
Controlling a programming environment through a voice
based virtual assistant

Sonia Grigor
Technical University of Cluj-
Napoca, Computer-Science

Department
Cluj-Napoca, Romania

sonia.grigor@student.utcluj.ro

Constantin Nandra
Technical University of Cluj-
Napoca, Computer-Science

Department
Cluj-Napoca, Romania

constantin.nandra@cs.utcluj.ro

Dorian Gorgan
Technical University of Cluj-
Napoca, Computer-Science

Department
Cluj-Napoca, Romania

dorian.gorgan@cs.utcluj.ro

ABSTRACT
The use of smart personal assistants is intended to
provide a solution that employs the voice interaction
model in order to help improve accessibility for everyday
tasks. This model is more than suitable for simple tasks,
such as internet searches or device-controlling
commands. In this paper we explore the possibility of
using this interaction model for completing more
complex, composite, context-dependent tasks.
Particularly, we look into the potential benefits of using
custom spoken commands to help novice users develop
insight into the workings of a computer program.
Throughout this paper, we present a solution based on an
existing, customizable voice assistant that is meant to
both help users grasp the structure of a program and
improve accessibility for programming activities. The
latter is achieved by providing a framework for a voice-
based programming environment, offering features like
code fragment insertion, navigation, error detection,
handling and program running, while also providing
voice and text-based feedback for the executed
commands.

Author Keywords
Voice-based interaction; Programming assistant; Amazon
Web Services; Echo Dot; Alexa;

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces. H.3.2. Information Storage and Retrieval:
Information Storage.

General Terms
Human Factors; Design.

INTRODUCTION
During the last decades, solutions developed by the IT
(Information Technology) industry have become ever more
prevalent within every kind of human activity, be it personal,
social or economic. Computer programming is at the core of
this industry and, because of this, software developers are
required in order to create the applications impacting our
lives. However, computer programming is one of the more

The ability to program, in some form or another, is one of the
most sought-after skills at workplaces around the world. This
high demand for software developers can incentivize many
individuals to follow such a carrier path. Nevertheless,
acquiring and developing programming skills can be difficult
for users with experience in areas other than software
development, who lack the basics of a formal education and
training. Possible ways to alleviate this problem might
include the training of candidates through exposure to
practical use-cases and basic solution implementations. This
should be done in an intuitive manner, using simplified
terminology and real-world, applied examples, while
minimizing the use of high-level, abstract concepts.

Recent development in human-computer interaction have led
to the rise of intelligent personal assistants. Being controlled
through natural language, they offer a human-centered
interaction model that is intuitive and easy to use, with little
to no training required on the user’s part.

The project presented within this paper intends to capitalize
on the intuitive nature of the language based interaction
model in order to facilitate the training of novice
programmers. The idea is to employ an intelligent voice
assistant and integrate it with a programming environment,
thus allowing for voice commands to be used in controlling
code insertion, editing and execution. The proposed solution
would employ an intuitive, top-down approach, starting from
the general structure of a program, and gradually working
towards more specialized constructs and instructions.

The system provides a small and well-defined set of voice
commands, with which the user would be able to learn to
employ the most important syntax elements of a given
programming language. The interaction between the user and
the system would be performed on several channels. The
system receives input from the user in the form of a spoken
command, and then it provides two types of feedback: voice
feedback through the response that notifies the user of the
status of the executed command, and visual/text based
feedback consisting of state changes within the programming
environment and the supplying of information or error
messages.

DOI: 10.37789/rochi.2020.1.1.18 challenging occuSations, since it normally reTuires multiSle
levels oI sSeciali]ed education to adeTuately master�

Proceedings of RoCHI 2020

115

RELATED WORK
Human-computer interaction has been studied since the
advent of user interfaces and is closely related to the term of
usability. This specifies the degree of satisfaction of a user
with regard to his interaction with an application through a
dedicated interface. In the past, the term computer-human
interaction, placing emphasis on the computer, was used to
describe the relationship between the two. Nowadays, with
the evolution of technology and the attempt to reduce the
time and effort required to effectively use a system, the
emphasis is on the human element, with the term human-
computer interaction accurately describing the current trend
[1]. This is most obvious with the recent advent of handheld
devices featuring personal assistant software. These are
meant to facilitate the interaction of the human with the
computer, exploiting increasingly powerful devices to mimic
the natural human communication capabilities. Relevant
examples include complex processing tasks, such as image
processing and classification, text-to-speech and voice
recognition.

