
Conversational Agent in Romanian for
Storing User Information in a Knowledge Graph

Gabriel Boroghina, Dragos Georgian Corlatescu, Mihai Dascalu
University Politehnica of Bucharest

313 Splaiul Independenței, Bucharest, Romania
gabrielboroghina@outlook.com, {dragos.corlatescu, mihai.dascalu}@upb.ro

DOI: 10.37789/rochi.2020.1.1.1

ABSTRACT
Information surrounds us and keeping track of relevant
details can be challenging. Although there are multiple
applications to take notes, organize ideas, or set reminders,
existing solutions are semantic-agnostic and rely on the user
to manually search for desired information by keywords. We
propose a novel method to help people store and retrieve
such details with ease in Romanian language. Our
conversational agent built on top of the RASA framework is
capable to extract relevant information from the user’s
utterances, store them in a persistent knowledge graph, and
ultimately, access them when requested. A set of specific
intents regarding locations, timestamps, and properties were
created and learned by the agent using manually built
examples. In addition, an interaction logic based on a
knowledge graph was added to enable the storage and
retrieval of information, based on the identified semantic
components from the input sentences. The performed tests
showed a good accuracy for intent detection, and promising
results for the sentence parser. Our conversational agent is
accessible as a web application which can process text or
speech inputs, and responds with a textual representation of
the user’s memorized facts.
Author Keywords
Natural Language Processing; Conversational agent;
Knowledge representation.
ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.
I.2.7 Natural Language Processing: Discourse, Language
parsing and understanding, Text analysis
General Terms
Natural Language; Text analysis.

INTRODUCTION
Conversational agents represent intelligent programs based
on Natural Language Processing (NLP) techniques, capable
of performing dialogue conversations with a human
interlocutor. These agents need to maintain the global state
of the conversation and provide responses in relation to this

state and the user’s messages. Moreover, conversational
agents became more and more adopted by the industry,
mostly in the form of chatbots that offer guidance to clients
with regards to a product or service, but also as virtual
assistants capable to perform various tasks at the user
request, such as taking notes, setting an appointment, and
even controlling smart home devices.
Conversational agents are preferred in a wide range of cases
due to their programmability and their scalability for simple
and highly repeatable tasks, such as basic technical support.
Equally important is the help agents can provide to people
who are unfamiliar with the use of a technology, or have
deficiencies (such as blindness), by allowing them to simply
talk with the agent in order to execute specific tasks. Thus,
conversational agents try to push the perceived intelligence
of computers and their ability to interact with people further,
at an increased pace.
We introduce a memory-assistant conversational agent for
Romanian language, capable to remember the user's
previously registered information. The agent is capable of
processing the user’s statements that expose information
which should be memorized, and can also react to his/her
requests for a specific detail, relying upon the gathered data.
The core features consist in detecting the users’ intents
(whether they wanted to register or to access a specific type
of information), and extracting the key facts from their
utterances, storing them in a knowledge graph, and exposing
them back on demand.
Our agent works with factoid information [15], meaning that
it has the ability to detect specific elements inside more
complex sentences, and respond to queries such as: “where”
(locations of objects or events), “when” (timestamps of
events or actions), “which is” (various properties of entities),
“which of the” (the instance of an entity that has a certain
qualification or function), or “who” (subject of an action or
a description). The agent operates in a user-initiative mode,
meaning that the user launches the dialogue sessions with a
request, waiting for the agent to reply with the corresponding
result. Moreover, the information is presented in a concise
form to the user, just as it is stored in the knowledge graph;
no context planning or natural language generation
techniques are used for information retrieval. Users do not
have to specify the type of the information to be stored, nor
how or where to keep it. The chatbot itself is responsible for

Proceedings of RoCHI 2020

95

interpreting, understanding, and managing data, while the
interaction with the user is limited to expressing a fact or a
request in natural language (text or speech). In this manner,
the agent allows for fast, natural, and intuitive information
registration and retrieval.

