
Design features of a VR software system for personnel
training in aviation

Andrei Bulai, Diana Andronache, Dorin-Mircea Popovici
Ovidius University of Constanta

124 Mamaia Bd, 900527, Constanta Romania
bulai.andrei10@gmail.com; diana.andronache7@gmail.com; dmpopovici@univ-ovidius.ro

ABSTRACT
This paper presents the steps that must be taken to develop a
Simulator type software using VR technology and the
presentation of our own software system for the training
aviation personnel. We present the state of the art of VR and
describe the developed application through the chosen
solution, meeting all the criteria of a learning and testing
environment for the aviation personnel, simulating the
targeting operations of a helicopter and adjacent elements. In
fact, we make a description of both the data structure and the
technical design. Logical design and system architecture, use
cases and conceptual classes are also presented. The
technical part describes in detail the implementation stages
of the application.

Author Keywords
Virtual reality; Virtual Simulation; Software development;
Triggers and Gestures; User Interface for virtual reality; User
Experience for virtual reality; 3D animation and modeling

ACM Classification Keywords
H.4.m. Miscellaneous; H.1.2. User/Machine Systems;
D.2.m. Miscellaneous; D.2.10 Design; I.3.m. Miscellaneous;
I.3.8; I.3.7; I.3.6; I.3.5

General Terms
Human Factors; Design; Measurement.

INTRODUCTION
At the moment, VR technology has gone from the early stage
to the expansion stage to a small-scale on a large scale. The
concept is well known, and the main equipment
manufacturers that are part of VR systems are investing
resources in the development and improvement of new
technology. Therefore, today, the past VR engineering ideas
can be restructured and homogenized both with the new
market requirements and with the new equipment. This is
why we afford to accept the challenge of developing a
relatively low-cost training virtual environment dedicated to
aviation personel.

Predecesors
In terms of aviation, since the first flight simulator in 1966,
developed by military engineer Thomas Furness for the US

market has evolved very quickly. Thus today we have the
opportunity to use professional simulators both in terms of
the complexity of simulating the real aviation environment
and in terms of graphic quality.
Next we present the state of the art in the field of flight
simulators, stating some of the most relevant projects
launched on the market.
Microsoft Flight Simulator X – is a simulator produced by
Aces Game Studio, being among the first VR simulators with
advanced graphics. The first versions appeared in 2006, on
the Microsoft Windows platform. It is constantly evolving,
with new concepts being implemented with each update [2].
DCS (Digital Combat Simulator) World – is a simulator
produced by Eagle Dynamics, the first version was released
in 2008, the current version can be obtained for free from the
Steam platform. It is a simulator dedicated to the military
environment, with users having countless aircraft models and
more. The focus is on specific operations and missions [3].
Aerofly FS 2 Flight Simulator – is another flight simulator
with an emphasis on photorealistic scenarios, produced by
IPACS, running on the platforms: Android, MAC, Windows
and iOS. It was launched in 2014, and users can enjoy a
global elevation in image, of over 300 handmade airports in
West America, 3D construction, bridges, highways and
detailed cities. In terms of aircraft models, the detail is
impressive, the equipment and tools in the cockpit being
animated, which gives a high level of interaction with the
environment. The implementation of the physical elements
is performed with great accuracy, and together with the
fluidity of the frames with which they managed to display
the image, they created an even stronger immersion effect of
the user. Other navigation functions that we can find are:
Route planning, ILS (Instrument Landing System), VOR
(Omni Directional Radio Range) and NDB (Non-directional
Radio Beacon). Moreover, this simulator provides intuitive
support for Oculus Rift and HTC Vive, without any
additional software [4].
X Plane 11 – it is perhaps the best rated simulator on the
market at the moment. The first version appeared on
November 25, 2016, and the most current on December 12,
2019. This simulator, also perceived as a video game, runs
on the platforms: Windows, MAC and Linux. Users can

DOI: 10.37789/rochi.2020.1.1.20 ir orce , in a ro ect to resent the conce t o , the

