
JIST: Java Interaction Separation Toolkit
Adrian-Radu Macocian

Technical University of Cluj-
Napoca

Cluj-Napoca, Romania

rmacocian@gmail.com

Dorian Gorgan
Technical University of Cluj-

Napoca
Cluj-Napoca, Romania

dorian.gorgan@cs.utcluj.ro

DOI: 10.37789/rochi.2020.1.1.11

ABSTRACT
A GUI toolkit is a library consisting of the elements needed
for developing interactive applications. In the 2000s, a lot of
effort was devoted to building platforms that enabled the
creation of rich internet applications. This let the field of
desktop applications underdeveloped. The Java Interaction
Separation Toolkit (JIST) was developed with the intention
of having a lightweight, cross-platform and support for a
declarative UI. By using the WORA aspect of Java most of
the desktop platforms are covered. It features XML support
for describing user interfaces in a more natural way than the
classic wall of text associated with the native code-behind
approach.

Author Keywords
Java; GUI sub-system; Graphical User Interface; Interactive
Applications; Markup Language; Functional and Interaction
Separation; GUI toolkit.

ACM Classification Keywords
H.5. Information interfaces and presentation (e.g., HCI)

INTRODUCTION
Graphical User Interfaces are the main reason why the
personal computer reached the mainstream success it has
now. In year 1960 the idea of a Graphic User Interface (GUI)
started to take shape, and it changed a few times until it
reached its peak together with the historical launch of the
Window 95 in 1995 [2]. Most current GUI toolkits were
created in the late 90s, early 00s. They may be well
maintained, but the foundations of the toolkits were created
in a time when the environment for graphical interfaces was
completely different, and that takes its toll. Computation
power is abundant and it’s becoming easier to provide the
functional requirements of an application. In these
circumstances, the choice of software is made based on user
friendliness and fluidity of the interface design.
Developing user interfaces is mostly done using a GUI
toolkit or framework. Those toolkits handle all the hardware
inputs and outputs, define the interaction techniques and

provide the developer with the tools for giving input choices
to the user, and for handling that input from the user.
This paper will describe the Java Interaction Separation
Toolkit (JIST). It is a GUI toolkit developed completely in
Java with no external dependencies, that focuses on
separating the functional and the interactive components of
interactive applications using a markup language. By
avoiding any external dependencies, it is ensured that the
toolkit may be used on any system that supports the Java
Virtual Machine (JVM).

MOTIVATION
It is possible to create a complex user interface using the
existing solutions, but it is unnecessary difficult. The current
solutions (especially in Java) require nesting of elements
using layout managers to ensure that the software will look
the same independently of the platform on which it runs. This
causes walls of text and makes it so that the code is
impossible to be read.
Markup languages can be used to provide layouts to elements
in a more natural way and makes visualizing those layouts
easier. Windows WPF takes full advantage of this aspect
with the XAML description of interfaces [8][9].
There was an attempt of having markup language support in
Java with the JavaFX and the FXML (an XML-based
language used for describing user interfaces), but JavaFX’s
future is an uncertainty at this point [7]. Even without the
uncertainty surrounding JavaFX’s future, using FXML is
difficult and seems like an additional feature instead of a core
functionality of the system.
The purpose of JIST is to create a platform for describing
user interfaces which can separate the aspect from the
behavior of the application. This decoupling can enable
teams to work concurrently and makes the software easier to
understand and maintain. The problem of having software
look the same, independently of the platform can be solved
by providing context-relative sizes and locations. By
specifying everything relative to another element, the
developer should always understand how the application
should look. This way it is possible to achieve similar
displays independent of the system which runs them, without
the need of using multiple nested layout managers.

Proceedings of RoCHI 2020

65

The combination of providing a separation between the
functional and the interactive component, providing
contextual sizes and location to elements, and the ease of
developing layouts in xml is the reason why JIST brings a
new approach to the field of GUI toolkits.

OBJECTIVES
The main objective of this paper is having a cross-platform
solution for developing Graphical User Interfaces which
supports a markup language for the description of the layouts
of applications.

Cross-Platform
The platform most often represents the operating system
which the application runs on. Covering more than 97% of
the market share of desktop OS is done by making sure that
the system can be ran in Windows, OS X and Linux [4].
Since all the aforementioned operating systems are able to
run a Java Virtual Machine (JVM), developing JIST in pure
java should be able to cover the cross-platform objective.
Figure 1 presents the desktop operating system market share
as measured by [4].

