
Secure management and integration system for electrical
devices

Bîrsoan Daniel Florin
Technical University of Cluj Napoca

G. Baritiu 26-28
birsoanf@gmail.com

Ștefănuț Teodor
Technical University of Cluj Napoca

G. Baritiu 26-28
teodor.stefanut@cs.utcluj.ro

•Hardware~Communication hardware, interfaces and
storage~Sensors and actuators
•Security and privacy~Software and application
security~Web application security
•Social and professional topics~Computing / technology
policy~Privacy policies

INTRODUCTION
The Internet of Things (IoT) was first mentioned in 1999 by
Kevin Ashton. A common vision in this area is that in the
future will be a single global IoT communication network,
because the amount of information become huge and there
are more and more devices. And another fact is the reliance

on the word "things" referring to all the physical objects
that surround us.

IoT is an area that have developed a lot in recent years. It is
this evolution that has brought more and more IoT solutions
develop to the market that has created customized products
and aimed at attracting end customers in their ecosystem.
Following this diversity, it has not been possible to operate
on the initial architecture model for many years and many
architectures and ways of working have emerged to manage
the very large volume of data and very heavy network
traffic.

Also, the interaction and the way we relate to this area must
be very well defined and easy to understand by everyone,
because, for even greater popularity, all people regardless
of their technical knowledge must be able to use the
solutions simply and effectively in order to meet their
needs. That is why more and more investors in the smart
devices development market are migrating to minimal user
interactions with the system or systems that manage their
space through various innovations such as applications for
virtual assistants, Alexa or Google Assistant, in various
smart objects, applications for smartwatches or smart TV
applications. We must not forget the fact that often the one
that facilitates the access to the devices attached by the user
in a system are the hubs. As they become more accessible,
they have taken over much of the market for the simple
needs of users, especially those with built-in assistants,
which also help stand-alone applications to communicate
with devices.

Following the minimalist interaction described above, I
must highlight the contribution of smartwatches in this
direction and their rapid evolution in recent years. The
clock, after all, over the years, from its appearance to the
present day, has been worn by richer people and people
representing the middle or lower class. Everyone has
become accustomed to his presence, his behavior, and his
usefulness in giving us the exact time. It is this habit that
has helped the further development of the field of
smartwatches. The first smartwatch1 appeared in 1972,
produced by Hamilton Watch and Electro / Data Inc. which
was just a digital representation of time in the form of
Arabic numerals. Later, it reached an industry that sells

1http://www.mobileindustryreview.com/2016/10/33860.htm

DOI: 10.37789/rochi.2020.1.1.13

ABSTRACT
The main purpose of an Internet of Things(IoT) network is
to make people's work and life easier by providing
processes and services as close as possible to their needs.
Globally, it is stated that the Internet of Things (IoT) must
be available everywhere. As the Internet is almost
ubiquitous today, this is not an unreasonable requirement.
But to create such a network, it would be necessary for all
devices, regardless of the date of creation or manufacturer
to be able to be inter-connected to a common platform and
made accessible securely through the Internet.

In the current article we are proposing an architecture that
responds to this need for the interconnectivity of devices
and facilitates secure communication through its
components. Through the installation of dedicated
board/boards in the desired space and through the
connection of the electrical devices on different pins to
them, the “objects” are connected to the internet and the
user can control their ON/OFF state remotely. So this
purpose the proposed architecture features four main
components: (1) on-site boards that control the electrical
items and the internet connection; (2) a server that
orchestrates the communication between all the other
components; (3) a web application for electrical items
management; (4) a smartwatch application for electrical
items control.

Author Keywords
System Security; Modular Software System; Architecture in
Software Application, Web Application, Smartwatch
Application;

ACM Classification Keywords

Proceedings of RoCHI 2020

81

over 2.1 million devices annually, most of which are Apple
devices.

The smartwatch has a great advantage in managing personal
smart devices compared to the regular phone because it is
carried on the hand and often replaces its functionality by
80% so users who have such a device are more tempted and
satisfied with applications for managing smart objects on it.
Its minimalist design, small screen, limited processor and
RAM are so far the biggest disadvantage that blocks it from
completely replacing the phone.

Security, which is one of the fundamental problems of IoT
systems, has been ensured in the proposed solution through
the encryption of all communication using tokens. Usability
aspects have been addressed through the development of
minimalist and easy-to-understand client applications.