Proceedings of RoCHI 2020

129

enjoy similar graphics and experience to reality, enjoying an
impressive number of airports: 13.000 [5].
Virtual Marshalling Simulator – is an stand-alone training
system produced by Virtual Simulation Systems used by the
Royal Australian Air Force, the Royal Australian Navy, and
Australian Army Aviation. It is specializes for ground based
support crew, offering a high fidelity immersion into the
world of flight deck operations with the ability to control and
direct aircraft that are about to deploy or have returned from
a mission and require ground marshalling. The software has
dynamic weather effects with a range of settings, including
wind, rain, fog, lightning, real-time scenario editor with vast
control, ability to trigger aircraft emergencies such as engine
fires, hydraulic leaks, hot brakes on fighter planes, and
tarmac incursions by personnel or vehicles, high-fidelity
virtual simulation with authentic graphic, sound and more.
Simulated procedures include pilot signals, refueling, deck
lashing, power, take-off and landing, and many others. The
main purpose of the system is to reduce the rate of effort on
already scarce resources, reliance on pilot availability and
expenditure on fuel and other consumables. Otherwise
reduces logistic setup for FARP (Forward Arming and
Refueling Point) marshalling exercises [6].

A VR-BASED TRAINING SYSTEM COMPONENTS
The structure of a VR system, which aims at the interaction
of the user subjected to the training or testing process we
explain it in the fallowing way (Figure 1).

Figure 1 - Annotation of interactive simulation. Adaptation
of [7].

Preferred behaviour of the simulated environment is
annotated as 3D and reificative features [7]. The annotation
action is one of the most natural ways for human beings to
analyze and interact with documents, images and different
objects [8]. Depending on the nature of the objects and events
that take place in the simulated environment, the attributes of
the simulation play the role of scaling factors on the reifying
characteristics. In our case, a gesture or a movement of the
user's hand will automatically adapt to the length of each
user's arm. 3D functions are naturally calibrated to a correct
scale, without modifications. In fact, 3D features can only be
perceived.

A VR system consists of four main components. Dedicated
software or engine for producing and managing graphics,
Tracking system that constantly knows where the user or
users are on stage, the Hardware part that allows Video and
Audio viewing of the 3D scene and, most importantly, data
content 3D.
Dedicated software or engine has several tasks to perform.
First, it is the one that produces or takes over the 3D graphics.
In addition, it is the one that takes the input information from
the input and tracking devices and also provides the platform
or environment in which the 3D scene can be developed.
The tracking system determines the position of users in the
virtual world and usually uses a camera with tracking sensors
that record movement. In the case of Vive or Oculus, these
tracking sensors are provided as part of the HMD (Head-
Mounted Display) package, but not every HMD model has
this integrated part.
The visualization system represents the Hardware part,
which allows the visualization of the 3D virtual scene in
stereo. In the case of Vive or Oculus, this is also done via the
HMD.
The 3D data or the 3D scene itself makes it possible to view
and interact the user in VR. This data is the basic resource of
a VR environment. If we are talking about a game, then the
3D data represents both their models and animations, as well
as the background code responsible for the user's interaction
with them. All the functionalities within an application, as
well as the models that take part in the action are the primary
resource in a VR System.
In fact, in addition to these components, the user is also part
of the whole virtual environment [9]. Virtual objects are
subjects in the users’ direct or indirect interactions and may
enhance collaboration between users. In other words, the
virtual space must be constructed, first of all, considering the
user’s cognitive and empirical attributes. When we create
virtual space models, the base criterion should be the
accuracy of the human representation of reality which may
not necessarily correspond with reality. To this end, the
human experience is first constructed by situating the user in
the virtual context, then tested through the user’s direct
interaction with the environment, and reconsidered, in a
recursive process [10].

OUR PROPOSED VR SYSTEM FOR PERSONAL
TRAINING IN AVIATION
In the following we present the context of choosing the
solution, the stages we went through in the realization of the
software system, as well as the technical exemplification of
the important processes. We chose to make this application
after a visit to Tuzla International Airport, where after some
discussions with the management team, we decided that an
optimal scenario, out of several possible ones, of a software
product would be the ground work of the aviation personnel.
The development on the part of VR in terms of flight
simulation is growing. From this point of view, but also

Proceedings of RoCHI 2020

130

because such a project involves a fairly large and well-
trained team with specialists in the field (pilots, aeronautical
engineers and so on).
We chose as main objective to focus on the activities of staff
in the field and more precisely, of those activities that have
not been approached by the production studios until now.
In addition, we chose to create a unique setting, the location
and context of the scenario being a real one (Cliff of the
Casino in Constanța, Romania).
The application meets all the conditions of a learning and
testing environment for aviation personnel, so it can simulate
the aiming operations of a helicopter and the adjacent tasks.

