

Leap Motion-based Interaction in Augmented Reality
Mobile Applications

Dan-Laurențiu Haranguș
Technical University of Cluj-Napoca, Computer

Science Department
Cluj-Napoca, Romania

dan.harangus@student.utcluj.ro

Teodor Ștefănuț
Technical University of Cluj-Napoca, Computer

Science Department
Cluj-Napoca, Romania

teodor.stefanut@cs.utcluj.ro

ABSTRACT
This paper describes a new interaction method for Web
Augmented Reality applications on a mobile phone. The
system uses a Web Server for hosting the application and the
demanded plugins and utilities files. The designed solution
proposes a representation of the human hands in the space of
the application based on the Leap Motion device sensors. A
set of hands-based gestures is provided in order to interact
with the augmented models in the application. An important
aspect regarding gestures is that the Leap Motion API
supports both fingers and palm gestures, which allows the
definition of a large set of gestures in the interaction engine.
This type of user interaction can be used in a large variety of
mobile applications, for instance applications for home
design. The goal of this application is to prove that mobile
applications using augmented reality can be extended beside
classic capabilities of a smartphone. To demonstrate this, we
chose the domain of the application to be home design.

Author Keywords
Human-computer interaction; Gesture recognition;
Augmented Reality; Web Applications
ACM Classification Keywords
(H.5.2) User Interfaces

INTRODUCTION
Augmented Reality (AR) is a variation of Virtual Reality
(VR). VR technologies completely immerse the user inside a
synthetic environment. In contrast, AR allows the user to see
the real word, with augmented objects superimposed upon or
composited with the real world [1].

Hardware/software development for mobile devices is also a
continuous growing industry, with millions of applications in
the main mobile operating systems producer markets. This
growth is defined by a lot of factors, but we consider the main
factor the user’s need for portability. A mobile application
should summarize the main features of a web or desktop
application, packed in a friendly and attractive user interface.

For a while, the mobile world started to adopt both AR and
VR. Developers started to build powerful native applications
in various areas, such as design, measurement utilities and,
of course, gaming. There are many platforms that facilitate
building AR applications for each major OS producer, such
as ARCore for Android and ARKit for iOS. Those platforms

are a set of APIs that enables your phone to analyze its
environment, interact with information and understand the
world. Some of the APIs are cross platform, for a shared
experience. They basically provide algorithms for all the
major aspects that compose an AR application: virtual object
modelling, surface detection, collision detection, lights and
shadows. The main disadvantage of using these platforms is
their demand for powerful hardware, so in our case a high-
end mobile phone with AR support. Also, neither of these
platforms support a client-server implementation, required if
you want to integrate a third-party device.

In this work, we propose a solution that represents a
compromise between performance on one hand, and
availability and extensibility regarding the integration of
other devices and APIs, on another hand.

We are using an API that manages to bring AR capabilities
directly into a mobile device browser. The mobile browser
and phone should also have AR capabilities. The major
advantage of this solution is the objective of this work –
implementing the new interaction model.

This implementation supports the demanded client-server
architecture required for integrating the Leap Motion device.
In this case, the entire solution is hosted on a web server, with
the Leap Motion device connected to a workstation. The
single responsibility of the mobile device remains to connect
with the server via a browser with AR support.

The new interaction model is represented by the human
hands projections generated by the Leap Motion device.
Those projections have the form of the skeleton of the user
hands and can be visualized along with the augmented scene.
Alongside with those hands, a set of gestures is defined in
order to replace the on screen tap based interaction, so well-
known for the majority of mobile applications.

In the next section it is presented the related work. After that,
we will present a general overview of the proposed system.
Next, it is provided the web AR application main
implementation aspects. It is followed by section that
describes the new interaction model based on gestures.
Finally, we will draw the conclusions and propose future
improvements.

115

Proceedings of RoCHI 2019

RELATED WORK
Because of the lack of direct usages of Leap Motion in
mobile applications, we split this section based on the two
main aspects of the presented subject: mobile interaction
related work and AR related work.

The mobile phones are in a continuous development
regarding the hardware used and consequently the user
interaction suffered some major changes over the last years.
The interaction changed from using joystick, directional keys
or scroll-bars to the touch sensitive screens.

But there are also others approaches of changing this
nowadays traditional touch-based interaction.

In [2], the authors propose an interaction engine based on the
device camera sensor. Continuous tracking of the incoming
video is used to estimate direction and magnitude. The
direction estimates are used for scrolling events, while
magnitude can lead to the zoom level or can be used for
shake detection. The problem we see regarding this approach
is that a continuous tracking of the incoming video can cause
significant energy draining for the device.

The approach proposed in [3] is a bit closer to what we
propose with this work – moving the interaction engine from
the phone hardware to the user. In the quoted article, the
authors discuss an eye-gaze tracking technology for mobile
phone. Gaze gestures are a new concept, and the authors
confirm that based on their studies, this concept is attractive
for the users. The problems of this solution are related to the
intensity of the outdoor light and calibration.

