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ABSTRACT 
Information surrounds us and keeping track of relevant 
details can be challenging. Although there are multiple 
applications to take notes, organize ideas, or set reminders, 
existing solutions are semantic-agnostic and rely on the user 
to manually search for desired information by keywords. We 
propose a novel method to help people store and retrieve 
such details with ease in Romanian language. Our 
conversational agent built on top of the RASA framework is 
capable to extract relevant information from the user’s 
utterances, store them in a persistent knowledge graph, and 
ultimately, access them when requested. A set of specific 
intents regarding locations, timestamps, and properties were 
created and learned by the agent using manually built 
examples. In addition, an interaction logic based on a 
knowledge graph was added to enable the storage and 
retrieval of information, based on the identified semantic 
components from the input sentences. The performed tests 
showed a good accuracy for intent detection, and promising 
results for the sentence parser. Our conversational agent is 
accessible as a web application which can process text or 
speech inputs, and responds with a textual representation of 
the user’s memorized facts. 
Author Keywords 
Natural Language Processing; Conversational agent; 
Knowledge representation. 
ACM Classification Keywords 
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.
I.2.7 Natural Language Processing: Discourse, Language
parsing and understanding, Text analysis
General Terms 
Natural Language; Text analysis. 

INTRODUCTION 
Conversational agents represent intelligent programs based 
on Natural Language Processing (NLP) techniques, capable 
of performing dialogue conversations with a human 
interlocutor. These agents need to maintain the global state 
of the conversation and provide responses in relation to this 

state and the user’s messages. Moreover, conversational 
agents became more and more adopted by the industry, 
mostly in the form of chatbots that offer guidance to clients 
with regards to a product or service, but also as virtual 
assistants capable to perform various tasks at the user 
request, such as taking notes, setting an appointment, and 
even controlling smart home devices. 
Conversational agents are preferred in a wide range of cases 
due to their programmability and their scalability for simple 
and highly repeatable tasks, such as basic technical support. 
Equally important is the help agents can provide to people 
who are unfamiliar with the use of a technology, or have 
deficiencies (such as blindness), by allowing them to simply 
talk with the agent in order to execute specific tasks. Thus, 
conversational agents try to push the perceived intelligence 
of computers and their ability to interact with people further, 
at an increased pace. 
We introduce a memory-assistant conversational agent for 
Romanian language, capable to remember the user's 
previously registered information. The agent is capable of 
processing the user’s statements that expose information 
which should be memorized, and can also react to his/her 
requests for a specific detail, relying upon the gathered data. 
The core features consist in detecting the users’ intents 
(whether they wanted to register or to access a specific type 
of information), and extracting the key facts from their 
utterances, storing them in a knowledge graph, and exposing 
them back on demand. 
Our agent works with factoid information [15], meaning that 
it has the ability to detect specific elements inside more 
complex sentences, and respond to queries such as: “where” 
(locations of objects or events), “when” (timestamps of 
events or actions), “which is” (various properties of entities), 
“which of the” (the instance of an entity that has a certain 
qualification or function), or “who” (subject of an action or 
a description). The agent operates in a user-initiative mode, 
meaning that the user launches the dialogue sessions with a 
request, waiting for the agent to reply with the corresponding 
result. Moreover, the information is presented in a concise 
form to the user, just as it is stored in the knowledge graph; 
no context planning or natural language generation 
techniques are used for information retrieval. Users do not 
have to specify the type of the information to be stored, nor 
how or where to keep it. The chatbot itself is responsible for 
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interpreting, understanding, and managing data, while the 
interaction with the user is limited to expressing a fact or a 
request in natural language (text or speech). In this manner, 
the agent allows for fast, natural, and intuitive information 
registration and retrieval. 

