

Image Style Transfer using Text Descriptions
Ionuț Gabriel Boboc, Mihai Dascalu, Ștefan Trăușan-Matu

University Politehnica of Bucharest
313 Splaiul Independenței, Bucharest, Romania

boboc.ionut.gabriel@gmail.com, {mihai.dascalu, stefan.trausan}@cs.pub.ro

ABSTRACT
Artistic images are becoming trendier and recent researches
in computer vision have showcased specific use cases of
style transfer in which two images are combined together.
The aim of this paper is to introduce a new method for
transferring style from one image to another based on deep
neural networks. The main idea is to combine a specific
image with user’s requirements expressed as input text. Our
method relies on the ReaderBench framework to extract
keywords from the given text, which are afterwards used to
search for a representative image and to change accordingly
the input image. We developed a desktop application which
starts from an image and a text description as input data, and
generates a new image with the same landscape and objects,
but taking into account the requirements from the input text,
for example shift to a night landscape or an artistic change.

Author Keywords
style transfer, deep neural network, ReaderBench
framework, image processing.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.

I.2.7 Natural Language Processing: Discourse, Language
parsing and understanding, Text analysis

General Terms
Natural Language; Text analysis; Image processing.

INTRODUCTION
Images are an integrated part of our lives as all observed
information is visual. Moreover, images provide
contextualization and a means for people to express
themselves. A specific showcase is centered on social
networks in which pictures are frequently used alongside
with words which provide corresponding descriptions. In
addition, artistic images are becoming trendier and deep
neural networks have been used to transfer style between two
images in order to combine them [1].

Our aim is to transfer style from one image to another using
text descriptions. Our input consists of an image and a text
description with a desired change, while the model tries to

accommodate the modifications in a coherent manner. We
use a deep neural network that relies on models designed to
transfer image styles from one picture to another. Various
changes were performed in order to reduce runtime, while
still obtaining qualitative results. We applied a keywords
extraction mechanism on the input description using the
ReaderBench framework [2, 3].

The paper continues by describing state-of-the-art
approaches, our architecture, followed by tests and
experiments performed in order to improve resource usage,
and the quality of the end results, together with running time
optimizations. The paper ends with conclusions and ideas for
future work.

STATE OF THE ART
The idea of automated style transfer techniques was recently
implemented in a functional manner [1] due to the many
encountered difficulties in designing an algorithm that can
actually understand the image as one concept, and not a
collection of values. Another required process consists of
keywords extraction, which is a Natural Language
Processing (NLP) technique supported by the ReaderBench
framework [3].

Style transfer
There are many technical issues which are difficult to resolve
using classic approaches of style transfer that do not rely on
deep neural networks. The most frequently encountered
issues are:

• Generating automatic strokes with a certain size using
pixel analysis;

• Selectively applying strokes only to certain areas;

• Understanding what elements need to be kept and what to
replace.

One of the solutions [1] considers style transfer as an
optimization problem which refers to the existence of a
function F that takes as input two images and has as output a
new image for which the style is as similar as possible to the
first one, while its content is as similar as possible to the
second one (see Figure 1).

22

Proceedings of RoCHI 2019

!

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎠

⎟
⎟
⎟
⎟
⎟
⎞

≅	

Figure 1. Generic optimization function [1].

Thus, we can derive the following optimization problem:

* = min
/
[12(4, 6) + 19(:, 6)]

where R is the image result, r is an image candidate, c is the
content image, s is the style image, 12 is the a function that
takes two images and computes the content differences
between them (it will tend to zero when those two are very
similar), 19 is the a function that takes two images and
computes the style differences between them (it will tend to
zero when those two images are very similar).

Furthermore, we need to argue why classic style
transformations at pixel level are not applicable, even if these
types of image transformations have been iteratively
improved:

• There is no clear way to define what is more
important from an image (style or content), and how
much information needs to be kept from each
element.

• Object variations – there are multiple visual
representation for the same object category (ex., we
cannot define how a car should look like).

• Light variation can cause an object to be only
partially visible, whereas shadows can change
entirely how an object looks like.

• Aside from light or object variations, the angle from
which the object(s) is (are) observed can change
entirely its representation.

• Homogeneity – presuming we can separate style
from content, the next challenge is to make the
image look homogenous.

To overcome many of these problems, Gatys, Ecker &
Bethge [1] use semantic differences to compare images
based on a pretrained network for image recognition which
is capable to recognize features, instead of using pixels.

The above approach has one issue – it can work for any pair
of images (style, content), but it can take a long period of
time to complete. One solution is to use a neural network
which approximates the optimization problem [4]. After this
secondary network is trained on a specific style image, it can

provide results in seconds, but is limited to that particular
image.