RELATED WORK
The book [4] begins with a consideration that specifies that
the IoT domain is becoming as abstract as the "Big Data"
domain, and how we relate to it must become increasingly
personalized. Like development solutions to problems in
this area, in this domain we can no longer operate on the
"one size suit all" model for years, and this is described in a
very objective manner in the chapter [2].

Studies show that sooner or later a single dedicated IoT
network will be needed [4] and that all objects will
communicate through it. Of course, converting to IPv6 will
be a big step forward in this endeavor because the number
of public IPs would increase exponentially [1] and every
device or hub in space would have one.

And security is one of the most important aspects of the
field. The growing number of devices and their holders
requires the encryption of sensitive end-user data.
Depending on the type of attack, like man-in-the-middle
attack or false node message corruption, both the data
sending device and the node/server that manages it must be
prevented from stopping communication. A list of such
attacks can be found in chapter [6], which also describes
possible implementations of solutions for each main attack
being encryption, object authentication, Datagram
Transport Layer Security, or Information Flow Control.

One of the long-term success criteria of a system is the
architectural type chosen to develop it. The big developers
in the market for object management services in a smart
way do not reveal the whole architecture on levels but only
large explanatory diagrams or small portions of text that
result in how to do things.

An example compared to the system described in this paper
is openHAB, which is a company developing custom IoT
solutions. In both systems there is the concept of modularity
and decoupling of logic data sources. Another existing
solution on the market with which the developed system is
similar is the application from Samsung, ie SmartThing.
From the structure information provided by the developer
on the official page of the application we can learn that it
relies heavily on the integration of devices in an external
server from where a system kernel provides access to
applications for customers. As a communication
architecture it would be assumed that they use the Client-
Server type, similar to the system described in this paper,
because they have endpoints through which data is
extracted and they must be called by an application or a
third party to provide data or perform tasks on the server.

 So the competition is given by the diversity of IoT
products and applications/systems. Applications such as
SmartThing, openHAB, or Google Home, which have
gained a lot of ground in recent years due to their scalability
and availability, are the main competitors of the developed
solution. The competition, after a careful analysis of the
market, is based on IoT devices that have either wireless or
Bluetooth in their management and integration as opposed
to the system designed by us where devices without these
two features can be integrated provided they are connected
to a power source and operate on the ON / OFF principle.

Table 1: Comparison between the current solution and
competition on the market

Thus we offer the possibility to automate the spaces without
assuming the expenses related to the purchase of new, more
expensive devices, which are compatible with a certain
system, by integrating our system in the space and
connecting the existing objects to it.

Solution Security Applications dedicated to
the system

Electrical
consumption
of devices

SmartThing Yes Mobile/Web/SmartWatch No

GoogleHome Yes Mobile/Web Yes

openHab Yes Mobile/Desktop Yes

AFHA Yes Web/SmartWatch Yes

Proceedings of RoCHI 2020

82

 Figure 1: Architecture design.

IMPLEMENTATION
The system consists of four main modules that have been
divided according to the functionalities they perform.

The first module, and the center of the system, is the server-
side that appears at the bottom of Figure 1. It is responsible
for interconnecting the other components and also
responsible for generating the authentication keys for the
system. Also in this module is added the database where all
the data from the applications are persistently maintained,
from the authentication data, where the password and the
pin are encrypted with a sha256, to the sensors and devices
data from spaces attached to the system.

The second module is the hardware part of the users'
buildings. On the diagram, it is on the right side and the
plate is symbolically represented by a mini-hub and the
bulbs and thermometers represent the rest of the connected
devices. The module has the responsibility to connect the
electrical devices to the central server through a board that
serves as a hub. At the same time, it constantly requests
data at regular intervals from the server to find out if it is
necessary to execute commands on the devices. The board
has an authentication system that request a token from the
server before sending the user data and all requests, after
this point, are accompanied by the key received after
authentication. It also at a certain interval transmits data
from the person's spaces to the server to maintain the
consumption history and the history of biometric data.