STATE OF THE ART 
Conversational agents are increasingly adopted into different 
software applications and web platforms. According to 
Brandtzaeg and Følstad [6], the main benefits of using such 
agents are their productivity (i.e., obtaining support or 
necessary information regarding a product or a service), but 
also entertainment, or social interaction and communication 
(e.g., chit chat or social chatbots). The bots provide a 
significantly enhanced user experience and interactivity for 
performing various tasks than a static user interface. In 
addition, bots also offer scalability and objectivity in their 
conversation with the user. Thus, a conversational agent can 
be perceived as being more agile than a person at providing 
simple information or helping the user solve standard 
problems that fit a certain template. 
Depending on the complexity of the conversation, two types 
of agents come into view, according to Jurafsky and Martin 
[15]: a) simple agents designed to perform tasks at the user’s 
request, called task-oriented dialogue agents, and 
b) chatbots, which are more complex agents that can
maintain longer conversations, which can extend over
several replies and can include different interleaved subjects
of discussion. In this article, we will focus on the first
category.
Conversational agents rely on a dialogue-state architecture 
[15] that addresses two problems: intent classification and
slot filling. Multiple recent approaches try to develop joint
models capable to perform both tasks on a single pass
through the model. For instance, Liu and Lane [19] proposed
an attention-based RNN (Recurrent Neural Network) model
which can concurrently perform intent detection and slot
filling, for a given token sequence. The model consists of a
bidirectional RNN, based on LSTM (Long Short-Term
Memory) cells. The model generates slot labels for each
token based on a hidden state made up of a forward and a
backward state obtained by analyzing the input sequence in
both directions. Attention provides additional information
about the input sequence through a context vector that is
combined with the hidden state before token labelling. Intent
detection is performed simultaneously by using the
computed hidden states from the bidirectional RNN model.
An attention-based encoder-decoder model was also
investigated by Liu and Lane [19]; the model integrates all
information from the input sequence (encoding), and then
generates an output sequence containing the slot labels
(decoding).

In contrast to the previous approach, Wang et al. [28] 
contradict the joint model structure, and propose a bi-model 
RNN structure, consisting in two connected BiLSTM 
components, one for intent detection and one for slot filling, 
that takes advantage of the cross-impact between the two 
tasks. The two BiLSTM models exchange their hidden states 
and combine them when generating the output of each task; 
thus, the intent detection model benefits from the features 
extracted by the slot filling model and vice versa. A slight 
variation containing one LSTM decoder on top of each 
BiLSTM component was also explored, obtaining even 
better results and surpassing the previous state of the art 
systems for both tasks. 
Dialogue-state architecture can be also used for designing 
task-oriented dialogue systems [15]. These architectures 
consist of a more complex pipeline of processing 
components [15]: automatic speech recognizer, spoken 
language understanding unit, conversation state tracker, 
dialogue policy, natural language generation unit, and speech 
synthesizer. While the first two components act as 
blackboxes that perform processing tasks over the user’s 
voice input and export texts, the dialogue tracker is a stateful 
component that maintains at each moment the conversation 
status, alongside the chat history. 
Despite the usefulness and remarkable user experience 
conversational agents can provide, their creation from 
scratch can prove to be challenging and time consuming. An 
open-source framework that comes in handy is RASA [5], 
which provides Natural Language Understanding (RASA 
NLU) and Dialogue Management (Rasa Core) features for 
building intelligent conversational agents with a minimum 
effort from the programming point of view. The framework 
is based on a dialogue-state architecture, but supports only 
the communication through text messages (i.e., it does not 
integrate speech-to-text and text-to-speech converters). The 
NLU component has a modular pipeline, instrumental in 
customizing and tweaking the components involved in 
processing and interpreting the user’s utterances. Tracker 
objects are used to manage the conversation flow; their role 
is to maintain a list of events encountered during the 
communication session, together with relevant facts (slots) 
exposed by users through their statements. 
RASA relies on the DIET (Dual Intent and Entity 
Transformer) classifier [8] for intent detection. The model 
obtains a good performance and its training is significantly 
faster and easier when compared to older models. The 
architecture can be visualized in Figure 1. The model uses a 
2-layer Transformer [27] for condensing the semantic
features extracted from each token, and compares the
resulting feature vector with the vector corresponding to the
gold intent based on a similarity (dot product) metric. A
Conditional Random Field (CRF) [17] can be used on top for
entity extraction. Pre-trained word vectors from BERT [12]
or GloVe [21] can be used to improve the results.
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Figure 1. DIET architecture [8]. 