Figure 2 - Models in the foreground
The final version of the application contains the complete
modeling of the chosen scenario and the general
environment: background models, complete and complex
models in the foreground (the flight deck of a military frigate
model T22, a helicopter model Puma Naval - IAR 330 and
the Casino) (Figure 2).

LOGICAL DESIGN
In view of the work plan, the next step is logical design. Here
we have made decisions regarding the application
architecture, technologies and concepts that we will continue
to use and most importantly the use cases of the software
system.
Architecture up to a certain point is an art, but from a certain
point it is a science. To build something real, which will
withstand the time factor requires knowledge. We preferred
to give extra time to the minor details, but at the same time
to keep the simplicity of the product, without detailing
unnecessary parts that do not have their purpose in the
application.
We chose a minimalist, simplistic, suggestive design, which
does nothing but emphasize the important parts of the
simulated environment, just to eliminate all the risks of the
development plan, so all use cases can be achievable and the
entropy factor software should not appear in future versions.
In addition to the general environment, which involves the
sea plan, the geographical plan, the SkyLight and the
Skybox, using Blueprints (visual scripting technology
provided by Unreal Engine), we created: materials, objects,
object instances, all with unique properties for each one.
Following a taxonomy process applied to the “Helicopter”
concept, we developed the fully functional model / asset of
the IAR-330 helicopter. Its animation is activated
sequentially by triggers and gestures.

The connection of HMD to the application is done both by
Blueprints and by control classes (C++). The dedicated
physical aspects of the simulated context were also
implemented by coding.
At the level of user interaction, friendly communication
techniques were addressed, such as: assisted execution of
tasks through instructions, help tools, dialogue, sound and
relevant and intuitive noises. In addition, the application
contains a menu that fully covers the range of use cases.

Use cases
Following an analysis of the scenario, we made a series of
use cases:

Figure 3 – Use cases Diagram
We identified the main characteristics of the actor (unique in
this case), this being the user, based on a plan to simulate
communications with the system (Figure 3). The use cases
do nothing but model the system as desired from the end
user's point of view.
They clearly describe how the user will interact with the
system, then provide us with a basis for testing the status of
the application. Of course, there may be multiple users of the
application, but for the system they all play the same role.
First, the system must provide the user with three essential,
basic things of the simulated framework, which are:
- 360 degree visual perspective, through the display provided
by the VR System.
- Free movement in the 3D scene via the HMD or other
tracking system.
- Interaction with objects in the scene through control
devices and provoked events.
In addition to these use cases that achieve the purpose of the
application itself, to provide a simulated reality environment
for aviation personnel, there are others, which are part of any
other system of interaction with a human actor through an
interface like entering the main menu and the control menu,
enterering the editing mode of the settings wich is an

Proceedings of RoCHI 2020

131

exceptional behavior, being optional in addition to the
previous use case and completion of the current process and
exit from the application wich is also an exceptional
behavior.

Conceptual classes
To identify the conceptual classes of the context of the
problem, we applied a grammatical analysis on the
description of the functioning of the system.

Figure 4 – Conceptual class Diagram
 Thus, nouns become potential objects, the classes being
identified through the following criteria [13]:
• retained information - the data retained by the object is
important for the functionality of the system.
• necessary services - the object must have the ability to
change the value of its attributes in a certain way through
identifiable sets of operations.
• multiple attributes - objects with a single attribute can be
better represented as attributes of other objects.
• common attributes - object attribute sets apply to all
instances of this object.
• joint operations - sets of object operations apply to all
instances of this object.
• essential requirements - external entities that consume
information that is essential for the proper functioning of any
system solution, will almost always be defined as objects in
the requirements model.
A potential candidate should meet all these selection
characteristics in order to be included in our model.
The class diagram (Figure 4) is made in a conceptual
perspective, but even more so when we talk about a software

product made in an engine like Unreal Engine, where, in the
case of a single project, hundreds or maybe even thousands
of unique objects can be created. Indeed, these objects have
common attributes and can be correctly framed under the
definition of the same general concept, the language of the
field being captured much faster. All of our 3D assets models
are instances of objects represented by the conceptual class
defined Model3D, which has common conceptual attributes.