The third module is the web application that has been
designed in a way that is compatible with multiple screen
sizes. This module is responsible for managing action
groups that the user can create for their own spaces, with
the ability to activate one or more devices at once. It will
also display tables with adjustable consumption,
temperature, and humidity depending on the chosen
building or the desired time interval. On the architecture
diagram, it is represented by the phone and the laptop and
through the search engines, the developed application will
be accessed. In this case, too, a prior authentication will be
made and a key will be received and then used in all
requests made to the system. This application is designed to
be scalable on both mobile and a desktop screen so that it
can be accessed by all potential customers regardless of
phone brand or of course whether or not it has a computer
or laptop.

The fourth module is responsible for activating the action
groups defined in the web application. For the
implementation of this module, the development of an
application dedicated to smartwatches was chosen because
the aim was to control the attached components as easily
and quickly as possible. The application also benefits from
a notification system through which the end-user is notified
when the temperature or humidity exceeds a normal
threshold in his home to prevent any incident in the person's
premises. Notifications are also received when the
application runs behind the others and if more come in a
short time they are merged by the system into a larger

Proceedings of RoCHI 2020

83

notification where they are displayed in the order in which
they came to the smartwatch. Given the increase in quality
in the field of these smart accessories, the implementation
of the solution was much more affordable, but still, in terms
of hardware specifications, smartwatches lag behind phones
and do not provide a complete transition from phones to
them soon. This module is represented by the Samsung
smartwatch on the left side of the diagram. The
communication between each module and the main server
is made using the internet networks and the http1.1 format
and a key generated following an authentication made to
the server is attached to it. Also, to make communication
more efficient and to facilitate the openness of the system
as a functional requirement, a common language based on
the JSON data structure was implemented. Even if one of
the components disconnects from the system, it will still be
able to operate based on these formats.

The diagram also describes how users interact with the
system. It is observed that they have access to the
smartwatch application and the web application through
browser on the phone or laptop or computer.

Server
The need for a central server is given by the control of the
large data flow that the attached components manage,
leaving them to focus on managing their main
functionalities. It links the persistent part with the user data
and the modules to which it provides processed or raw
information depending on the need of the place where they
are requested. For the easy integration with the rest of the
modules and the use, without explicit direct intervention
from the programmer, of several threads to perform the
tasks, a server designed with Java was used in an
application such as Spring Boot.

The server is created in a Layered architectural style with 3
separate levels for the database part, for service logic, and
for the connection to the outside through web service.

Security
The security part is provided by the server by generating a
token after successful authentication. Once the modules
have made this registration and have the token they attach it
to the header part of the http1.1 in each request they make
to the server. The token part was implemented using the
io.jsonwebtoken library from which with the help of an ally
generated key for an encryption algorithm a string is
obtained through which the personal information about the
user who made the request is hidden by the attacker. The
algorithm used to generate a token is HMAC which
generates a hash function after a private key, for creating
the message in the hash sha512 is used for a longer key
length and for increased security.

However, knowing the problems that could arise related to
the encryption algorithm and the fact that it could be broken
and the attacker could take over the secret information

entered in the token, we added another level of encryption
for the user's data. Before adding the information for
encryption, the text is transformed into an integer, the
integer is corresponding to the character values in the
ASCII table. To secure the text we also used a vector of
characters with a randomly chosen size between 20 and 40,
the range was chosen arbitrarily to generate a key large
enough. Then scroll through the text transformed into
ASCII and if the corresponding number in the table is
below 9 add two zeros before the number, if the number is
less than 100 only add a zero before it and if it is greater
than 100 it will not be added any string. After the newly
created value, an extension represented by the above fixed-
length vector, called the jump, with random values, will be
added. The next number in the original string will again
generate a vector with the same size but different values
and will be added to the new string in the original text. All
steps will be repeated until all text is consumed. And
finally, we will move on to the classic encryption of the
new format string.

To maintain a constant key to generate the token and the
size was chosen for the string that is added after the ASCII
values, we used the Singleton design pattern in which the
class responsible for generating, validating and decrypting
the token messages is instantiated once and the data from
class is reused.

However, in order not to risk reusing the older
authentication keys, the key and the vector size will change
every 12 hours with a cron job set on the Spring Boot
application. This was only possible by allowing the spring
application to be scheduled in the main class with a specific
annotation.

And for the decryption part of the message will be
considered the first 3 digits of the final text as the first letter
with the corresponding value in the ASCII table, after
knowing the size of the string of numbers added after it will
be iterated over that number of values to the next value of 3
digits which is the second corresponding letter in the ASCII
table. Repeat the steps described above until the size of the
final message is reached and the original text is obtained.
Pre-encryption of the original message brings a security
bonus assuming that the attacker could decrypt the hash
function used in the token.