STATE OF THE ART
Conversational agents are increasingly adopted into different
software applications and web platforms. According to
Brandtzaeg and Følstad [6], the main benefits of using such
agents are their productivity (i.e., obtaining support or
necessary information regarding a product or a service), but
also entertainment, or social interaction and communication
(e.g., chit chat or social chatbots). The bots provide a
significantly enhanced user experience and interactivity for
performing various tasks than a static user interface. In
addition, bots also offer scalability and objectivity in their
conversation with the user. Thus, a conversational agent can
be perceived as being more agile than a person at providing
simple information or helping the user solve standard
problems that fit a certain template.
Depending on the complexity of the conversation, two types
of agents come into view, according to Jurafsky and Martin
[15]: a) simple agents designed to perform tasks at the user’s
request, called task-oriented dialogue agents, and
b) chatbots, which are more complex agents that can
maintain longer conversations, which can extend over
several replies and can include different interleaved subjects
of discussion. In this article, we will focus on the first
category.
Conversational agents rely on a dialogue-state architecture
[15] that addresses two problems: intent classification and
slot filling. Multiple recent approaches try to develop joint
models capable to perform both tasks on a single pass
through the model. For instance, Liu and Lane [19] proposed
an attention-based RNN (Recurrent Neural Network) model
which can concurrently perform intent detection and slot
filling, for a given token sequence. The model consists of a
bidirectional RNN, based on LSTM (Long Short-Term
Memory) cells. The model generates slot labels for each
token based on a hidden state made up of a forward and a
backward state obtained by analyzing the input sequence in
both directions. Attention provides additional information
about the input sequence through a context vector that is
combined with the hidden state before token labelling. Intent
detection is performed simultaneously by using the
computed hidden states from the bidirectional RNN model.
An attention-based encoder-decoder model was also
investigated by Liu and Lane [19]; the model integrates all
information from the input sequence (encoding), and then
generates an output sequence containing the slot labels
(decoding).

In contrast to the previous approach, Wang et al. [28]
contradict the joint model structure, and propose a bi-model
RNN structure, consisting in two connected BiLSTM
components, one for intent detection and one for slot filling,
that takes advantage of the cross-impact between the two
tasks. The two BiLSTM models exchange their hidden states
and combine them when generating the output of each task;
thus, the intent detection model benefits from the features
extracted by the slot filling model and vice versa. A slight
variation containing one LSTM decoder on top of each
BiLSTM component was also explored, obtaining even
better results and surpassing the previous state of the art
systems for both tasks.
Dialogue-state architecture can be also used for designing
task-oriented dialogue systems [15]. These architectures
consist of a more complex pipeline of processing
components [15]: automatic speech recognizer, spoken
language understanding unit, conversation state tracker,
dialogue policy, natural language generation unit, and speech
synthesizer. While the first two components act as
blackboxes that perform processing tasks over the user’s
voice input and export texts, the dialogue tracker is a stateful
component that maintains at each moment the conversation
status, alongside the chat history.
Despite the usefulness and remarkable user experience
conversational agents can provide, their creation from
scratch can prove to be challenging and time consuming. An
open-source framework that comes in handy is RASA [5],
which provides Natural Language Understanding (RASA
NLU) and Dialogue Management (Rasa Core) features for
building intelligent conversational agents with a minimum
effort from the programming point of view. The framework
is based on a dialogue-state architecture, but supports only
the communication through text messages (i.e., it does not
integrate speech-to-text and text-to-speech converters). The
NLU component has a modular pipeline, instrumental in
customizing and tweaking the components involved in
processing and interpreting the user’s utterances. Tracker
objects are used to manage the conversation flow; their role
is to maintain a list of events encountered during the
communication session, together with relevant facts (slots)
exposed by users through their statements.
RASA relies on the DIET (Dual Intent and Entity
Transformer) classifier [8] for intent detection. The model
obtains a good performance and its training is significantly
faster and easier when compared to older models. The
architecture can be visualized in Figure 1. The model uses a
2-layer Transformer [27] for condensing the semantic
features extracted from each token, and compares the
resulting feature vector with the vector corresponding to the
gold intent based on a similarity (dot product) metric. A
Conditional Random Field (CRF) [17] can be used on top for
entity extraction. Pre-trained word vectors from BERT [12]
or GloVe [21] can be used to improve the results.

Proceedings of RoCHI 2020

96

Figure 1. DIET architecture [8].