Data structure
The first step in carrying out the project was to gather as
much useful information as possible. For a good
understanding of the problem, first, we needed a good
detailing of work tools. Both in concept (blackbox) and in
detail (where it is vital).
Unreal Engine is the software engine through which we were
able to develop our system. It is also developed by Epic
Games, first introduced in 1998.
Unreal Engine 4.24 [11] was the engine version available
when we started developing the application, and Unreal
Engine 4.25 is the latest stable version released by Epic
Games so far.
The visual system of Blueprints provided is a complete
system of scripts, based on nodes and graphical interfaces to
create game elements inside the editor. As in many other
common scripting languages, it is used to define object-
oriented (OO) classes or objects [12].
This system is extremely flexible, being dedicated to both
designers and programmers, either for its practical utility,
which provides you with the full range of concepts and tools
that normally only programmers have at their disposal, or for
its ability to create basic systems in C++ that can be extended
by designers.
Although they are called matrices, blueprints are actually
lists. Structures are used to make complex data. It is
preferable to avoid creating structures within other
structures, in favor of creating basic methods. In fact, the
Epic Games team's own architecture is specially designed to
facilitate both the effort of programmers and the work of
designers in creating projects.

TECHNICAL DESIGN
In view of the work plan, the next step is the technical design.
Now that we have gathered the necessary materials and laid
the foundations for the construction of the application, we
can move on to implementation.

Communication of the user through triggers and
gestures
When we started to put ideas together at a conceptual level,
we set out to make the transition as easy as possible from
what classical software systems engineering involves, to the
new requirements that come in approaching a software
system using VR technology. Thus, in addition to the

Proceedings of RoCHI 2020

132

usefulness of triggers, from classic applications, we also used
gesture recognition.
A trigger activates an event or series of events. If we are
talking about a movie sequence or an animation, then it is
very possible that we want to activate it in a special context.
Getting a reference to the sequence we made, we created a
Blueprint which in turn generated a C++ code sequence that
we can set so that it starts and stops when we want it to.
Regarding the sequential activation of the animation, we
chose to do it by implementing triggers and gestures.
Thus, in addition to use cases and conceptual classes, we can
complete the basic architecture with the sequence diagram
(Figure 6).
Before the image reaches the display, triggers are activated,
which in turn activate functions for gesture recognition. If
the gestures correspond to gestures already saved, then an ID
will be used to activate an animation sequence. Thus, only
now, the provoked events can be visualized (Figure 6).
Helicopter movement animation can be controlled by the
ground fly deck personnel support using hand signals such
as: direction correction, landing and deck lashing.
There are several types of gestures which we also used for
this application, so they fall into several categories:
directional movement gestures, flow control gestures, spatial
orientation gestures, multifunctional gestures (which can
trigger multiple events) and tactile gestures [14].
The events caused by classic gestures activated by the
buttons of the keyboard, mouse or even VR controllers are
the flick, the pinch and rotation.
Based on them, their combinations, but also other imports of
gestures registered by dedicated systems, an almost
unlimited software implementation can be reached; the only
limitations being those of physical laws in reality.

We chose to work with components dedicated to VR systems
by MotionController. Using the MotionController Blueprints
we added a gesture tracking component and four functions
that work in parallel:
- the start function of the gesture recording
- the end function of the gesture recording
- gesture recognition start function
- the end function of gesture recognition
The first two functions are related to a gesture recording
input action, which more precisely, begin to record the
gesture performed by the sensors. The next two are linked to
a trigger recognition action for gesture recognition which
verifies if the gestures recorded by the sensors are valid or
not (Figure 5). The recognized result of the gesture has an
ID, which will help us in establishing the event followed by
the correct recognition of each gesture.