Therefore, on two successive calls to generate a token for
use in system requests by a user named "vas.ile1", it will
look like this for the first time.

Figure 3. The first authentication key for the name vas.ile1.

Proceedings of RoCHI 2020

84

And for a second request, the authentication key to requests
to the server will look like this, different from the first
authentication.

Figure 4. The second authentication key for the name vas.ile1.

It is also worth mentioning that during the 12 hours until
the renewal of the key for generating token encryption
functions both generated examples remain valid and the
system will treat them equally for the user who owns them.

Hardware integration
A NodeMcu v3 - Lolin development board containing an
ESP8266 chip was used to integrate the devices and
sensors. The chip facilitates the connection of the board to
an internet network thus creating a connection between the
main server and it.

A client-server architecture was used to communicate and
exchange information between the development board and
the server over the Internet, to the detriment of a publish-
subscribe architecture. We went on this so as not to make
communication very difficult and not to block certain
channels as the second one described did. If we went to the
second one a port on the server side was continuously busy
to detect certain events and thus the system became limited
by the number of ports available on the machine where the
server application was running.

In the context of the client-server architecture, two modes
of communication with the server module were considered,
the one in which the server searches for the board to query
and transmit information and in which the development
board searches for the server to receive information about
the tasks to be performed and sends him the latest sensor
readings via http1.1 messages. At this point, we went for
the second option to disconnect the server from the boards
and not need changes on the server-side when adding new
spaces and buildings to a person.

The data is sent in JSON format using the ArduinoJson
library created by Blanchon B. which provides support for
data serialization in chapter [2] and for their deserialization
in chapter [3]. Also in this way, after authentication, the
authentication key (token) is taken over and stored in a
character vector on the board, being used later in the
requests made to the server. The size of the vector with
which the data is unearthed from JSON has a fixed length
of 800 characters because performance reasons the dynamic
allocation vector for the library used to extract the data was
removed.

For the reading part of the sensors, the data is taken from a
DHT22 sensor that provides temperature and humidity in
the form of float variables and then with them a JSON is
created and the information is sent.

Each device connected to the server has a unique identifier
for the board that is attached to it for a specific space. In the
implementation part related to the switching on or off of the
connected devices, a list is sent from the server with these
identifiers in the form of a string for example “012”. The
list is deserialized and all the devices that are in the list are
turned on and the rest remain off. The list is built according
to the needs and settings of the client. The limitation of the
hardware system here was to 3 devices but the aim is to add
a much larger number of devices to the development
possibilities.

Client applications
On the client-side, there are two applications which focus
on different functionalities. The first one, implemented as a
responsive web application, is focused on managing and
viewing device statistics on a computer, laptop, or mobile
phone. The other, allows the user to control the devices,
more precisely their activation, and also to receive
notifications in case of exceeding certain normal values for
the owned spaces. The Tizen system has been used for the
development of this second application, ensuring
compatibility with smartwatches that use this system.

The web application is designed to be scalable on both the
desktop and the phone. Also, the web application is built in
a high usability mode with big buttons and also written big
enough not to make it difficult for the user to perform the
tasks.

The security for unauthorized access in web application is
primarily held by the index class where page routing is
based on URLs. When a user does not have an
authentication key set in the local storage part of the
browser, they are not allowed to access the page and are
redirected from the router to the unauthorized page. This is
done by a URL analyzer that looks at how the URL is
formed and if it recognizes it, in case of “/” it goes to the
authentication page, or in case of “/ client” it checks the
authentication key from the local storage and if it exists
enter the page. If the key exists and is not valid, the user
enters the page, but does not see any data because at the
time of requests to the server it rejects them.

Also, on the web security side, XSS type attacks were taken
into account, which allow the attacker to run a program
inside web pages through which he can extract data about
the client and about the traffic on that page. This attack is
not limited to inserting code by common means such as
fields where data is inserted directly but can also be inserted
into tables or menus with multiple selection. For this
reason, in each field where data can be inserted, they are
considered text by the application. On the tables side, the
code for them is generated dynamically so that the attacker

Proceedings of RoCHI 2020

85

cannot insert static code in one of the table options. The
same principle applies as in the case of tables with multiple
selections. On the design side of all the visual components
described above, it was ensured that no line of code that
could be run or selected was in the control of the browser,
thus blocking access to the application code in a direct way.