Virtual assistants
Voice assistants are software agents developed to intercept
the human voice, interpret it and respond in a synchronous
manner. Each of the biggest players on the IT market have
developed one or more intelligent personal assistants to be
delivered in different forms and with different roles to fulfill:

• embedded in the phone: Siri, Google Assistant;
• operating system functions: Cortana;
• dedicated devices:

o Alexa embedded in smart speaker Echo devices
o Google Assistant as part of Google Home

home-automation devices [2].

Alexa
Today, the concept of an intelligent personal assistant is
often associated with a smart speaker that can be activated
by voice interaction using a wake word, and can perform a
variety of user queries [3]. This is the case of Alexa, the
virtual assistant developed by Amazon. It responds to the
activation word "Alexa", and offers a sizeable set of standard
commands, as well as the possibility for user customization.
Alexa is the name of the voice service that powers Amazon
Echo (the intelligent speaker), offering features or abilities
that allow customers to interact with devices in a more
intuitive, voice-based manner. The provided functionality
includes, but is not limited to: internet searches, media
playback and device control commands.

Figure 1 shows the method of user interaction with Amazon
Alexa. First, users produce an utterance or request, which is
filtered by Alexa through speech recognition, machine
learning, and natural language processing. All of these are
complex processes, requiring significant computational
power and are therefore performed in the Cloud. Alexa then
accesses web-hosted services, which employ this
functionality, and provides a response to the user. Included
in the response process, Alexa produces an information

"Card" that records users' words and the resulting system
response. The "Card" information is available to users via the
Alexa application in a textual form, providing a record or
interaction history [4].

Figure 1. Alexa interaction model [4]

Google Assistant
The virtual assistant provided by Google is available on
smartphones and smart home devices. Its activation words
are "Hey Google", or "OK Google" [5]. When the software
is activated by voice, the user usually receives feedback in
the form of a changed screen if it is a phone, or in the form
of a light on the device, if it is a Google Home device. On
mobile devices it is employed for device control purposes
and user queries. Hands free phone operation and internet
searches are among the most well-known use cases. In the
case of Google Home, the assistant is most often employed
for device control purposes, managing various types of home
appliances [6].

Siri
The Siri virtual assistant developed by Apple is available on
all Apple devices including iPhones, MacBooks, iPads and
Apple Watches [7]. It responds to the activation word "Hey
Siri" and uses voice queries and a natural language user
interface to answer questions, make recommendations, and
perform actions by delegating requests to a set of Internet
services. Its voice recognition engine was provided by
Nuance Communications, and uses advanced machine
learning technologies to operate [8].

The ways in which Siri can be used are diverse and
numerous. From common features such as initiating a call,
sending a message, to unit conversions, and displaying
notifications based on a user device's location, Siri finds
applications in many areas.

Some specialized commands that Siri knows to execute
include: adding a post on Twitter or Facebook, searching for
a person's tweets, solving mathematical operations and
setting alarms based on a given location, which is activated
when the respective location is reached, the conversion of the
units of measurement [9].

Cortana
Cortana is the personal assistant developed by Microsoft that
helps users save time and focus on relevant aspects of
utilizing an operating system. It is notable in its ability to

Proceedings of RoCHI 2020

116

gather data on user activity and preferences in order to
improve user interaction. Thus, coupled with regular updates
to the operating system being pushed by Microsoft, give it
the potential to continually improve. Some of Cortana's
functions include: calendar management, joining a meeting
using Microsoft Teams, setting alarms, opening applications
on the user’s computer, help with system’s management and
settings and more [10].