ReaderBench
ReaderBench is an automated software framework designed
to support students and tutors by making use of advanced
NLP and text mining techniques. It has an extraction
component that determines the most relevant keywords from
a document by using an extended bigram approach based on
Cohesion Network Analysis [5]. In order to further improve
the results, an enhanced selection of keywords based on their
commonness score (a value that is generated from a text
corpus that disregards common terms) was performed. This
is due to the fact that words with the highest number of
occurrences are seldom mapped to be among the most
relevant keywords. Therefore, the extraction is based on the
Average Logarithmic Distance because it showed the
greatest stability, as presented in the study performed by
Savický & Hlavácová [6].

METHOD
While different changes were made to the implemented
solution for style transfer, we combine the method
introduced by Gatys, Ecker & Bethge [1], with an
optimization from Berger & Memisevic [7] which is further
explained.

Integrated resources
For this work, we opted to allow any pair of images (style &
content) and integrate a pretrained network for image
recognition on the ImageNet database - the chosen network
was VGGNet16, which relies on Keras. We also used a
classifier from OpenCV library – Cascade Classifier
(https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classif
ier.html) – for detecting persons in an image. The model was
already trained for frontal face detection and required
additional tuning. We chose Cascade Classifier because it is
reliable and simple enough in terms of architecture, which
makes it very fast. The model groups features in stages and,
if the image doesn’t pass a stage, it is dropped; in the end, an
image has to pass all layers in order to be correctly classified.

23

Proceedings of RoCHI 2019

Style transfer
The solution for style transfer transformation is to build the
system as an optimization problem in three steps for
computing: a) content loss, b) style loss and c) the total
variation loss:

• <	= is a >=?>= matrix corresponding to the Gram matrix
for the original image;

• @	= is a >=?>= matrix corresponding to the Gram matrix for
the generated image;

• !A:= is the i-th vectorized feature map of the layer l (from
the generated image);

• CA:= is the i-th vectorized feature map of the layer l (from
the original image);

• D= is the number of elements in each map of the layer l;

• E2 is the weight applied for normalizing content;

• E9 is the weight applied for normalizing style;

• <> is the inner product.

The standard VGGNet [8] uses a 19-layer model for object
classification and any convolution layer from the first ones
can be used to define content loss. The content can be defined
as Euclidean distance between the chosen layer result and
combination images ant the following formula can be applied
for content loss:

12FGHIGH = E2
1
2
L (!MA

= −CMA
=)O

M,A

However, style loss must be computed independent of
context. Thus, a Gram matrix is used. The Gramm matrix is
a Hermitian matrix of inner products whose entries are given
by <MA =< QM, QA >, where QM is one of the set of vectors in
an inner product space. Figure 2 introduces the style loss
used within our deep neural network.

Figure 2. Style loss [9].

The Gramm matrix values are computed using the following
formula [9]:

<MA
= = 	

1
D=L!MS

= !AS
=

TU

SVW

= 	
1
D= < !A:

= , !A:
= >

In order to better retain the geometrical position of objects in
the image, co-occurrences can be computed between feature
maps !	=	and spatially transformed feature maps @(!	=),
where T denotes a spatial transformation instead of
computing co-occurrences between multiple features within
a map. Nevertheless, this solution can be computationally

expensive and style loss is computed using the following
formula [9]:

19HX=I =LE9||@	=<	=||ZO
[

=VW

= 	LE=19HX=I=

[

=VW

Derived style transfer implementation

The first difference with the 19-layer VGGNET [8] is the use
of 16-layer model because our experiments showed no
visible improvements when relying on the larger model
versus the smaller model (see Figure 3 in which the maxpool
layers were removed).

Figure 3. Simplified VGGNET with 16 layers.

24

Proceedings of RoCHI 2019

We addressed the issue of speed by using GPU acceleration,
but another issue that is still present due to resolution limits
(i.e., resolution is fixed at 512x512 pixels for this work).
Even if for defining the content loss any convolution layer
from the first ones can be used, experiments have shown that
using the second block with the second convolution layer has
better results. When the image is larger than 512x512 pixels,
the image is automatically scaled such that either the width
or height are scaled to 512, the window of 512x512 is
centered, and the original image is cropped to this window.
Using the explained methods with corresponding changes,
the next step is to improve our results. A gradient descent can
be used or an optimized L-BFGS to iteratively improve the
solution. In our case, we opted to use L-BFGS because it
provides results faster. Furthermore, we chose not to use the
feature from any of the layers defined in [1] or [4], and we
defined our custom layer for content loss, as follows:

4\]^_]^_abc_6 = 	3x3	conv	512	

The layers for style loss are the same as in [4], where 2
represents the second layer from the block:

:^ca__abc_6:	

= 	
3?34\]Q64(2) 3?34\]Q128(2)
3?34\]Q256(2) 3?34\]Q512(2:mn_28)