The smartwatch app is compatible to run on Tizen 4.0 and
higher. It uses a readable menu that contains buttons that
have the person's buildings on the first level, on the second
level after clicking on a building you can see the person's
spaces to the building and on the last level are user-defined
action groups attached to that space. The user-defined
action groups, with the devices you want to start when
activated, are red if the scenario is inactive and the devices
are off and green if the devices are on and the scenario is
active. When the user presses a green scenario, all devices
close and the scenario turns red.

For the authentication part, a minimalist design was created
with few elements in order not to visually load the user and
to make the interaction with the system as easy as possible.
The distance between the text where the information to be
entered is specified and the space allocated for input is left
for a hidden element where the text specific errors are
entered when it occurs. The error display mode and the
authentication screen are visible in Figure 5.14. Also, a
detail of the design part is that all the elements are centered
and expand according to the space available on the clock
screen. The application has been designed to have the same
design experience on multiple watch sizes and sizes. The
menu was stacked with centered and dynamically allocated
elements when creating the page. If the elements take up
more space than available on the device running the
application then a right-hand browser will be autogenerated
that will allow them to pass through, such an example can
be seen in Figure 5.15 in the clock on the left. Also, each
menu has a button fixed at the bottom that allows the user
to return to an internal action in case it is wrong, but this
action does not affect the values that are already saved that
have been selected by the user, ie not remove. But a new
press of a menu item and the default move to the next level
involves overwriting the values of the user's actions.

Also the smartwatch application will receive notifications
about the high temperature or high humidity from the server
upon request and will display them to the customer on the
watch.

For the notifications part, a multi-threaded solution was
used. The application runs on a certain thread and before
making the first load, from a cycle in which it remains on, it
creates a thread on which checks are started in connection
with the customer alert situations. The thread, which
contains the task of checking notifications, has a timer that
is set to 10 seconds, so it queries if new information has

appeared about the status of the client's spaces. If the list is
not empty, the resulting text is transformed into a list of
notifications and sent to a service that sends them to the
customer.

CONCLUSION
Pursuing the level of security as one of the requirements of
increasing interest in IoT devices, I focused on this by
providing token-based communication in all modules and
the project as the first version achieved all its objectives.

It can integrate electrical devices that work on the principle
of ON / OFF, provides secure communication between its
components, and have also been created in a modular style
aiming to decouple the components that make it up and a
minimum dependence, only in terms of data format. An
additional security level has also been implemented for the
token generation by encrypting user data with an algorithm
that takes into account the ASCII codes of the characters.

Client applications also provide security when
communicating data with the server and are highly user-
friendly, simple, and easy to use without the need to
perform many steps to perform the desired tasks.

REFERENCES
1) Al-Anqoudi Y. S., „Internet of Things,” 1 February
2020. [Interactiv]. Available:
https://www.researchgate.net/publication/339383844_Intern
et_of_Things. [Acces 14 March 2020].

2) Blanchon B., „Serialization tutorial,” [Interactiv].
Available: https://arduinojson.org/v6/doc/serialization/.
[Accessed 23 January 2020].

3) Blanchon B., „Serialization tutorial,” [Interactiv].
Available: https://arduinojson.org/v6/doc/serialization/.
[Accessed 23 January 2020].

4) Croes E., Software Architectural Styles in the Internet of
Things, Nijmegen: RADBOUD UNIVERSITY
NIJMEGEN, 2015.

5) Hassan Q. F., Internet of Things A to Z: Technologies
and Applications, Al Manşūrah, Egypt: Wiley-IEEE Press,
2018.

6) Jurcut Anca D., Pasika S. Ranaweera, Lina Xu,
„Introduction to IoT Security,” in IoT Security, Dublin,
John Wiley Sons Ltd. 2019, 2019.

7) Nayak P., „Internet of Things Services, Applications,
Issues, and Challanges,” in IoT, Hyderabad, India,
Gokaraju Rangaraju Institute of Engineering &
Technology, 2019, pp. 354-366.

8) Santhakumar R., Subramanian B., „IoT Technology,
Applications and Challenges: A Contemporary Survey,”
Wireless Personal Communications, p. 27, 10 April

Proceedings of RoCHI 2020

86