Figure 5 - Gesture recording by activating a trigger
For the space tracking functionality of the gestures, we will
also use a tracking component, which we will connect to a
space drawing function and another one for predicting the
drawn gesture.
If a continuous recognition of gestures in space is desired,
without this taking place during the pressing of a trigger
(from the controller), although in this case it is not preferable,
an input action of their continuous recording will be used.

Figure 6 – Sequence diagram

Proceedings of RoCHI 2020

133

Obviously, even if we had approached the continuous
recognition of gestures, activating this trigger from the
application at an inappropriate time, it would not have
produced an event, because the animation sequence of the
helicopter would not have ended. Therefore, both by
recognizing by means of triggers (by pressing a button on the
controller) and by continuous recognition (of the attempt to
permanently recognize gestures), the helicopter will first
finish its “process” started.
From the beginning of the development of the application,
we started from the idea that the final product should look as
simple as possible, but with a greater graphic impact.
Therefore, we kept the minimalist concepts of simplicity in
terms of user interaction with the system.

Figure 7 - Perspective from the first scene
Conceptually speaking, the universe within the application is
made up of a single scene. However, technically we use the
same scene, duplicated to give the user a double perspective
in the created universe (Figure 7). The menu follows the user
at every moment within the environment (Figure 8). It
consists of a simple panel with two buttons: one that makes
the transition of the scenes, in our case from scene A to scene
B, but also from scene B to scene A, and the second button
makes it possible to close assisted, secure application.

Figure 8 – Perspective from the second scene
The menu provides intuitive usage information,
communicating to the user by its nature, but also by text
indications. In addition, it is possible to edit the settings by
changing the parameters. The simple and friendly aspect of
the interface was made with the help of the graphical editing
mode, familiar to the one from Visual Studio.

The application can be used via any HMD, we using Oculus
Rift S. The hardware configuration of the HMD was done
through functions implemented using Blueprint technology.
The audio element is vital in the composition of any final
product of this type. The user lives the visual experience
differently if it is introduced in the virtual environment and
through a stereo system. In terms of sound, we created a main
class and a sound mixer. All sound effects used in the
application have been introduced in the parent class.
To add sound effects to the scene, we used replicas of the
sounds, placed as sub-objects of the actors in the scene. It
should be noted that a sound replica does not necessarily
have to be related to an existing object in the scene. It can
also be introduced as a singular element.

Modeling
The scene represents the space and place where the user is at
a given time. This is part of the universe of a game or, in this
case, the simulator, as defined in the class diagram. The
scenes are populated with actors, and the actors, in turn, are
made up of one or more 3D models. In a project with
complex graphic content, modeling is not done directly by
handwriting code. Instead, automatic code generation
techniques are used, similar to the Blueprint graphical
visualization, through which methods are used that contain
methods, which in turn write code automatically. Developers
can later access the C++ code of those classes, and can make
changes or troubleshooting in case of unstable versions or
plug-ins.
The Unreal modeling plug-in offers functions similar to
those in dedicated software. With the help of modeling
techniques such as: NURBS (Non-Uniform Rational Basis
Spline) modeling, polygonal modeling and NURMS (Non-
Uniform Rational Mesh Smooth) modeling, we managed to
reach results similar to those obtained in professional
applications.

Animation
Once the 3D models of all the actors are created, we can
move on to their animation processes (where appropriate).
Perhaps the most rudimentary form of animation is that of
the material applied itself. In the case of a larger animation,
each mesh to be manipulated in different ways must be
analyzed separately. In this case, we could use the taxonomy
created on the model of the IAR 330 Puma Naval helicopter,
applying animations on each essential element. Thus, from
understanding the main components, we were able to move
more easily to understanding in detail, at a more granular
level of the concept. So we decided on the type of approach
we would take in the separate animation of the main rotor
assembly, the tail rotor assembly, and the entire helicopter
body.
At the scenario level, we have developed a series of
possibilities for the trajectories of the helicopter to the point
of control of its animation by the user (Figure 9).