Data storage is also a central component for our agent. A
traditional SQL approach is not suitable because data from
the conversation is unstructured and in natural language.
Thus, semantic networks [26] (i.e., directed graph where
nodes represent entities or concepts, and the arcs mark
relationships between them) are preferred. Semantic
networks provide a better contextualization in terms of the
representation and identification of knowledge facts.
Knowledge graphs are semantic networks which include
inference methods for deriving and combining information
in order to extract new facts. NoSQL graph databases include
different query languages to read or modify stored data [1].
The most relevant examples of such query languages are
Cypher [13] (which introduces powerful pattern-matching
based queries), SPARQL [23] (designed for RDF data
storage schemas), GraphQL (a data query language for APIs)
and Gremlin [25] (which displays a distinguishable
functional style in its queries).
Different approaches for structuring information in graph
databases were considered for representing knowledge in our
conversational agent [22]. One of them, the labeled-property
graph model (used, for example, by the Neo4j Database
Management System [20]) consists of adding properties to
nodes or relationships to specify different metadata in a key-
value fashion. This approach enables a flexible and compact
representation of information. Conversely, the RDF model
[18] allows nodes and arcs only to specify an URI label,
which in return defines the class of the entity or a
relationship. This leads to a more strict and uniform data
representation, but, at the same time, to a reduced topological
conciseness. Additional properties have to be injected as
separate nodes due to the simplicity of the RDF [18] graph
elements.

METHOD
Corpus
Two supervised learning models are involved in the Natural
Language Understanding pipeline of our agent: the first for
detecting the intent from the user’s utterances, and the
second for parsing the sentences. These models implied the
creation of two datasets containing labeled examples.
Intent Classification

The classification of the user’s sentences by their scope
requires defining a set of intents that determines the general
types of tasks handled by the agent. These intents outline the
constrained world or domain the agent was designed for. The
considered intent classes are presented in Table 1.
The training dataset consists of 285 manually built sentences
(for the “get” and “store” intents) and phrases (for auxiliary
intents, such as greetings or the store request announcement).
Additionally, a separate test set comprising of 128 examples
was created to evaluate the performance of the intent
detector. The distribution of examples in the training and test
datasets can be observed in Figure 2.
Syntactic Parsing

Due to lack of a specific dataset for our task in Romanian,
the training dataset consists of 200 manually annotated
examples, while the test set used to measure parsing accuracy
contains another 70 sentences. The examples were created
using a custom-made HTML and JavaScript web interface
that led to a faster visual annotation process. Error!
Reference source not found.Figure 3 shows the frequencies
for each syntactic question introduced in the training set. An
example with an annotated sentence can be observed in
Figure 4. The head represents the index of the word in the
sentence to which another word is connected to in the

Proceedings of RoCHI 2020

97

dependency tree; the „deps” property includes custom word
tags used later on.

Table 1. Intents description.

Intent Description
Greet,
Goodbye

Can be used at the beginning or the end of an interaction with the agent, although their use is optional. General
greeting phrases were used for these intents, as training examples.

Store request The user announces the agent that they want to store a piece of information in the knowledge graph.
Store/Get
location

The user wants to tell/ask the agent about the location of an entity or an event. For location requests, the agent expects
a sentence consisting of the interrogative pronoun “unde?” (eng., “where?”), along with a subject entity or an action
involving a direct object. To store a location, a sentence containing a place adverbial and either a subject (e.g., tell
where the subject is placed) or a direct object (e.g., tell where the user puts an object) is expected by the agent.

Store/Get
timestamp

The sentence tells/asks the agent about the timestamp (time point, duration, or frequency) of an event. The phrases
“când?” (eng., “when?”), “de când?” (eng., “since when?”), “până când?” (eng., “until when?”) and “cât timp?” (eng.,
“how long?”) are used to ask the agent for this type of information, along with an event expressed as a bare noun
phrase or as a complex action (containing also other semantic entities such as adverbials or direct objects). A sentence
containing a time adverbial is expected to register a time information.

Store/Get
attribute

The user wants to store or retrieve the value of an entity attribute (a personal detail of that entity, which can range from
a person’s phone number to the dimensions or the price of an object). The “get attribute” intent is represented, in the
agent’s view, through a question involving a phrase of the type “care (a fi)?” (eng., “what is?”), followed by a noun
phrase describing the requested property (and optionally its owner). To store an attribute, a sentence containing a
subject (the entity) and a predicate (specifying the attribute value) is expected by the agent.