3?34\]Q512(2:mn_14) 	

However, the resulting output had a high noise level and, in
order to address this, we used an implementation of the total
variation loss – a total variation regularization for 2D signals
[10] (images in our case) with the following formula. In order
to tweak further the results, we choose β (regularization
parameter) to be equal to 2.5 as its increase forces the image
to have smaller variations:

o(c) =L(pcMqW,A −	cM,Ap
O
+	cMqW,A −	cM,AO)

r
s

M,A

Architecture
The next step consists of combining style transfer with the
keywords obtained using ReaderBench. A basic application
relying on Windows Presentation Foundation (WPF;
https://visualstudio.microsoft.com/vs/features/wpf/) [11]
was developed, capable of loading an image, get the user
input, work with images (resize, obtain bitmaps, save, load,
manage resources), make HTTP requests, parse JSON
responses, and manage and synchronize the different
processes (face detection, style transfer). Figure 4 depicts the
architecture of our solution.

The application uses interactional and independent windows,
while its flow is controlled in the central class that manages
and displays images, as well as makes HTTP requests to
ReaderBench. Style transfer is based on TensorFlow, in a
Python environment, on top of which a pretrained VGG
network from Keras is used for object detection.

Figure 4. Architecture.

At the core of the application is the main window component
which is responsible for loading and displaying the target
image, as well as combining all the components of the
system. The image displayed inside the main window is
selected using another window which displays a preview of
images. All images, both within the main window or within
the layers window, are represented as an abstract object with
required functionalities. The main window also makes calls
to the utility component which triggers an input window for
the user to write text which is sent to ReaderBench for further
processing and used as input for selecting a representative
image from the local database.

After the image is obtained, it is used as input for the Python
module responsible for style transfer. The neural style
transfer component is further tuned by considering the
detection of human faces inside the content image.

Workflow

Figure 5 shows a simple use-case scenario. The user provides
the content image which is loaded using the image handler
from the main window. In the next step, the user opens the
style transfer input window and starts the transformation
process. Next, users are prompted to provide the textual
change that they want to apply. Inside the main window, a
request for the text keywords is made for ReaderBench.
Using the keywords, the main module selects one of the
image styles (this is chosen as the best match between
keywords and labels). The content and style image, alongside
with other chosen parameters based on the content image
information, are sent to the Python module which generates
the output image.

25

Proceedings of RoCHI 2019

Figure 5. Application workflow.

RESULTS

Image results
Starting with the image from Figure 6.a and the text “at night
it will look even more impressive”, the model generates the
output from Figure 6.b. In contrast, the same input image
combined with the text “it must be a painting” generates
Figure 6.c. Similarly, the portrait in Figure 7.a was subject to
night (Figure 7.b) and sketch (Figure 7.c) transformations.

After multiples runs, we discovered that in certain scenarios
the style transfer process must be adapted to the content from
the image, especially when the content is a face. The default
settings that apply artistic changes can make an image lose
its content and more fine details, when containing at least one
face (see Figure 8 in which the test was made without face
detection). In Figure 9 we present sample results when the
option of face detection is activated.

(a) (b) (c)

Figure 6. a) Initial normal image. b) Night transformation. c) Artistic transformation.

(a)

(b)

(c)

Figure 7. a) Initial normal image. b) Night transformation. c) Sketch transformation.

26

Proceedings of RoCHI 2019

Figure 8. Output that lost content details.

Figure 10. Partially transformed image.

However, there are situations in which the style transfer
parameters are not correctly set for the image, or the
extraction technique can’t resolve the description (see
Figures 10 and 11). In Figure 10, the water and most of the
buildings are correctly transformed, whereas the center part
of the image is unchanged because it is perceived as a
common component. The changes in Figure 11 are more
drastic and the content of the input image is almost
completely lost.

Figure 9. Output which retained more content details.

s

Figure 11. Sample destroyed image.

Performance
In terms of performance, the running time for a change is
approximately 2 minutes from transformation submission on
the following specifications: a laptop with an i5 Q7300
processor, NVidia gtx1060 max-q and 8GB of RAM. The
load of each resource, the CPU/GPU loads reach their peaks
when style transfer is performed (see Figure 12). Figure 13
depicts the memory load of the application which normally
uses around 100MB of RAM except when the style transfer
is done, and it surmounts to almost 2GB of RAM.

27

Proceedings of RoCHI 2019

 - 7 -

Figure 12. CPU/GPU load across transformations.