Similar applications
Interactive programming learning methods are either text-
based or in the form of video tutorials available online. They
provide potential students with the theoretical information
and the opportunity to apply said information.

The authors of [11] developed an application to help
beginners learn SQL. They developed both a graphical
interface of the application, and provided a natural language
processing engine. The paper presents the Cyrus application
which has two main modes. Firstly, it acts as a guide,
allowing students to choose a database on which to
experiment with different queries, which can be specified
vocally. Secondly, in its knowledge assessment mode, the
system allows its users to filter questions based on difficulty
levels and answer them through a text-based interaction
model. While employed in tutorial mode, the system accepts
the voice query in English, maps the query to SQL and
executes it to produce the result. As a matter of redundancy,
students can also write or edit the SQL themselves,
bypassing the voice command interface.

Voice Coder [12] is an extension to Alexa’s rule set that helps
users create games using through voice commands. The
game begins with no rules or logic. The user’s main
responsibility is to program rules, using events, activities,
and values. Example of activities include moving or playing
a sound.

Coder [13] is another example of an Alexa extension. It aims
to teach its users programming by providing coding
examples. It has support for more than 10 languages (some
of them still in progress). Users can ask for examples and
instructions on how to write code in some of the most popular
languages.

C Programming Quiz [14] is a quiz based on questions about
the C programming language. It has instructions for
navigating between questions and it was created using
available templates provided by Alexa Skill Kit.

CS Guru [15] provides users with a selection of questions
from the Data Structures and Algorithms field, and has a
weekly updated content. Question are straight-forward and
they have answers and explanations that can be easily
understood and reproduced. This application provides a
training mode which is designed to teach users about the key
concepts in Computer Science.

SYSTEM OVERVIEW
The project presented in this paper aims to demonstrate how
voice interaction with intelligent personal assistants can
improve a tool’s accessibility by simplifying the way in
which certain tasks can be performed. In this context, the
term “intelligent assistants” refers to specialized software
using a knowledge base to process voice commands by
employing sophisticated methods and algorithms for speech
recognition and interpretation.

The project described within this paper explores the
possibility of using voice interactions to help users learn the
basics of programming through natural language. It also aims
to provide the basis for a programming environment
featuring improved accessibility, which might cater to users
suffering from various motor disabilities. The system
supports four different programming languages at the
moment, with mechanisms in place to allow for easy
extension. It permits any user, without knowledge of the
system’s workings to upload language elements structured in
a specific manner, as well as predefined error messages for
various situations which might appear when compiling the
code.

The objectives of the application are linked to the needs of
novice users in the field of programming. The application
can meet several needs of such a user, related to learning
about: the structure of a program, control structures
(conditioned, repetitive or iterative), sorting algorithms like
BubbleSort, MergeSort, and the logic of a program.

The overall architecture of the system is shown in Figure 2.

Figure 2. System conceptual architecture

The user interacts with the device hosting Alexa. This is
called Amazon Echo, and represents a line of smart speakers

Proceedings of RoCHI 2020

117

sold by Amazon. They can be controlled by voice and
include the Alexa virtual assistant. The custom command
interpretation logic of the assistant resides within a
repository of AWS Lambda Functions, hosted remotely
within Amazon’s Cloud. This is accessed by Alexa via
exposed web services every time that it needs to process a
custom command. This logic is pretty low level, is
implemented by the user and (in our case) consists in
generating a specified code and a number of parameters for
each command. These generate data are then stored within
the DynamoDB database, also hosted by Amazon. This
database essentially creates a log of all the commands (coded
in a specific manner by the user) launched within a given
interactive session. By accessing this log, a user application
can then programmatically react to each command.

Java Server Application
The server application is meant to control the access to a
repository of files containing relevant code fragments and
error information for the supported programming languages.
These files contain a selection of common programming
constructs for each supported language, as well as sets of
hints to help users solve specific errors encountered during
the compilation process. Access to the code fragments and
error information data is provided through a set of web
services, making it possible for experienced users or system
administrators to modify existing data and even add support
for new languages after the system’s deployment.