Store
following
attribute

Similar to the previous action, this intent allows the user to store an attribute, but in two steps: the first utterance is
matched to this intent category and contains the attribute name, whilst the second utterance includes the actual
attribute value. This approach enables users to store complex values that should be taken as a whole, instead of being
parsed into component tokens.

Get subject The user asks for the entity that represents the subject of an action or has a specific property according to the
knowledge base. This intent is triggered through the interrogative pronoun “cine?” (eng., “who?”), alongside an action
or a state.

Figure 2. Distribution of train and test examples for intent
classification.

Figure 3. Frequencies of various syntactic questions in the
training examples.

Figure 4. Annotated sentence example.

Proceedings of RoCHI 2020

98

Application Architecture
The application is divided into several components that
perform sequential processing tasks, starting from the user’s
utterances (speech or text), through the NLU (Natural
Language Understanding) pipeline, to the knowledge base,
and back to the user with responses to their information
requests, as depicted in Figure 5.
Processing Pipeline

Our conversation agent is built on top of the RASA
framework for conversational agents [5], which provides two
chained pipelines: the first for NLU, while the second
(RASA Core) is centered on dialogue management (i.e.,
selecting the proper response to the user’s input and
advancing the conversational flow).
The modularity of the framework allows the customization
of the pipeline components; thus, an application-specific
processing pipeline was designed. The first components are
responsible for tokenization and feature generation. They are
based on the spaCy [14] Romanian model (available in the
open-source ReaderBench framework [10]), which is trained
on the Romanian Universal Dependencies treebank [4]. This
approach considers pretrained word embeddings, which
offer additional linguistic features that support the next NLU
components (such as the intent classifier) to obtain better
performance. In addition to the previous components, other
featurizers predefined in RASA, namely the Lexical-
Syntactic Featurizer and the Count Vectors Featurizer were
added. The latter was configured to create the bag-of-words
representation only at token level because the character and
the n-gram levels were generating too much variance in the
results. Finally, a custom component for syntactic parsing
was integrated in the NLU pipeline, based on a pretrained
model and a set of custom actions provided to the RASA
Core pipeline to be executed (depending on the response
selection result) as a reply to the user’s request. These actions
are responsible for establishing a connection to the database,
as well as returning the results to the user or performing the
database update.

User Interface

The User Interface (UI) of our conversational agent consists
of a single-page web application (HTML, CSS and
JavaScript) based on the React framework [24] (see Figure
7). The interface consists of a chat window in which the
exchange of messages conducted with the agent in the
current session are displayed. The UI has a multimodal input
as the user can interact with the bot either by typing the
requests in an input text field from the chat window, or by
uttering a statement after launching the speech input mode.
Speech-to-text conversion is performed through the Web
Speech API [9]. It is a JavaScript API, currently specified as
a W3C draft, independent of the underlying algorithm
implementation that provides a unified interface for
performing both automatic speech recognition and speech
synthesis in the context of web applications.
Communication with the core agent is based on the RASA’s
HTTP REST API, which is used to deliver the user’s
messages to the bot, and then wait for its response. The
requests are executed asynchronously using the Axios HTTP
client [3], which ensures a fluid interaction between the user
and the agent.
The complete communication between the modules of the
application can be observed in Figure 6. Note that, although
custom actions are also part of the RASA framework, these
services run as a separate server which is accessed from the
core agent through an HTTP endpoint.
The application follows a modular MVC (Model-View-
Controller) architecture [16], where the view is represented
by the web interface, the custom actions together with the
Neo4j database define the data model, whereas the core
RASA agent acts as a controller. The RASA agent receives
the user’s requests from the view, processes them, and sends
the results to the model component, which manages data
representation. Conversely, the controller builds the response
for the user based on the extracted data and delivers it by
means of the frontend view, which presents it to the user.

Figure 5. Logical flow diagram of the application.

Figure 6. Main application modules.

UI

Speech-to-Text

Converter

user input

Tokenizer → Featurizer → Intent Classifier →

Syntac=c/Seman=c Parser → Response

Selector

Request

Processor

(KB access)sentence selected

ac=on

response

RASA NLU

React

web

interface

Neo4j database

HTTP API HTTP API
Neo4j Python
binary driverRASA agent RASA ac=ons

HTTP server

Proceedings of RoCHI 2020

99

Figure 7. Application interface.