Data storage is also a central component for our agent. A 
traditional SQL approach is not suitable because data from 
the conversation is unstructured and in natural language. 
Thus, semantic networks [26] (i.e., directed graph where 
nodes represent entities or concepts, and the arcs mark 
relationships between them) are preferred. Semantic 
networks provide a better contextualization in terms of the 
representation and identification of knowledge facts. 
Knowledge graphs are semantic networks which include 
inference methods for deriving and combining information 
in order to extract new facts. NoSQL graph databases include 
different query languages to read or modify stored data [1]. 
The most relevant examples of such query languages are 
Cypher [13] (which introduces powerful pattern-matching 
based queries), SPARQL [23] (designed for RDF data 
storage schemas), GraphQL (a data query language for APIs) 
and Gremlin [25] (which displays a distinguishable 
functional style in its queries). 
Different approaches for structuring information in graph 
databases were considered for representing knowledge in our 
conversational agent [22]. One of them, the labeled-property 
graph model (used, for example, by the Neo4j Database 
Management System [20]) consists of adding properties to 
nodes or relationships to specify different metadata in a key-
value fashion. This approach enables a flexible and compact 
representation of information. Conversely, the RDF model 
[18] allows nodes and arcs only to specify an URI label,
which in return defines the class of the entity or a
relationship. This leads to a more strict and uniform data
representation, but, at the same time, to a reduced topological
conciseness. Additional properties have to be injected as
separate nodes due to the simplicity of the RDF [18] graph
elements.

METHOD 
Corpus 
Two supervised learning models are involved in the Natural 
Language Understanding pipeline of our agent: the first for 
detecting the intent from the user’s utterances, and the 
second for parsing the sentences. These models implied the 
creation of two datasets containing labeled examples. 
Intent Classification 

The classification of the user’s sentences by their scope 
requires defining a set of intents that determines the general 
types of tasks handled by the agent. These intents outline the 
constrained world or domain the agent was designed for. The 
considered intent classes are presented in Table 1. 
The training dataset consists of 285 manually built sentences 
(for the “get” and “store” intents) and phrases (for auxiliary 
intents, such as greetings or the store request announcement). 
Additionally, a separate test set comprising of 128 examples 
was created to evaluate the performance of the intent 
detector. The distribution of examples in the training and test 
datasets can be observed in Figure 2. 
Syntactic Parsing 

Due to lack of a specific dataset for our task in Romanian, 
the training dataset consists of 200 manually annotated 
examples, while the test set used to measure parsing accuracy 
contains another 70 sentences. The examples were created 
using a custom-made HTML and JavaScript web interface 
that led to a faster visual annotation process. Error! 
Reference source not found.Figure 3 shows the frequencies 
for each syntactic question introduced in the training set. An 
example with an annotated sentence can be observed in 
Figure 4. The head represents the index of the word in the 
sentence to which another word is connected to in the 
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dependency tree; the „deps” property includes custom word 
tags used later on.

Table 1. Intents description. 

Intent Description 
Greet, 
Goodbye 

Can be used at the beginning or the end of an interaction with the agent, although their use is optional. General 
greeting phrases were used for these intents, as training examples. 

Store request The user announces the agent that they want to store a piece of information in the knowledge graph. 
Store/Get 
location 

The user wants to tell/ask the agent about the location of an entity or an event. For location requests, the agent expects 
a sentence consisting of the interrogative pronoun “unde?” (eng., “where?”), along with a subject entity or an action 
involving a direct object. To store a location, a sentence containing a place adverbial and either a subject (e.g., tell 
where the subject is placed) or a direct object (e.g., tell where the user puts an object) is expected by the agent. 