Proceedings of RoCHI 2020

134

Figure 9 – Animation script
The next step in the animation process was the actual
animation of the helicopter parts. Due to the nature of the 3D
Model studied, there was no need to go through the process
of Rigging and Skinning, but we needed again the taxonomy
created in the evaluation of the rotor parts (Figure 10).

Figure 10 - Parts of the helicopter to be animated based on
the taxonomy

The rotation function of an object is implemented via the
RotatingMovementComponent class in the standard
GameFramework Unreal Engine package. This function can
be added to the actors of a scene and can be used for different
purposes. In principle, if the pivot of the animated object is
not changed, then the composition of the new location is
done by default through it.

Figure 11 - Animation of the main rotor and the tail rotor
together with their propellers

Thus, using the rotational component of the movement on
the main rotor block and the secondary rotor block (tail) we
were able to animate the essential components in question of
the helicopter (Figure 11).
Both in the elaboration of the animation script and in the
placement of the actors on stage we focused on: the correct
lighting of the scene and its interaction with the materials of
the 3D models, the positioning of the camera and the user's
perspective to simulate the immersion in the virtual
environment and balancing the speed at which the animation
happens in the development phase with the number of frames
processed per second of the VR system. Given that such a
display does not have the ability to process a very high
number of frames per second, we had to make a compromise

in terms of the actual rotational speed of the helicopter
blades. Thus, on the display of the VR system you can
perceive as naturally as possible their rotational movement.
At the level of composition, we recreated the panorama of
the real cliff scenario, using textured materials in the same
style, thus completely homogenizing the chosen context. In
addition, we used techniques specific to creating niche
games and graphics applications. Thus, in order to keep a
better optimization of the data flow processed by the system
and to obtain as many FPS (frames per second) as possible,
we opted in the detailed modeling of the foreground elements
and the important elements in image register, leaving the
background populated with texturally poor objects, but
especially polygonal, for a faster rendering of the image.
In terms of animation, at least half of the effect created in an
application is sound. Although the process of creating
images itself is more expensive, the emphasis should be
equally on the audio side. Most of the time, as in the case of
film production, a good image combined with poor sound
quality is much worse than a bad image, but it comes with a
high sound quality. The audio part can save the final product
from failure or throw it even harder into the abyss.
For the sound caused by the engine, the rotor and the blades
of the helicopter we used an audio material in wav format.
The last step we took in finalizing the animation was the final
editing and the general aspect of the image-sound fluidity.
Once we changed certain parameters that were not exactly in
place, through a subjective analysis of duality we arrived at
the desired final version of the animation of the main actors.

CONCLUSION
Following the stages of content creation in a logical order of
the modeling and animation processes, but also of the
texturing and material creation processes, we managed to
create the basic component of a VR system. By
understanding the related concepts and technologies we were
able to connect the created component to the tracking and
viewing components provided by the HMD Oculus Rift S
device together with the Oculus touch devices. Thus, adding
to the equation the Unreal Engine and the processing
hardware, we created the complete framework of the VR
System infrastructure.
In designing the use cases, we approached a realistic attitude,
calculating all the variants and risks of the development
process. Thus, we did not intend to implement use cases,
which require a higher level of experience, precisely in order
to finally reach a final product, with its positive parts, even
if it still has limitations. Their technical design and
implementation were the main learning ingredient. During
the implementation there were times when we had to make
decisions, with varying degrees of importance. After making
the wrong decisions, we were able to go back and learn from
them. Moreover, through testing sessions, we redesigned
some of the basic architecture so that we can achieve better

Proceedings of RoCHI 2020

135

results. Our user perspective has helped us fix most of the
issues that have arisen during implementation.
The software system fully responds to the desired and
proposed appearance issues. However, both its nature and the
technologies used lead to a list of limitations that can be
reduced by later versions of the application or other
interpretations as the technology evolves. First, the nature of
the simulated virtual environment will never be compared to
reality. The user's immersion in the virtual environment will
never be equivalent to that in reality, without direct
interventions from the outside (for example: the underwater
environment). Second, we are often limited by the space we
are in.
As same as Virtual Marshalling Simulator, the application
offers the advantages of learning processes, avoiding
potential risks (damage 0 after the learning or training
process), can preview a candidate's behavior following
events, but can also serve for entertainment purposes.
The expansion of the software system in later versions may
include more complex general visual areas, such as a
systematic database used in the customization of tools and
meshes, but also the choice of more complex scenario and
more diversified simulation operations.