Mobile AR applications are facing a growth based on the
computational capabilities of the latest generation of
smartphones, as it is mentioned in [4]. Most of them are
displaying to the users either labels for the real object in the
scene or are adding virtual objects.

AR applications using only Web are a relatively new concept
and the API is still-in-development, so we can mention only
the examples offered by [5].

There is a large amount of mobile native AR applications
available in markets on different topics. As example, we
would like to mention Pokemon Go for gaming and IKEA
Place for home design. Both applications provide a better
frame rate and more optimal and precise algorithms for
surface detection or placing virtual objects, but they lack in
support for integrating other APIs or devices for extra
features.

SYSTEM OVERVIEW
Figure 1 presents the communication architecture and the
flow of data of the proposed system.

For implementation, we used the Leap Motion device, a
Samsung Galaxy S8+ smartphone, Google Chrome Canary
version 70-72 for the mobile browser with AR support,
Google Chrome Web Server for the PC server and Leap
Motion SDK v3.2, latest distribution with support for

JavaScript programming. We also added in the server the
Leap JavaScript plugins, which provides skeleton hands
display, support for on-screen position of the hands and
gesture recognition.

Figure 1. Communication architecture of the system

We obtained two different values for the data flow in the app:
one related to the phone browser capabilities of receiving
camera data and one related to the operating frequency of the
Leap Motion device.

As mentioned above, the phone browser can receive the
images from the camera with a rate of approximately 30
frames second. On the other hand, the Leap Motion device
works with a rate of approximately 120 frames per second.
The frame difference doesn’t represent a problem for the
application, as the mobile browser will only lose some of the
frames sent by the Leap device.

In figure 2 it can be seen the coordinate system of the Leap
Motion device. As the Leap device works on 3 axes (X, Y
and Z) we need to choose two of them for the 2D on-screen
manipulation of virtual objects. We choose X for the left and
right movement and Y for the vertical movement of the hand
in the space of the device screen.

Figure 2. Leap Motion Device coordinate system [6]

Figure 3 briefly presents the set of gestures associated with
virtual objects manipulation. This topic will be detailed in
the section that describes the interaction model.

116

Proceedings of RoCHI 2019

Gestures Object interaction

Index finger pointing Place object

Pinch Pick virtual object

Index finger slide Navigate through object
gallery

Figure 3. System set of gestures

AR APPLICATION IMPLEMENTATION
The AR application is implemented using the still-in-
development WebXR Device API, the successor of WebVR
API, developed in Google Chrome Canary. At this moment,
there is a limited range of devices that support this API. It
requires an Android device running minimum Android 8.0.0
(Oreo), with ARCore installed and a distribution of Google
Chrome Canary between 70 and 72. The bright aspect is that
all the browsers with WebVR implementation have
committed to support WebXR in the future.

The only feature supported now by the browser is the “hit
test” feature. This allows you to cast a ray out from the device
and return any collision with the real world, allowing the user
to use that information to overlay virtual objects. For the
purpose of this system, this feature is all we need. Once we
have a virtual object in the screen space we can easily
manipulate that object based on his 3D position in the scene
space. The actual position of the object is determined by the
update of the camera position at each frame. After each
update, we can compute the screen position of the virtual
object with a simple formula:
canvas = renderer.domElement;
if (obj3D.z > 0) {
objScreenPosition = null;
} else {
objScreenPosition.x = Math.round((obj3D.x + 1) *
canvas.width / 2);
objScreenPosition.y = Math.round((obj3D.y + 1) *
canvas.height / 2);
objScreenPosition.z = 0;
}

Canvas object holds the screen size of the device. The check
for the negative z parameter of the virtual object 3D position
ensures us that the object is currently in front of the camera,
otherwise we don’t need the transformation. Based on this
simple transformation, we can match the object screen
position with the Leap hands screen coordinates and alter the
object state or position in the real world or even remove that
object from the scene.

In case of multiple objects, we designed a menu that always
shows currently selected object. To maintain the interaction
fully implemented using Leap Motion gestures, we
associated the previous mentioned “index slide gesture” to
browse the objects in the menu.

Figure 4. WebXR “hit point” [7]

LEAP MOTION INTERACTION
The Leap Motion tracks hands and fingers. The device
operates in the proximity of the user with high precision and
a rate of about 120 frames per second. The controller uses
optical sensors and infrared light. There are 3 sensors
directed along the y-axis when the controller is in standing
operating position and have a field of view of about 150
degrees. The range of the device is between 25 to 600
millimeters above the device.

The tracking data model consist of hand and fingers data in
its field of view. It provides the updates in a Frame of data.
The Frame is the root data model of the Leap Motion device.
The hand model is represented by the Hand class. It provides
info about the identity, position, the arm attached to the hand,
the list of fingers and other characteristics of the detected
hand. The palmNormal and direction vectors define the
orientation of the hand. Leap Motion also tracks each finger
individually. Fingers are identified by the finger name (i.e.
thumb, index, etc). Fingers are represented in the Leap API
by the Finger class. The tipPosition and direction vectors
provides the fingertip position and the direction the finger is
pointing.