Client Web Application
The client is a web application that provides the user with the
visual feedback for the actions resulting from the spoken
commands. This is essentially a prototype programming
environment that integrates the voice command processing
capabilities of the Alexa assistant. This results in most of its
functionality being directly controllable through voice
commands.

Voice control of the application is achieved by having it
retrieve the commands registered within the DynamoDB
database and applying a series of processing and interpreting
steps. These read the name and parameters of the commands
logged within the DynamoDB database and generate user-
specified behaviors. In our case, these behaviors are the
actions required to control the programming environment.

Accessing the data logged within the DynamoDB database
can only be achieved through the Amazon API Gateway and
AWS Lambda Function Backend, which are the mechanisms
put in place by Amazon to enforce access control and
security.

The graphical user interface of the client application consists
of three major areas which can be seen in Figure 3. The first
one (left side) contains a code editor where the code is
inserted after the relevant commands are processed. A user
can select a programming language from the top of the page,
and also select a theme from one of the editor themes, located
at the bottom of the area. The second area (top-right)
provides a log that lists the virtual assistant’s feedback. The
feedback is chronologically presented so the user can see the
order of the added instructions and their results. In the last
area (bottom-right) there is the output of the
interpreter/compiler. This area contains the result that can
either be an error or the expected output of the executed code.

Grammar of interaction model
The grammar of the commands used consists of nine main
elements. These can be grouped into two categories: code
management and application management. Those from the
first category are related to creating programs, variables or
operators, navigating through the code, inserting code
snippet such as “if”, “while”, “bubble sort”, and printing text.
Those from the second category are related to: application
start, helping with errors, running programs, wait actions and
setting the feedback length/complexity.

Figure 3. User interface of the integrated programming environment

Proceedings of RoCHI 2020

118

The start command, is used to activate the application. The
instruction responsible for managing the errors that appear
after running the program is help error. The run command
is used in order to start running the code and obtain a result
from de compiler. Wait, used for increasing the time period
in which Alexa is active, can be said when the user needs
more time and doesn’t want the skill to stop. The
set_reponse command is used when the user wants to
select the type (length) of voice feedback to be received
from Alexa. The latter can be long – Alexa details the
action, short – Alexa says only that it intercepts the
command, and no – Alexa doesn’t give any feedback.

The create command is used to add a new program
template which has a specific name. Also, with this one,
the user can add a new named variable or an arithmetic
operator like plus, minus, multiply or divide. Go to permits
navigating to different lines of code or getting into different
named functions. Insert lets the user add templates for
different programming statements like “if”, “switch”, “for”
and “while”. Also, using this command, users can add
sorting algorithms. In order to print a sentence on the
screen, the user need to say write followed by what he
wants to print.

The grammar is a simple one but offers the most common
commands in terms of a programming language. Simplicity
is an essential feature of the dialogue model in such a
situation, for a novice user. The user can express himself
briefly and concisely through a well-defined set of
keywords. The grammar has several levels of expansion.
The rules consist of a terminal (uppercase) and a non-
terminal (lowercase). The terminals have synonyms, so the
user has multiple way to interact with the system without
being constraint to use a strictly set of words.

command ::= start | create | go_to | insert | HELP ERROR

| write | RUN | WAIT | set_response

create ::=CREATE OPERATOR operator_name

 |CREATE PROGRAM program_name

 |CREATE VARIABLE variable_name

go_to ::= GO TO LINE number

 | GO TO FUNCTION program_name

insert ::= INSERT structure | INSERT FOR number

structure ::= IF | SWITCH | WHILE | DO WHILE

 | BUBBLE SORT | MERGE SORT

set_reponse ::= SET RESPONSE response

response ::= NO | SHORT | LONG

SYSTEM EVALUATION
This section presents an evaluation of the system’s
functionality and performance. The tests were designed to
verify functional requirements of the system, while also
validating the interaction between the system’s
components.