ACKNOWLEDGMENTS
Thanks go to the CeRVA team from the "Ovidius"
University of Constanta. We also thank the management
team of Tuzla Aerodrome in Constanta with special mentions
to Regional Air Services.

REFERENCES
1. Leslie Mertz, Virtual Reality Pioneer Tom Furness on

the Past, Present, and Future of VR in Health Care,
Publisher: IEEE Pulse 10(3):9-11, 05 2019, ISBN:
2154-2287, DOI: 10.1109/MPULS.2019.2911808.

2. Cristiano Rodrigues, Rosaldo J.F. Rossetti, Daniel
Castro Silva, Eugénio Oliveira, Distributed flight
simulation environment using flight simulator X,
Published in CISTI journal, 07 2015, DOI:
10.1109/CISTI.2015.7170615.

3. Digital combat simulator homepage,
https://www.digitalcombatsimulator.com/en/.

4. Roganov V.R., Roganova E.V., Micheev M.J.,
Kuvshinova O.A., Zhashkova T.V., Gushchin S.M.,
Flight simulator information support, Published in
journal: Defence S and T Technical Bulletin, 01 2018,
ISBN: 1985-6571.

5. Fernando Soares Carnevale Ito, Roberto Santos Inoue,
Luiz Carlos Querino Filho, Kalinka Castelo Branco,
Cooperative UAV formation control simulated in X-
plane, conference: ICUAS, 06 2017, DOI:
10.1109/ICUAS.2017.7991421.

6. Virtual Simulation Systems: Virtual Marshalling
Simulator homepage,
https://virtualsimulationsystems.com/site/index.php/si
mulation/fixed-wing/aircraft-marshalling.

7. Mikko J. Rissanen, Yoshihiro Kuroda, Tomohiro
Kuroda, Hiroyuki Yoshihara, A Novel Interface for
Simulator Training: Describing and Presenting
Manipulation Skill Through VR Annotations,
conference: HCI 07 2007, ISSN: 0302-9743, DOI:
10.1007/978-3-540-73335-5_57.

8. Stefanut T., Gorgan D., Graphical annotation based
interactive techniques in eTrace eLearning
environment. "eLearning and Software for Education",
eLSE 2008, The 4th International Scientific
Conference, Ed. Universitara, ISBN: 978-973-749-362-
0.

9. Popovici D.M., A foray into 3D virtual environments
(in romanian – O incursiune în mediile virtuale 3D),
Ed. Muntenia, 2007, ISBN: 978-973-692-191-9.

10. Popovici D.M., Hamza-Lup F.G., Polceanu M., Zagan
R., Gerval J.P., Querrec R., 3D Virtual Spaces
Supporting Engineering Learning Activities, Published
in IJCCC, 11 2009, DOI: 10.15837/ijccc.2009.4.2456.

11. Paul Oliver, Unreal Engine 4 Elemental, 08 2012,
DOI: 10.1145/23411836.2341909.

12. David Nixon, Beginning Unreal Game Development.
Foundation for Simple to Complex Games Using
Unreal Engine 4, Publisher: Apress, 02 2020, ISBN:
978-1-4842-5639-8 DOI: 10.1007/978-1-4842-5639-
8_5.

13. Bogdan C., Concern-oriented and ontology-based
Modular Architectural Design of Software Systems, 1st
International Conference on Economics and
Information Technology e-Society Knowleadge and
Innovation, Bucharest, Romania, 2008, ISBN: 978-
973-749-491-7.

14. Kasper Rise, Ole Andreas Alsos, Human-Computer
Interaction. Multimodal and Natural Interaction:
Gesture-Based Interaction: Visual Gesture Mapping,
conference: HCI 07 2020, ISBN: 978-3-030-49061-4,
DOI:10.1007/978-3-030-49062.

Proceedings of RoCHI 2020

136