Store/Get 
timestamp 

The sentence tells/asks the agent about the timestamp (time point, duration, or frequency) of an event. The phrases 
“când?” (eng., “when?”), “de când?” (eng., “since when?”), “până când?” (eng., “until when?”) and “cât timp?” (eng., 
“how long?”) are used to ask the agent for this type of information, along with an event expressed as a bare noun 
phrase or as a complex action (containing also other semantic entities such as adverbials or direct objects). A sentence 
containing a time adverbial is expected to register a time information. 

Store/Get 
attribute 

The user wants to store or retrieve the value of an entity attribute (a personal detail of that entity, which can range from 
a person’s phone number to the dimensions or the price of an object). The “get attribute” intent is represented, in the 
agent’s view, through a question involving a phrase of the type “care (a fi)?” (eng., “what is?”), followed by a noun 
phrase describing the requested property (and optionally its owner). To store an attribute, a sentence containing a 
subject (the entity) and a predicate (specifying the attribute value) is expected by the agent. 

Store 
following 
attribute 

Similar to the previous action, this intent allows the user to store an attribute, but in two steps: the first utterance is 
matched to this intent category and contains the attribute name, whilst the second utterance includes the actual 
attribute value. This approach enables users to store complex values that should be taken as a whole, instead of being 
parsed into component tokens. 

Get subject The user asks for the entity that represents the subject of an action or has a specific property according to the 
knowledge base. This intent is triggered through the interrogative pronoun “cine?” (eng., “who?”), alongside an action 
or a state. 

Figure 2. Distribution of train and test examples for intent 
classification. 

Figure 3. Frequencies of various syntactic questions in the 
training examples. 

Figure 4. Annotated sentence example. 
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Application Architecture 
The application is divided into several components that 
perform sequential processing tasks, starting from the user’s 
utterances (speech or text), through the NLU (Natural 
Language Understanding) pipeline, to the knowledge base, 
and back to the user with responses to their information 
requests, as depicted in Figure 5. 
Processing Pipeline 

Our conversation agent is built on top of the RASA 
framework for conversational agents [5], which provides two 
chained pipelines: the first for NLU, while the second 
(RASA Core) is centered on dialogue management (i.e., 
selecting the proper response to the user’s input and 
advancing the conversational flow). 
The modularity of the framework allows the customization 
of the pipeline components; thus, an application-specific 
processing pipeline was designed. The first components are 
responsible for tokenization and feature generation. They are 
based on the spaCy [14] Romanian model (available in the 
open-source ReaderBench framework [10]), which is trained 
on the Romanian Universal Dependencies treebank [4]. This 
approach considers pretrained word embeddings, which 
offer additional linguistic features that support the next NLU 
components (such as the intent classifier) to obtain better 
performance. In addition to the previous components, other 
featurizers predefined in RASA, namely the Lexical-
Syntactic Featurizer and the Count Vectors Featurizer were 
added. The latter was configured to create the bag-of-words 
representation only at token level because the character and 
the n-gram levels were generating too much variance in the 
results. Finally, a custom component for syntactic parsing 
was integrated in the NLU pipeline, based on a pretrained 
model and a set of custom actions provided to the RASA 
Core pipeline to be executed (depending on the response 
selection result) as a reply to the user’s request. These actions 
are responsible for establishing a connection to the database, 
as well as returning the results to the user or performing the 
database update. 

User Interface 

The User Interface (UI) of our conversational agent consists 
of a single-page web application (HTML, CSS and 
JavaScript) based on the React framework [24] (see Figure 
7). The interface consists of a chat window in which the 
exchange of messages conducted with the agent in the 
current session are displayed. The UI has a multimodal input 
as the user can interact with the bot either by typing the 
requests in an input text field from the chat window, or by 
uttering a statement after launching the speech input mode. 
Speech-to-text conversion is performed through the Web 
Speech API [9]. It is a JavaScript API, currently specified as 
a W3C draft, independent of the underlying algorithm 
implementation that provides a unified interface for 
performing both automatic speech recognition and speech 
synthesis in the context of web applications. 
Communication with the core agent is based on the RASA’s 
HTTP REST API, which is used to deliver the user’s 
messages to the bot, and then wait for its response. The 
requests are executed asynchronously using the Axios HTTP 
client [3], which ensures a fluid interaction between the user 
and the agent. 
The complete communication between the modules of the 
application can be observed in Figure 6. Note that, although 
custom actions are also part of the RASA framework, these 
services run as a separate server which is accessed from the 
core agent through an HTTP endpoint. 
The application follows a modular MVC (Model-View-
Controller) architecture [16], where the view is represented 
by the web interface, the custom actions together with the 
Neo4j database define the data model, whereas the core 
RASA agent acts as a controller. The RASA agent receives 
the user’s requests from the view, processes them, and sends 
the results to the model component, which manages data 
representation. Conversely, the controller builds the response 
for the user based on the extracted data and delivers it by 
means of the frontend view, which presents it to the user. 

