
The aim of this paper is to introduce a new method for 
transferring style from one image to another based on deep 
neural networks. The main idea is to combine a specific 
image with user’s requirements expressed as input text. Our 
method relies on the ReaderBench framework to extract 
keywords from the given text, which are afterwards used to 
search for a representative image and to change accordingly 
the input image. We developed a desktop application which 
starts from an image and a text description as input data, and 
generates a new image with the same landscape and objects, 
but taking into account the requirements from the input text, 
for example shift to a night landscape or an artistic change. 
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INTRODUCTION 
Images are an integrated part of our lives as all observed 
information is visual. Moreover, images provide 
contextualization and a means for people to express 
themselves. A specific showcase is centered on social 
networks in which pictures are frequently used alongside 
with words which provide corresponding descriptions. In 
addition, artistic images are becoming trendier and deep 
neural networks have been used to transfer style between two 
images in order to combine them [1]. 

Our aim is to transfer style from one image to another using 
text descriptions. Our input consists of an image and a text 
description with a desired change, while the model tries to 

accommodate the modifications in a coherent manner. We 
use a deep neural network that relies on models designed to 
transfer image styles from one picture to another. Various 
changes were performed in order to reduce runtime, while 
still obtaining qualitative results. We applied a keywords 
extraction mechanism on the input description using the 
ReaderBench framework [2, 3]. 

The paper continues by describing state-of-the-art 
approaches, our architecture, followed by tests and 
experiments performed in order to improve resource usage, 
and the quality of the end results, together with running time 
optimizations. The paper ends with conclusions and ideas for 
future work. 

STATE OF THE ART 
The idea of automated style transfer techniques was recently 
implemented in a functional manner [1] due to the many 
encountered difficulties in designing an algorithm that can 
actually understand the image as one concept, and not a 
collection of values. Another required process consists of 
keywords extraction, which is a Natural Language 
Processing (NLP) technique supported by the ReaderBench 
framework [3]. 

Style transfer 
There are many technical issues which are difficult to resolve 
using classic approaches of style transfer that do not rely on 
deep neural networks. The most frequently encountered 
issues are: 

• Generating automatic strokes with a certain size using 
pixel analysis; 

• Selectively applying strokes only to certain areas; 

• Understanding what elements need to be kept and what to 
replace. 

One of the solutions [1] considers style transfer as an 
optimization problem which refers to the existence of a 
function F that takes as input two images and has as output a 
new image for which the style is as similar as possible to the 
first one, while its content is as similar as possible to the 
second one (see Figure 1).
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Figure 1. Generic optimization function [1]. 

 

Thus, we can derive the following optimization problem: 

* = min
/
[12(4, 6) + 19(:, 6)] 

where R is the image result, r is an image candidate, c is the 
content image, s is the style image, 12 is the a function that 
takes two images and computes the content differences 
between them (it will tend to zero when those two are very 
similar), 19 is the a function that takes two images and 
computes the style differences between them (it will tend to 
zero when those two images are very similar). 

Furthermore, we need to argue why classic style 
transformations at pixel level are not applicable, even if these 
types of image transformations have been iteratively 
improved: 

• There is no clear way to define what is more 
important from an image (style or content), and how 
much information needs to be kept from each 
element. 

• Object variations – there are multiple visual 
representation for the same object category (ex., we 
cannot define how a car should look like). 

• Light variation can cause an object to be only 
partially visible, whereas shadows can change 
entirely how an object looks like. 

• Aside from light or object variations, the angle from 
which the object(s) is (are) observed can change 
entirely its representation. 

• Homogeneity – presuming we can separate style 
from content, the next challenge is to make the 
image look homogenous. 

To overcome many of these problems, Gatys, Ecker & 
Bethge [1] use semantic differences to compare images 
based on a pretrained network for image recognition which 
is capable to recognize features, instead of using pixels. 

The above approach has one issue – it can work for any pair 
of images (style, content), but it can take a long period of 
time to complete. One solution is to use a neural network 
which approximates the optimization problem [4]. After this 
secondary network is trained on a specific style image, it can 

provide results in seconds, but is limited to that particular 
image. 