Based on this data, we managed to define a set of gestures
needed for the interaction with virtual objects. The gestures
are inspired by the human real-world sign language and
interactions actions.

In order to transform the hand 3D coordinates to the screen
2D space, we used the screenPosition() call from the Leap
Motion plugin API.

For adding a virtual object in the augmented scene, we
defined a pointing gesture using the index finger. The
coordinates of this gesture should match the “hit point”.
Using the hand model, we divided this gesture into 2 main
parts: the index finger must be extended and the rest of the
hand should be closed. This can be translated in the Leap API
by checking the extended parameter of the
hand.indexFinger.

For removing a virtual object, we used the pinch gesture of
the hand. The coordinates of the pinch should match the
screen position of the selected objects. The Leap API
pinchStrength() call returns a value between 0 and 1, so all

117

Proceedings of RoCHI 2019

we need to do is to define a minimum value over which we
consider a gesture as a pinch.

For switching the selected object in the menu, we defined a
sliding gesture using the index finger. For implementing this
gesture, we checked if the index finger screen position is
inside the menu element and we computed the finger x-axis
position from 2 different frames, suggesting a “swipe to right
gesture”. In order to do this, we proposed a duration of about
half a second for this gesture to be completed. In terms of
Leap Motion device, a second means 120 frames, so for half
a second, we need to check every 60 frames if the x
coordinate of the hand.screenPosition() call is moved from
approximately the position of the left border of the menu to
the approximate position of the right one and if
hand.indexFinger.extended returns true.

It is important to mention also that the quality of the light do
not generally influence the quality of the gesture detection as
the Leap Motion device uses a set of infrared cameras.

Figure 5. Virtual hand and augmented object

CONCLUSION
We proposed a new interaction model for mobile
applications replacing the traditional smartphone screen
tapping. We have built a simple AR web application using
the WebXR Device API “hit point” feature. We integrated
the Leap Motion API in order to use hand gestures for
interacting with the virtual objects. The system uses 3
gestures, each mapped to a simple object manipulation
function: index finger pointing for placing an object,
pinching for removing an object and index finger sliding for
menu navigation.

The solution represents a compromise between performance
of a native AR development platform and extensibility. By
using Web technologies, we managed to offer support for
using external devices and third-party APIs.

Through the advantages, it is worth mentioning that the
proposed solution brings a constant level of usage difficulty

regarding any set of actions, unlike the other interaction
models that were analyzed. The main disadvantage is the fact
that the system requires a trained user.

FUTURE IMPROVEMENTS
The system does not offer persistence. We are loading the
library of objects during the initialization phase of the app
and we did not offer the user the possibility of saving the
augmented world scene. This aspect can be resolved by using
a database for saving the user objects position in the scene.

The user can only interact with the currently selected object
from the menu. In case of a complex scene, the user has to
scroll repeatedly in the menu in order to switch to the desired
object. We need to find an alternative based on the camera
field of view and the position of the visible objects.

The interaction between Leap hands and virtual objects is
based on matching the hand or tip of the finger and the
middle of the virtual object with an addition threshold in each
direction. This can be improved by computing each object on
screen size and position and check if hands intersect those
values.
It has to be mentioned that the system was tested by a
relatively small number of users. The application was
calibrated after author’s preference and the other users were
assisted in using it. So, the system may require an interface
that allows each user to personalize the default calibration.

REFERENCES
1. Ronald T. Azuma, A Survey of Augmented Reality,

IEEE Presence: Volume 6, Number 4, August 1997
2. Haro A., Mori K., Capin T., Wilkinson S., Mobile

Camera-Based User Interaction, IEEE Lecture Notes in
Computer Science vol. 3766, 2005

3. Heiko Drewes, Alexander De Luca, Albrecht Schmidt,
Eye-gaze interaction for mobile phone, IEEE Mobility
’07 Proceedings of the 4th International Conference of
Mobile Technology applications and Systems and the 1st
International Symposium on Computer Human
Interaction in Mobile Technology, pages 364-371, 2007

4. Zornitza Yovcheva , Dimitrios Buhalis , Christos
Gatzidis, Overview of Smartphone Augmented Reality
Applications for Tourism, IEEE e-Review of Tourism
Research, Vol.10, No. 2 , 2012

5. Joseph Medley, Augmented Reality for Web, IEEE
Chrome Updates, June 2018,
https://developers.google.com/web/updates/2018/06/ar-
for-the-web

6. Leap Motion device overview, https://developer-
archive.leapmotion.com/documentation/javascript/devg
uide/Leap_Overview.html

7. WebXR Device API hit point diagram,
https://codelabs.developers.google.com/codelabs/ar-
with-webxr/ - 4

118

Proceedings of RoCHI 2019