Intent Classifier

Our agent maps the user sentences to a limited set of
predefined intents, in accordance with Table 1. The intent
classifier allows the request processor to perform a more
customized entity selection, depending on the relevant
information included in the input phrase. In addition, the
classifier gives the agent the ability to execute an action
specific to an identified intent, i.e. run a query or update the
knowledge graph. A noteworthy aspect is that a single intent
may be selected for an utterance, meaning that no more than
one kind of relevant information (specific to that intent) is
identified and considered by the agent.
Intent classification is performed using RASA’s DIET
classifier. Corresponding part of speech tags for each word
were provided to the classifier by customizing RASA’s
Lexical-Syntactic Featurizer in order to accommodate the
particularities of statements specific to each intent.
Additionally, the RASA entities occurring in the examples
of each type of intent were declared. The presence or the
absence of such entities in an example can be used, according
to the RASA documentation, as features by the DIET
classifier to improve its accuracy.
Request Processor

After the intent from the user statement is predicted and the
semantic entities are extracted, the processing pipeline
continues by executing an action specific to a given intent.
The action is selected based on the stories provided as
training data to the RASA Core pipeline. The stories consist
in general of chains of pairs (intent, reply action), describing
possible conversational flows. However, since the majority
of our intents imply only a request-response exchange, the
associated stories only include the mapping between the
intent and the custom action that accesses the knowledge

base to process the user’s inquiry. Additionally, an
acknowledgement message follows when storing new
information to confirm the action’s fulfillment, so that the
user knows the information was registered. A slightly
different case is the one of the “store following attribute”
intent because the attribute name needs to be retained
between two replies. This is achieved by means of a RASA
form, which is initiated once the first user’s message (the
store request) is uttered. At that point, a slot is filled with the
attribute description. The form is completed after the user
inserts the value of the attribute as the second reply.
Afterwards, the action responsible for storing the attribute is
executed.
Knowledge Representation

Our knowledge base is based on the Neo4j graph database
management system, which ensures a powerful semantic
representation of the entities and the facts associated to them.
A notable benefit is the lack of need for an explicit database
schema, meaning that each entity may have its own types of
attributes or relationships with other entities. This facilitates
the storage of heterogeneous information transmitted by the
user. Another reason for choosing Neo4j is Cypher, its query
language [13], which enables pattern matching queries.
Hence topological structures such as nodes, relationships,
paths or subgraphs can be matched using a pattern that
intrinsically specifies labels or properties of the nodes and
the relations that link them. The reason for selecting Neo4j
resides in its ease of integration with RASA. Currently, there
are 4 alternative solutions that can be used [7]. Our
differentiating criterion between them consisted of publicly
available performance benchmarks [11].
Entities defined as noun phrases are represented as a tree in
the graph, where each node identifies a syntactic component
of the noun phrase. The decomposition is performed in the
following manner:
• The root (noun) of the noun phrase constitutes the base

class of the entity.
• Each span with the syntactic function of the attribute,

responding to one of the questions “care?” (eng.,
“which?”) or “ce fel de?” (eng., “what kind of?”)
represents a “specifier”, having the role of identifying
a particular instance of the base class.

• The token responding to the question “al cui?” (eng.,
“whom”) identifies the owner of the entity, and
therefore it is placed as the root of the entity’s tree
representation. This token can be also classified as a
“specifier”.

RESULTS
The customized intent classifier from RASA exhibited very
good results at identifying the intents from the test sentences,
as shown in the confusion matrix from Figure 8 where all test
inputs were correctly classified. Confidence was around 95%
on all entries from the test dataset, denoting a strong
differentiation between intents.

Proceedings of RoCHI 2020

100

Figure 8. Confusion matrix for the intent classification task.

The accuracy of the syntactic parser is high (93% for
dependency heads). Figure 9 depicts the confusion matrix
resulted after running the parser on our test dataset consisting
of 70 examples. Syntactic dependencies can occur in
different structures and positions within a sentence; thus, a
larger variety in the training dataset is required to ensure the
model’s capability to generalize. However, our current set of
examples, which were manually created and annotated, is
quite limited and needs to be extended.