ReaderBench 
ReaderBench is an automated software framework designed 
to support students and tutors by making use of advanced 
NLP and text mining techniques. It has an extraction 
component that determines the most relevant keywords from 
a document by using an extended bigram approach based on 
Cohesion Network Analysis [5]. In order to further improve 
the results, an enhanced selection of keywords based on their 
commonness score (a value that is generated from a text 
corpus that disregards common terms) was performed. This 
is due to the fact that words with the highest number of 
occurrences are seldom mapped to be among the most 
relevant keywords. Therefore, the extraction is based on the 
Average Logarithmic Distance because it showed the 
greatest stability, as presented in the study performed by 
Savický & Hlavácová [6]. 

METHOD 
While different changes were made to the implemented 
solution for style transfer, we combine the method 
introduced by Gatys, Ecker & Bethge [1], with an 
optimization from Berger & Memisevic [7] which is further 
explained. 

Integrated resources 
For this work, we opted to allow any pair of images (style & 
content) and integrate a pretrained network for image 
recognition on the ImageNet database - the chosen network 
was VGGNet16, which relies on Keras. We also used a 
classifier from OpenCV library – Cascade Classifier 
(https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classif
ier.html) – for detecting persons in an image. The model was 
already trained for frontal face detection and required 
additional tuning. We chose Cascade Classifier because it is 
reliable and simple enough in terms of architecture, which 
makes it very fast. The model groups features in stages and, 
if the image doesn’t pass a stage, it is dropped; in the end, an 
image has to pass all layers in order to be correctly classified. 
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Style transfer 
The solution for style transfer transformation is to build the 
system as an optimization problem in three steps for 
computing: a) content loss, b) style loss and c) the total 
variation loss: 

• <	= is a >=?>= matrix corresponding to the Gram matrix 
for the original image; 

• @	= is a >=?>= matrix corresponding to the Gram matrix for 
the generated image; 

• !A:=  is the i-th vectorized feature map of the layer l (from 
the generated image); 

• CA:=  is the i-th vectorized feature map of the layer l (from 
the original image); 

• D= is the number of elements in each map of the layer l; 

• E2 is the weight applied for normalizing content; 

• E9 is the weight applied for normalizing style; 

• <> is the inner product. 

The standard VGGNet [8] uses a 19-layer model for object 
classification and any convolution layer from the first ones 
can be used to define content loss. The content can be defined 
as Euclidean distance between the chosen layer result and 
combination images ant the following formula can be applied 
for content loss: 

12FGHIGH = E2
1
2
L (!MA

= −CMA
= )O

M,A
 

However, style loss must be computed independent of 
context. Thus, a Gram matrix is used. The Gramm matrix is 
a Hermitian matrix of inner products whose entries are given 
by <MA =< QM, QA >, where QM is one of the set of vectors in 
an inner product space. Figure 2 introduces the style loss 
used within our deep neural network.

 

Figure 2. Style loss [9].

The Gramm matrix values are computed using the following 
formula [9]: 

<MA
= = 	

1
D=L!MS

= !AS
=

TU

SVW

= 	
1
D= < !A:

= , !A:
= > 

In order to better retain the geometrical position of objects in 
the image, co-occurrences can be computed between feature 
maps !	=	and spatially transformed feature maps @(!	=), 
where T denotes a spatial transformation instead of 
computing co-occurrences between multiple features within 
a map. Nevertheless, this solution can be computationally 

expensive and style loss is computed using the following 
formula [9]: 

19HX=I =LE9||@	=<	=||ZO
[	

=VW

= 	LE=19HX=I=

[

=VW

 

Derived style transfer implementation 

The first difference with the 19-layer VGGNET [8] is the use 
of 16-layer model because our experiments showed no 
visible improvements when relying on the larger model 
versus the smaller model (see Figure 3 in which the maxpool 
layers were removed).