Performance Evaluation
The performance evaluation of the system was done by
analyzing its average response time for user requests. In
this context, a user request refers to the HTTP request
submitted from the user interface (through Alexa and the
associated command interpretation logic) to the two
application servers: the command history server, deployed
on Amazon’s infrastructure, and the server hosting the
language construct and error data, hosted on the local
machine. To evaluate their performance, a few endpoints
were chosen to measure the time required for a response to
be received. To get accurate results and level out any
irregularities, each server was subjected to five calls for the
same endpoint, and the response times were averaged. The
results obtained can be seen in Figure 4.

Figure 4. Response time of local server

Referring to Figure 4, which presents the performance
evaluation of the local server responsible for delivering
language syntax and error data, the first test was performed
to add a new error interpretation message and the call
requires the longest amount of time to complete (61.4 ms).
This result is to be expected, as the request relies on a
POST method that contains an object with 4 parameters in
the body of the message, so it requires more processing
time. The following methods are of the GET type. The
second call was performed in order to measure the time
required to extract detailed information on specific errors.
The average response time was 38 ms. Analogous to the
second test, the third was created to request the data in the
form of syntactic constructs for a given programming
language, resulting in a similar processing time of 32 ms.
The call to fetch the syntax constructs data from all the
registered languages within the database takes an average
of 41.8 ms, and is reasonable because the result is in the
form of a list of four elements of a complex data type. The
last test, aimed at measuring the time required to fetch the

53.4

41.8

32

38

61.4

0 20 40 60 80

GET language's error

GET all languages

GET language information

GET procedure

POST new error

Time (milliseconds)

Proceedings of RoCHI 2020

119

sets of errors associated with a language, averages a
response time of 53.4 ms.

Figure 5 shows the average response times for the NodeJS
server developed using AWS Lambda and hosted on
Amazon’s infrastructure. The first test was performed to
verify the time required to insert an error into the NoSQL
ErrorLearnProgramming database, with a resulting
average time of 133.6 ms. The second test consists of
deleting the entire database that contains the user’s history
of programming errors. As a sequential deletion was
required, a longer response time (286 ms) was expected.
The last test shows the performance of the server in terms
of reading databases. This reading is an action that is
performed very often, since the system polls the database
to monitor changes in the command history. The average
access time is 266.2 ms which is a reasonable time
considering that oftentimes, the response consists of an
array of approximately 30 complex object elements.

Figure 5. Response time of AWS Lambda

Usability Evaluation
The ability of the system to behave as expected, to avoid
unwanted command errors or to lose control is assessed
below. In this analysis, the fulfillment of some use case
scenarios was monitored, in an increasing order of
complexity.

The tests included a variable number of instructions to
analyze the dependence between the complexity of the
scenario and the number of errors occurring. By error, in
this context, we mean a situation in which Alexa did not
understand the command and/or failed to act appropriately.
Three types of scenarios were tested: low complexity (5
commands), medium complexity (15 commands) and high
complexity (25 commands). These scenarios do not
necessarily involve completely distinct command, but lead
to distinct outcomes.

Figure 6 shows the influence of the number of commands
on the number of errors. When referring to errors, it must
be understood that they are errors of control of the system
or errors of misunderstanding of the spoken words. In the
case of the scenario containing 15 instructions, only one
error occurred. This was related to semantics, more

precisely the sentence was not understood by the vocal
assistant. As for the last scenario consisting of 25
commands, the two errors occurred, also at the semantic
level.

Figure 6. Commands - errors dependency

Figure 7 shows the relationship between the number of
commands and the time required to fulfill them. As can be
observed, the total time required for the completion of a
scenario increases linearly, while the average time for
realizing a command marginally fluctuates around the 10
seconds value. These measured time intervals include both
the time required for the utterance of the command and that
necessary for Alexa’s spoken feedback. It should be noted,
however, that we instructed Alexa, at the beginning of the
test, to provide only the strictly necessary information.
Therefore, the feedback messages were as short as
possible.

Figure 7. Commands - time dependency

Heuristic Evaluation
Heuristic evaluation has been defined as a usability
engineering method that aims to identify usability issues in
the design of a user interface.