Figure 13. Memory requirements

Survey
To further understand user perception, we performed a small
survey with a set of 5 predefined inputs (images + text) and
two custom inputs freely selected by the users. Our group
consisted of 18 users, 11 females and 7 males, aged between
21 and 26 (mean = 22.72, standard deviation = 1.67) from
different fields. Most of the pretested inputs were well
received and users were excited about the outputs (see Table
1), all except one which was intentionally introduced as not
a great result. Users found the application to be fun, easy to
use, suggestive, artistic and quite fast, whereas only one user
did not enjoy the generated water effect. Interestingly, targets
had a better perception of the custom examples (higher
Likert scores) and wanted to change the input text more for
custom images in comparison with the predefined use cases.
Almost half of the users wanted to change the custom images
and the used text instead of the fixed examples, and most of

them chose to use a portrait image with the sketch example.
An example of changed text is from “I would like a sketch”
to “I wonder how this will look as a cartoon”.

Closed Question
[1-5] Likert scale

(1 disagree; 5 – agree)

Predefined
inputs

M (SD)

Custom
examples

M (SD)

Q1: Did the resulted
image retain the basic
details from your input
image?

4.25 (0.95) 4.28 (0.78)

Q2: Is the resulted
image a good reflection
of the intent expressed
in the text input?

3.82 (1.29) 4.08 (1.16)

Q3: On a scale of 1 to
5, how much artistic
emotion was induced
by the resulted image?

3.81 (1.02) 4.14 (0.91)

Q4: On a scale of 1 to
5, how much do you
like the resulted
image?

3.87 (1.10) 4.25 (0.81)

Q5: After viewing the
results, do you feel the
need to change the
input text?

2.92 (1.39) 2.89 (1.33)

Table 1. Survey results (M – mean; SD – standard deviation).

CONCLUSIONS AND FUTURE WORK
Results in this work show promising leads towards
automating the process of transforming images based on text
suggestions. Speed improvements for the style transfer
component proved that the system is capable of obtaining the
output in a relatively small amount of time. One issue that
remains to be addressed is the resolution limitation. Using a
secondary network for identifying objects in the image also
improved the end results, especially for person pictures in
which the parameters have to be adapted accordingly.

ACKNOWLEDGMENT
This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS – UEFISCDI, project number PN-III 72PCCDI ⁄
2018, ROBIN – “Roboții și Societatea: Sisteme Cognitive
pentru Roboți Personali și Vehicule Autonome”.

0
10
20
30
40
50
60
70

idle stage keyword
request

stage

style
transfer

stage

results stage

CPU,GPU load

CPU load(%) GPU load(%)

0
200
400
600
800

1000
1200
1400
1600
1800

idle stage keyword
request

stage

style
transfer

stage

results
stage

Memory load

RAM load(MB)

28

Proceedings of RoCHI 2019

REFERENCES
1. Gatys, L.A., Ecker, A.S., and Bethge, M., (2015) A

neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576.

2. Dascalu, M., Dessus, P., Bianco, M., Trausan-Matu, S.,
and Nardy, A., 2014. Mining texts, learner productions
and strategies with ReaderBench. In Educational Data
Mining: Applications and Trends, A. Peña-Ayala Ed.
Springer, Cham, Switzerland, 345–377.

3. Gutu, G., Ruseti, S., Dascalu, M., and Trausan-Matu, S.,
2017. Keyword Mining and Clustering based on
Cohesion Network Analysis. Proceedings of the 3rd
Workshop on Social Media and the Web of Linked Data
(RUMOUR 2017), in conjunction with the Joint
Conference on Digital Libraries (JCLD 2017) (Toronto,
Canada), "Alexandru Ioan Cuza" University Publishing
House, 23–30.

4. Johnson, J., Alahi, A., and Fei-Fei, L., 2016. Perceptual
losses for real-time style transfer and super-resolution.
Proceedings of the European Conference on Computer
Vision, Springer, 694-711.

5. Dascalu, M., McNamara, D.S., Trausan-Matu, S., and
Allen, L.K., (2018) Cohesion Network Analysis of

CSCL Participation. Behavior Research Methods 50,
(2), 604–619.

6. Savický, P. and Hlavácová, J., (2002) Measures of word
commonness. Journal of Quantitative Linguistics 9, (3),
215–231.

7. Berger, G. and Memisevic, R., (2016) Incorporating
long-range consistency in cnn-based texture generation.
arXiv preprint arXiv:1606.01286.

8. Simonyan, K. and Zisserman, A., (2014) Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

9. Berger, G. and Memisevic, R., (2016) Incorporating
Long-range Consistency in CNN-based Texture
Generation. arXiv preprint arXiv:1606.01286.

10. Rudin, L.I., Osher, S., and Fatemi, E., (1992) Nonlinear
total variation based noise removal algorithms. Physica
D: nonlinear phenomena 60, (1-4), 259–268.

11. Prakash, S., 2011. Image Processing is Done using
WPF. Retrieved June 18th 2019 from
https://www.codeproject.com/Articles/237226/Image-
Processing-is-done-using-WPF.

29

Proceedings of RoCHI 2019