Figure 5. Logical flow diagram of the application.

Figure 6. Main application modules.
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Figure 7. Application interface. 

Intent Classifier 

Our agent maps the user sentences to a limited set of 
predefined intents, in accordance with Table 1. The intent 
classifier allows the request processor to perform a more 
customized entity selection, depending on the relevant 
information included in the input phrase. In addition, the 
classifier gives the agent the ability to execute an action 
specific to an identified intent, i.e. run a query or update the 
knowledge graph. A noteworthy aspect is that a single intent 
may be selected for an utterance, meaning that no more than 
one kind of relevant information (specific to that intent) is 
identified and considered by the agent. 
Intent classification is performed using RASA’s DIET 
classifier. Corresponding part of speech tags for each word 
were provided to the classifier by customizing RASA’s 
Lexical-Syntactic Featurizer in order to accommodate the 
particularities of statements specific to each intent. 
Additionally, the RASA entities occurring in the examples 
of each type of intent were declared. The presence or the 
absence of such entities in an example can be used, according 
to the RASA documentation, as features by the DIET 
classifier to improve its accuracy. 
Request Processor 

After the intent from the user statement is predicted and the 
semantic entities are extracted, the processing pipeline 
continues by executing an action specific to a given intent. 
The action is selected based on the stories provided as 
training data to the RASA Core pipeline. The stories consist 
in general of chains of pairs (intent, reply action), describing 
possible conversational flows. However, since the majority 
of our intents imply only a request-response exchange, the 
associated stories only include the mapping between the 
intent and the custom action that accesses the knowledge 

base to process the user’s inquiry. Additionally, an 
acknowledgement message follows when storing new 
information to confirm the action’s fulfillment, so that the 
user knows the information was registered. A slightly 
different case is the one of the “store following attribute” 
intent because the attribute name needs to be retained 
between two replies. This is achieved by means of a RASA 
form, which is initiated once the first user’s message (the 
store request) is uttered. At that point, a slot is filled with the 
attribute description. The form is completed after the user 
inserts the value of the attribute as the second reply. 
Afterwards, the action responsible for storing the attribute is 
executed. 
Knowledge Representation 

Our knowledge base is based on the Neo4j graph database 
management system, which ensures a powerful semantic 
representation of the entities and the facts associated to them. 
A notable benefit is the lack of need for an explicit database 
schema, meaning that each entity may have its own types of 
attributes or relationships with other entities. This facilitates 
the storage of heterogeneous information transmitted by the 
user. Another reason for choosing Neo4j is Cypher, its query 
language [13], which enables pattern matching queries. 
Hence topological structures such as nodes, relationships, 
paths or subgraphs can be matched using a pattern that 
intrinsically specifies labels or properties of the nodes and 
the relations that link them. The reason for selecting Neo4j 
resides in its ease of integration with RASA. Currently, there 
are 4 alternative solutions that can be used [7]. Our 
differentiating criterion between them consisted of publicly 
available performance benchmarks [11]. 
Entities defined as noun phrases are represented as a tree in 
the graph, where each node identifies a syntactic component 
of the noun phrase. The decomposition is performed in the 
following manner: 
• The root (noun) of the noun phrase constitutes the base

class of the entity.
• Each span with the syntactic function of the attribute,

responding to one of the questions “care?” (eng.,
“which?”) or “ce fel de?” (eng., “what kind of?”)
represents a “specifier”, having the role of identifying
a particular instance of the base class.