An initial set of nine heuristics is given by Molich and
Nielsen in 1990. After that, Nielsen in 1994, refined these
heuristics and proposed a set of 10 usability principles [16].
This section contains an analysis of the system from the
point of view of Nielsen's ten heuristics.

266.2

286

133.6

0 200 400

Read databases

Delete
ErrorLearnProgram…

Insert
ErrorLearnProgram…

Time (milliseconds)

0

1

2

0 0.5 1 1.5 2 2.5

5

15

25

No. of errors

N
o.

 o
f c

om
m

an
ds

47.5

130

257

0 100 200 300

5

15

25

Time (seconds)

N
o.

 o
f c

om
m

an
ds

Proceedings of RoCHI 2020

120

Visibility of system status - Information about the
system’s status and command execution is provided to the
user in a reasonable amount of time. The mean observed
time for the execution of a command is 10 seconds, from
the utterance of the command to the voice feedback
received from Alexa. The system can provide redundant,
text-based feedback, containing additional information.
Both types of feedback are supplied at the same time –
immediately after the execution of the command. There is
also the visual feedback, observed through the changes
affected by the commands regarding cursor movement,
code insertion, code folding and so on.

Match between system and the real world - The system
uses terms that a novice user in the field knows, uses simple
words and familiar concepts providing explanations where
needed. This heuristic is applied in terms of verbal dialogue
between the user and Amazon Echo Dot, but also in the web
application by providing information in an easy to
understand form.

User control and freedom – This is accomplished through
several means: the system gives the user the opportunity to
choose how he wants to be given the feedback, offers the
possibility to do undo and redo commands and can help the
user navigate through and solve errors. Another feature is
the ability to extend the time Alexa listens to the user by
using the wait command, or stop the interaction entirely by
employing a built-in command.

Consistency and standards – The consistency of the
system is respected both at the level of voice commands by
employing the same keyword to address similar operations,
minimizing the size of the keyword vocabulary and at the
textual feedback level, following a standardized notation
and structure for both the information and error messages.

Error prevention - In this regard, the system does not
provide much support, being susceptible to command
interpretation errors. However, it provides visual feedback
when writing a code sequence that does not follow the
language syntax and grammar rules. This is displayed
within the programming environment.

Recognition rather than recall - This heuristic is quite
difficult to apply within a voice-based interaction model.
However, there is little support from the system, reminding
the user to select the type/length of feedback to be
delivered, as well as select the desired programming
language to work with. These prompts are delivered by the
system at the start of a working session, thus relieving the
user from the need to remember the format of these
particular commands.

Flexibility and efficiency of use - The accelerators made
available by the system that make an expert user more
efficient are the following: the option of not having a voice
response (thus minimizing overall interaction time) and the
possibility of uttering several commands at a time joined
together by the particle and. As of this moment, up to two

joined commands have been consistently observed to be
executed correctly by the system.

Aesthetic and minimalist design - The dialogue required
to achieve the desired effects is minimal without the need
to provide non-essential information. The system does not
ask the user for irrelevant or unnecessary information.
Also, the visual interface of the programming environment
has been kept as simple and clean as possible – as seen in
Figure 3.

Help users recognize, diagnose, and recover from
errors - System error messages are presented in textual
form, without using encodings. Furthermore, the system is
capable of providing the users with hints associated to each
generated error. These hints are user-customizable and can
thus be modified, without altering the system’s
implementation.

Help and documentation – At the moment, extensive
documentation for the system is not available, as it is an
ongoing work. However, provisions can be made to
integrate a documentation within the webpage hosting the
development environment and future developments can see
the use of Alexa to navigate and find items of interest based
on voice commands.

CONCLUSION
The system described within this paper aims to take
advantage of the intuitive and easy to use voice-based
interaction model in order to facilitate the teaching of basic
programming concept to novice users. To this end, it
employs Amazon Alexa’s API for creating custom voice
commands (also referred to as skills). The proposed
command set is limited in size and emphasizes language
simplicity and compactness.