Figure 9. Confusion matrix for the syntactic parsing.

Problems also occurred when the input sentence included
tokens not belonging to any of the available syntactic
dependency classes. Nevertheless, the classifier tries to map
these tokens to a class, which in many cases was not the “-“
dependency (i.e., the best option in this case). This results in
wrong labels, and may also lead to words around the
misclassified tokens being mapped to an incorrect
dependency. Table 2 includes the precision, recall, and F1
scores obtained for each type of syntactic question. Only the
labels’ attachment is considered, without taking into account
the placement of the dependency heads.

Table 2. Syntactic questions classification.

Type P R F1-score #
- 0.99 0.98 0 .99 106
ROOT 0.97 0.99 0.98 69
al cui (whose) 0.97 0.94 0.95 33
care (which) 0.87 0.95 0.91 80
care este (which is) 0.92 0.92 0.92 13
ce (what) 0.79 0.79 0.79 24
ce fel de (what kind
of)

0.79 0.58 0.67 19

cine (who) 0.91 0.89 0.90 46
cui (to whom) 1.00 0.80 0.89 10
cum este (how is it) 0.80 0.67 0.73 6
când (when) 0.74 0.94 0.83 18
cât (how much) 0.90 0.90 0.90 20
cât de des (how often) 1.00 0.50 0.67 4
cât timp (how much
time)

0.87 1.00 0.93 13

la cât timp (how long) 1.00 0.33 0.50 3
pe cine (who) 0.92 0.86 0.89 14
unde (where) 0.89 0.89 0.89 27
preposition 0.99 1.00 1.00 110
Accuracy 0.93 615
Macro avg 0.91 0.83 0.85 615
Weighted avg 0.93 0.93 0.93 615

CONCLUSIONS
In this article we introduced a chatbot for Romanian capable
of storing and retrieving information from and to users.
Several components were designed, namely a web interface,
an intent classifier, a syntactic parser, custom actions
dedicated to each intent, and a graph database manager. The
user interface consists of a React web page that mediates the
communication between the client and the conversational
agent. Speech-to-text capabilities were added to facilitate the
user interaction by using the Web Speech API.
As for future improvements, we consider a smarter data
matching algorithm to identify the requested information,
even if the request is not completely similar to the stored
information (for example, words replaced with synonyms, or
missing prepositions linking tokens from a noun phrase). In
addition, we want to integrate additional information from
general knowledge graphs (e.g., DBPedia [2]). This would
allow the agent to match entities, states, or actions in a more
generalized manner, resulting in a more intelligent and
helpful behavior. Another future step to ensure increased
performance and robustness would consist of enhancing the
syntactic parser component. We strive to handle any type of
statements, including those containing subordinate
sentences, with all potential types of syntactic dependencies.

ACKNOWLEDGMENT
This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS – UEFISCDI, project number PN-III 72PCCDI ⁄
2018, ROBIN – “Roboții și Societatea: Sisteme Cognitive
pentru Roboți Personali și Vehicule Autonome”.

Proceedings of RoCHI 2020

101

REFERENCES
1. Angles, R., Arenas, M., Barceló, P., Hogan, A.,

Reutter, J., and Vrgoč, D., 2017. Foundations of
modern query languages for graph databases. ACM
Computing Surveys (CSUR) 50, 5, 1–40.

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J.,
Cyganiak, R., and Ives, Z., 2007. DBPedia: A nucleus
for a web of open data. In The semantic web Springer,
722–735.

3. Axios, n.d. Axios homepage. Retrieved July 27th 2020
from https://github.com/axios/axios.

4. Barbu Mititelu, V., Ion, R., Simionescu, R., Irimia, E.,
and Perez, C.-A., 2016. The Romanian Treebank
Annotated According to Universal Dependencies. In
Proceedings of the 10th Int. Conf. on Natural Language
Processing (HrTAL2016) (Dubrovnik, Croatia).

5. Bocklisch, T., Faulkner, J., Pawlowski, N., and Nichol,
A., 2017. Rasa: Open source language understanding
and dialogue management. arXiv preprint
arXiv:1712.05181.

6. Brandtzaeg, P.B. and Følstad, A., 2017. Why people
use chatbots. In Proceedings of the International
Conference on Internet Science (Thessaloniki, Greece),
Springer, 377–392.