• The token responding to the question “al cui?” (eng.,
“whom”) identifies the owner of the entity, and
therefore it is placed as the root of the entity’s tree
representation. This token can be also classified as a
“specifier”.

RESULTS 
The customized intent classifier from RASA exhibited very 
good results at identifying the intents from the test sentences, 
as shown in the confusion matrix from Figure 8 where all test 
inputs were correctly classified. Confidence was around 95% 
on all entries from the test dataset, denoting a strong 
differentiation between intents. 
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Figure 8. Confusion matrix for the intent classification task. 

The accuracy of the syntactic parser is high (93% for 
dependency heads). Figure 9 depicts the confusion matrix 
resulted after running the parser on our test dataset consisting 
of 70 examples. Syntactic dependencies can occur in 
different structures and positions within a sentence; thus, a 
larger variety in the training dataset is required to ensure the 
model’s capability to generalize. However, our current set of 
examples, which were manually created and annotated, is 
quite limited and needs to be extended. 

Figure 9. Confusion matrix for the syntactic parsing. 

Problems also occurred when the input sentence included 
tokens not belonging to any of the available syntactic 
dependency classes. Nevertheless, the classifier tries to map 
these tokens to a class, which in many cases was not the “-“ 
dependency (i.e., the best option in this case). This results in 
wrong labels, and may also lead to words around the 
misclassified tokens being mapped to an incorrect 
dependency. Table 2 includes the precision, recall, and F1 
scores obtained for each type of syntactic question. Only the 
labels’ attachment is considered, without taking into account 
the placement of the dependency heads. 

Table 2. Syntactic questions classification. 

Type P R F1-score # 
- 0.99 0.98 0 .99 106 
ROOT 0.97 0.99 0.98 69 
al cui (whose) 0.97 0.94 0.95 33 
care (which) 0.87 0.95 0.91 80 
care este (which is) 0.92 0.92 0.92 13 
ce (what) 0.79 0.79 0.79 24 
ce fel de (what kind 
of) 

0.79 0.58 0.67 19 

cine (who) 0.91 0.89 0.90 46 
cui (to whom) 1.00 0.80 0.89 10 
cum este (how is it) 0.80 0.67 0.73 6 
când (when) 0.74 0.94 0.83 18 
cât (how much) 0.90 0.90 0.90 20 
cât de des (how often) 1.00 0.50 0.67 4 
cât timp (how much 
time) 

0.87 1.00 0.93 13 

la cât timp (how long) 1.00 0.33 0.50 3 
pe cine (who) 0.92 0.86 0.89 14 
unde (where) 0.89 0.89 0.89 27 
preposition 0.99 1.00 1.00 110 
Accuracy 0.93 615 
Macro avg 0.91 0.83 0.85 615 
Weighted avg 0.93 0.93 0.93 615 

CONCLUSIONS 
In this article we introduced a chatbot for Romanian capable 
of storing and retrieving information from and to users. 
Several components were designed, namely a web interface, 
an intent classifier, a syntactic parser, custom actions 
dedicated to each intent, and a graph database manager. The 
user interface consists of a React web page that mediates the 
communication between the client and the conversational 
agent. Speech-to-text capabilities were added to facilitate the 
user interaction by using the Web Speech API. 
As for future improvements, we consider a smarter data 
matching algorithm to identify the requested information, 
even if the request is not completely similar to the stored 
information (for example, words replaced with synonyms, or 
missing prepositions linking tokens from a noun phrase). In 
addition, we want to integrate additional information from 
general knowledge graphs (e.g., DBPedia [2]). This would 
allow the agent to match entities, states, or actions in a more 
generalized manner, resulting in a more intelligent and 
helpful behavior. Another future step to ensure increased 
performance and robustness would consist of enhancing the 
syntactic parser component. We strive to handle any type of 
statements, including those containing subordinate 
sentences, with all potential types of syntactic dependencies. 
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