The contributions of the implemented project include the
integration of an existing intelligent voice controlled
assistant within a programming environment, the design
and implementation of a set of simple and concise
commands to manage the interaction between the user and
the system and the development of a scalable support
infrastructure allowing for the addition of multiple
programming languages.

Thorough this paper, the basic architecture, components
and functionality of the system are presented along with an
evaluation of its performance – in terms of server response
time – and usability. The latter is expressed in terms of the
system’s average command execution time, errors per
command ratio and also by considering Nielsen’s ten
usability heuristics.

REFFERENCES

1. Kumar, R., “Human Computer Interaction”, Laxmi
Publications, (2008), ISBN: 978-8131802809

2. Hoy, M., "Alexa, Siri, Cortana, and More: An
Introduction to Voice Assistants," Medical Reference

Proceedings of RoCHI 2020

121

Services Quarterly, vol. 37, pp. 81-88, (2018), doi:
10.1080/02763869.2018.1404391

3. Miluț, C., Iftene, A. and Gîfu, D., "Iasi City Explorer -
Alexa, what can we do today?" in Proceedings of RoCHI
- International Conference on Human-Computer
Interaction, pp. 139-164, (2019), ISSN 2501-9422

4. Lopatovska, I., "Overview of the Intelligent Personal
Assistants", Ukrainian Journal on Library and Information
Science, pp. 72-79, (2019), doi: 10.31866/2616-
7654.3.2019.169669

5. Google, "Google Assistant, your own personal Google",
(2020), https://assistant.google.com/

6. Hadi, M. S., Shidiqi, A. A. and Zaeni, I. A. E., "Voice-
Based Monitoring and Control System of Electronic
Appliance Using Dialog Flow API Via Google Assistant,"
2019 International Conference on Electrical, Electronics
and Information Engineering (ICEEIE), Denpasar, Bali,
Indonesia, pp. 106-110, (2019), doi:
10.1109/ICEEIE47180.2019.8981415.

7. Matei, A., and Iftene, A., "Smart Home Automation
through Voice Interaction," in Proceedings of RoCHI -
International Conference on Human-Computer
Interaction, pp.132-137, (2019), ISSN 2501-9422

8. Apple, "Siri - Apple,", (2020),
https://www.apple.com/siri/

9. Aron, J., "How innovative is Apple's new voice assistant,
Siri?", New Scientist - NEW SCI, vol. 212, pp 24-24,
(2011), 10.1016/S0262-4079(11)62647-X

10. Microsoft, "What is Cortana?", (2020),
https://support.microsoft.com/ro-ro/help/17214/cortana-
what-is

11. Godinez, J. E. and Jamil, H., "Meet Cyrus: The Query by
Voice Mobile Assistant for the Tutoring and Formative
Assessment of SQL Learners", SAC '19: Proceedings of
the 34th ACM/SIGAPP Symposium on Applied
Computing, pp. 2461-2468, (2019), ISBN: 978-1-4503-
5933-7, doi: 10.1145/3297280.3297523

12. Dickinson, J., "Amazon.com: Voice Coder: Alexa Skill",
(2020), https://www.amazon.com/Jimmy-Dickinson-
Voice-Coder/dp/B07HFWQPKN

13. Fireberger, A., "Amazon.com: Code: Alexa Skill",
(2020), https://www.amazon.com/aviram-fireberger-
Coder/dp/B07P81FZVL

14. Manish, A., "Amazon.com: C Programming Quiz: Alexa
Skill", (2020), https://www.amazon.com/Manish-A-C-
Programming-Quiz/dp/B07Z514B3F

15. Dephony, "Amazon.com :CS Guru: Alexa Skill", (2020),
https://www.amazon.com/DEPHONY-CS-
Guru/dp/B07VRF5BKR

16. Pribeanu, C., "Tendinte actuale în evaluarea interfetelor
om-calculator," Informatica Economica, vol. 2 nr. 4(8),
pp. 21-25, (1998), ISSN 1453-1305

Proceedings of RoCHI 2020

122