 
Figure 3. Simplified VGGNET with 16 layers.
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We addressed the issue of speed by using GPU acceleration, 
but another issue that is still present due to resolution limits 
(i.e., resolution is fixed at 512x512 pixels for this work). 
Even if for defining the content loss any convolution layer 
from the first ones can be used, experiments have shown that 
using the second block with the second convolution layer has 
better results. When the image is larger than 512x512 pixels, 
the image is automatically scaled such that either the width 
or height are scaled to 512, the window of 512x512 is 
centered, and the original image is cropped to this window. 
Using the explained methods with corresponding changes, 
the next step is to improve our results. A gradient descent can 
be used or an optimized L-BFGS to iteratively improve the 
solution. In our case, we opted to use L-BFGS because it 
provides results faster. Furthermore, we chose not to use the 
feature from any of the layers defined in [1] or [4], and we 
defined our custom layer for content loss, as follows: 

4\]^_]^_abc_6 = 	3x3	conv	512	 

The layers for style loss are the same as in [4], where 2 
represents the second layer from the block: 

:^ca__abc_6:	

= 	
3?34\]Q64(2) 3?34\]Q128(2)
3?34\]Q256(2) 3?34\]Q512(2:mn_28)

3?34\]Q512(2:mn_14) 	
 

However, the resulting output had a high noise level and, in 
order to address this, we used an implementation of the total 
variation loss – a total variation regularization for 2D signals 
[10] (images in our case) with the following formula. In order 
to tweak further the results, we choose β (regularization 
parameter) to be equal to 2.5 as its increase forces the image 
to have smaller variations: 

o(c) =L(pcMqW,A −	cM,Ap
O
+	cMqW,A −	cM,AO)

r
s

M,A

 

Architecture 
The next step consists of combining style transfer with the 
keywords obtained using ReaderBench. A basic application 
relying on Windows Presentation Foundation (WPF; 
https://visualstudio.microsoft.com/vs/features/wpf/) [11] 
was developed, capable of loading an image, get the user 
input, work with images (resize, obtain bitmaps, save, load, 
manage resources), make HTTP requests, parse JSON 
responses, and manage and synchronize the different 
processes (face detection, style transfer). Figure 4 depicts the 
architecture of our solution. 

The application uses interactional and independent windows, 
while its flow is controlled in the central class that manages 
and displays images, as well as makes HTTP requests to 
ReaderBench. Style transfer is based on TensorFlow, in a 
Python environment, on top of which a pretrained VGG 
network from Keras is used for object detection. 

 

Figure 4. Architecture. 

At the core of the application is the main window component 
which is responsible for loading and displaying the target 
image, as well as combining all the components of the 
system. The image displayed inside the main window is 
selected using another window which displays a preview of 
images. All images, both within the main window or within 
the layers window, are represented as an abstract object with 
required functionalities. The main window also makes calls 
to the utility component which triggers an input window for 
the user to write text which is sent to ReaderBench for further 
processing and used as input for selecting a representative 
image from the local database. 

After the image is obtained, it is used as input for the Python 
module responsible for style transfer. The neural style 
transfer component is further tuned by considering the 
detection of human faces inside the content image. 

Workflow 

Figure 5 shows a simple use-case scenario. The user provides 
the content image which is loaded using the image handler 
from the main window. In the next step, the user opens the 
style transfer input window and starts the transformation 
process. Next, users are prompted to provide the textual 
change that they want to apply. Inside the main window, a 
request for the text keywords is made for ReaderBench. 
Using the keywords, the main module selects one of the 
image styles (this is chosen as the best match between 
keywords and labels). The content and style image, alongside 
with other chosen parameters based on the content image 
information, are sent to the Python module which generates 
the output image. 
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Figure 5. Application workflow. 

RESULTS 

Image results 
Starting with the image from Figure 6.a and the text “at night 
it will look even more impressive”, the model generates the 
output from Figure 6.b. In contrast, the same input image 
combined with the text “it must be a painting” generates 
Figure 6.c. Similarly, the portrait in Figure 7.a was subject to 
night (Figure 7.b) and sketch (Figure 7.c) transformations. 