7. Bunk, T., 2019. Set up a knowledge base to encode
domain knowledge for Rasa. Retrieved September 27th
2020 from https://blog.rasa.com/set-up-a-knowledge-
base-to-encode-domain-knowledge-for-rasa/.

8. Bunk, T., Varshneya, D., Vlasov, V., and Nichol, A.,
2020. DIET: Lightweight Language Understanding for
Dialogue Systems. arXiv preprint arXiv:2004.09936.

9. Community Group Report, 2020. Web Speech API.
Retrieved July 27th 2020 from
https://wicg.github.io/speech-api/.

10. Dascalu, M., Dessus, P., Bianco, M., Trausan-Matu, S.,
and Nardy, A., 2014. Mining texts, learner productions
and strategies with ReaderBench. In Educational Data
Mining: Applications and Trends, A. Peña-Ayala Ed.
Springer, Cham, Switzerland, 345–377.

11. DB-Engines, 2020. DB-Engines Ranking of Graph
DBMS. Retrieved September 27th 2020 from
https://db-engines.com/en/ranking/graph+dbms.

12. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.,
2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805.

13. Francis, N., Green, A., Guagliardo, P., Libkin, L.,
Lindaaker, T., Marsault, V., Plantikow, S., Rydberg,
M., Selmer, P., and Taylor, A., 2018. Cypher: An
evolving query language for property graphs. In
Proceedings of the 2018 Int. Conf. on Management of
Data, 1433-1445.

14. Honnibal, M. and Montani, I., 2017. spacy 2: Natural
language understanding with bloom embeddings.
convolutional neural networks and incremental parsing
7, 1.

15. Jurafsky, D. and Martin, J.H., 2009. An introduction to
Natural Language Processing. Computational
linguistics, and speech recognition. Pearson Prentice
Hall, London.

16. Krasner, G.E. and Pope, S.T., 1988. A description of
the model-view-controller user interface paradigm in
the smalltalk-80 system. Journal of object oriented
programming 1, 3, 26–49.

17. Lafferty, J., McCallum, A., and Pereira, F.C., 2001.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings
of the 18th Int. Conf. on Machine Learning 2001
(ICML 2001) (Williamstown, MA, USA), ACM, 282–
289.

18. Lassila, O. and Swick, R.R., 1998. Resource
description framework (RDF) model and syntax
specification. World Wide Web Consortium.

19. Liu, B. and Lane, I., 2016. Attention-based recurrent
neural network models for joint intent detection and
slot filling. arXiv preprint arXiv:1609.01454.

20. Miller, J.J., 2013. Graph database applications and
concepts with Neo4j. In Proceedings of the Southern
Association for Information Systems Conference
(Atlanta, GA, USA).

21. Pennington, J., Socher, R., and Manning, C.D., 2014.
Glove: Global Vectors for Word Representation. In
Proceedings of the 2014 Conference on Empirical
Methods on Natural Language Processing (EMNLP
2014) (Doha, Qatar), ACL.

22. Pokorný, J., 2015. Graph databases: their power and
limitations. In Proceedings of the IFIP Int. Conf. on
Computer Information Systems and Industrial
ManagementSpringer, 58–69.

23. Prud’hommeaux, E. and Seaborne, A., 2017. SPARQL
query language for RDF. W3C Recommendation
(2008) World Wide Web Consortium.

24. React, n.d. React website. Retrieved July 27th 2020
from https://reactjs.org/.

25. Rodriguez, M.A., 2015. The Gremlin graph traversal
machine and language (invited talk). In Proceedings of
the 15th Symposium on Database Programming
Languages (Pittsburgh, PA, USA), 1–10.

26. Sowa, J.F., 2014. Principles of semantic networks:
Explorations in the representation of knowledge
Morgan Kaufmann, San Mateo, CA, USA.

27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I.,
2017. Attention is all you need. In Proceedings of the
31st Conf. on Neural Information Processing Systems
(NIPS 2017) (Long Beach, CA, USA), 5998–6008.

28. Wang, Y., Shen, Y., and Jin, H., 2018. A bi-model
based RNN semantic frame parsing model for intent
detection and slot filling. arXiv preprint
arXiv:1812.10235.

Proceedings of RoCHI 2020

102