After multiples runs, we discovered that in certain scenarios 
the style transfer process must be adapted to the content from 
the image, especially when the content is a face. The default 
settings that apply artistic changes can make an image lose 
its content and more fine details, when containing at least one 
face (see Figure 8 in which the test was made without face 
detection). In Figure 9 we present sample results when the 
option of face detection is activated. 

   

(a) (b) (c) 

Figure 6. a) Initial normal image. b) Night transformation. c) Artistic transformation. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. a) Initial normal image. b) Night transformation. c) Sketch transformation. 
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Figure 8. Output that lost content details. 

 

Figure 10. Partially transformed image. 

However, there are situations in which the style transfer 
parameters are not correctly set for the image, or the 
extraction technique can’t resolve the description (see 
Figures 10 and 11). In Figure 10, the water and most of the 
buildings are correctly transformed, whereas the center part 
of the image is unchanged because it is perceived as a 
common component. The changes in Figure 11 are more 
drastic and the content of the input image is almost 
completely lost. 

 

Figure 9. Output which retained more content details. 

s 

Figure 11. Sample destroyed image. 

Performance 
In terms of performance, the running time for a change is 
approximately 2 minutes from transformation submission on 
the following specifications: a laptop with an i5 Q7300 
processor, NVidia gtx1060 max-q and 8GB of RAM. The 
load of each resource, the CPU/GPU loads reach their peaks 
when style transfer is performed (see Figure 12). Figure 13 
depicts the memory load of the application which normally 
uses around 100MB of RAM except when the style transfer 
is done, and it surmounts to almost 2GB of RAM. 
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Figure 12. CPU/GPU load across transformations. 

 

Figure 13. Memory requirements 

Survey 
To further understand user perception, we performed a small 
survey with a set of 5 predefined inputs (images + text) and 
two custom inputs freely selected by the users. Our group 
consisted of 18 users, 11 females and 7 males, aged between 
21 and 26 (mean = 22.72, standard deviation = 1.67) from 
different fields. Most of the pretested inputs were well 
received and users were excited about the outputs (see Table 
1), all except one which was intentionally introduced as not 
a great result. Users found the application to be fun, easy to 
use, suggestive, artistic and quite fast, whereas only one user 
did not enjoy the generated water effect. Interestingly, targets 
had a better perception of the custom examples (higher 
Likert scores) and wanted to change the input text more for 
custom images in comparison with the predefined use cases. 
Almost half of the users wanted to change the custom images 
and the used text instead of the fixed examples, and most of 

them chose to use a portrait image with the sketch example. 
An example of changed text is from “I would like a sketch” 
to “I wonder how this will look as a cartoon”. 

Closed Question 
[1-5] Likert scale  

(1 disagree; 5 – agree) 

Predefined 
inputs 

M (SD) 

Custom 
examples 

M (SD) 

Q1: Did the resulted 
image retain the basic 
details from your input 
image? 

4.25 (0.95) 4.28 (0.78) 

Q2: Is the resulted 
image a good reflection 
of the intent expressed 
in the text input? 

3.82 (1.29) 4.08 (1.16) 

Q3: On a scale of 1 to 
5, how much artistic 
emotion was induced 
by the resulted image? 

3.81 (1.02) 4.14 (0.91) 

Q4: On a scale of 1 to 
5, how much do you 
like the resulted 
image? 

3.87 (1.10) 4.25 (0.81) 

Q5: After viewing the 
results, do you feel the 
need to change the 
input text? 

2.92 (1.39) 2.89 (1.33) 

Table 1. Survey results (M – mean; SD – standard deviation). 

CONCLUSIONS AND FUTURE WORK 
Results in this work show promising leads towards 
automating the process of transforming images based on text 
suggestions. Speed improvements for the style transfer 
component proved that the system is capable of obtaining the 
output in a relatively small amount of time. One issue that 
remains to be addressed is the resolution limitation. Using a 
secondary network for identifying objects in the image also 
improved the end results, especially for person pictures in 
which the parameters have to be adapted accordingly. 
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