Figure 1. Desktop Operating Systems Market Share [4]

Contextual Size and Location
Using absolute sizes and locations is, rightly so, frowned
upon when developing user interfaces. That is because it is
impossible to know on what screen the software will be run
on, so therefore we can’t predict how the software will look
like. Current Java native solutions have solved this issue with
the use of layout managers. The problem for a complex user
application, there will need to be a lot of nested layout
managers, which makes it hard to keep track of everything.
The solution used in JIST is one that is already present in the
field of web applications, more specifically in HTML. That
is, using locations and sizes relative to the element on which
the component is displayed. This way, the size of the screen
should not influence the overall look of the user interfaces.

Markup Language Support
The separation between the functional and the interactive
components of an interactive application could be achieved,
in the way JavaFX [3] and WPF [1] also achieved this, by
allowing the interface to be described in a markup language.
Most GUI toolkits store the elements into a tree-like
structure, which is conceptualized more easily in a markup
language format.
The support for a markup language was considered from the
very beginning of JIST, which ensures that all the
components are designed with the goal of supporting markup
language in mind. It is important that the markup language
feels as a part of the framework, not some feature that may
or may not be complete.
The support for the markup language also helps with the
problem of having multiple nested layouts. This is due to the
nature of markup languages, which allows the visualization
tree-like structures in a natural way, as opposed to normal
programming languages where it is almost impossible to
visualize multiple levels of nested layouts.

ANALISYS
In this section the theoretical foundation on which the project
was created will be provided. Here the paper will go a little
more in depth into interactive applications, since it is
important to know how a tool needs to be used, before
designing the tool.

Interaction Applications
An interactive application is composed of two big, and
ideally separate, components. The Functional Component,
where all the abstract operations on objects are happening
and the Interactive Component where the interaction
techniques are described together with the interface of
objects and operations on those interfaces. The user can only
see and act upon the interactive component. The interactive
component takes all the input from the user and first validates
it, and then processes and transforms it into an application
operation that is passed to the functional component.
Interaction techniques are the way in which the user, with the
help of the hardware resources and given software
components, may provide information to the computer. The
results of the interaction are usually visible on screen.

Figure 2. Structure of an Interactive Application [5]

Proceedings of RoCHI 2020

66

Interaction Techniques
An interaction technique may be informally described as an
element which can be graphically represented on screen.
Formally, an interaction technique is a way in which the user,
with the help of the hardware resources and software
components, may provide information to the computer. The
interaction technique usually is composed of an input device
and an interaction element.

Model of an Interaction Technique
An interaction technique is the way in which a user may
communicate with an application with the purpose of
achieving a simple action. It may be a simpler way of
visualizing the actual communication. Most interaction
techniques can be described in the format of an interaction
cycle.
The interaction cycle is composed of a prompter, symbol,
echo and value. This interaction cycle helps with the better
visualization of how a user communicates with the software.
An Interaction technique begins with the prompter stage of
the cycle, when something is selected or focalized, and the
system lets the user know that some form of input is
accepted. In the symbol stage, the user will provide some
input which will be validated. The echo is the system’s way
to show some feedback to the user to confirm that the input
was received and, finally, in the value stage, the value will
be modified to what the application accepts (i.e.
normalization).
In most techniques, the user has multiple possible available
valid actions (such as clicking, dragging, moving the mouse).
An interaction technique can be a metaphor or a symbolical
representation of a real operation, which should help us
visualize the operations. The metaphor has a visual
presentation (some shape or drawing on the screen), a
scenario (a way in the user may interact with it), a sequence
of user actions (a set of permitted actions) and an interaction
device (usually an input device: mouse, keyboard, etc.).

Event Based Control
Most interactive applications are event driven. This means
that during most of its lifecycle, the application is waiting for
some user events to happen, to which it will respond based
on some predefined procedures. The response time to those
events must be as low as possible for a satisfying experience
for the user.
Figure 3 shows the flow of an event-based control.

Figure 3. The structure of event-based control [6]

In the event-based control of the application, the user first
performs an action which an interaction technique will

capture. That action is then transformed into an event that is
passed to an event queue. The event queue works as a FIFO
1 list. The queue passes the events, in order, to a message
processing loop. The loop decides on which procedure the
call for each message. A procedure is a set of actions that are
designed to resolve the interaction with the user.

Conceptual Architecture
We will start discussing the conceptual architecture with the
most basic objective: Displaying objects on the screen. In
order to display something on the screen we need to use OS
system calls for creating a new window and then for drawing
on that window. A specialized library for hardware
interaction will be used. This will also solve the problem of
receiving and interpreting user input.
Creating the aspect of the application can be represented as
a tree of graphical elements, where the leaves are in the front
of the screen and the root in the back of the screen. In order
to create such a tree, a common class is needed, which will
act as the nodes in the tree. This class should also implement
all the methods needed by most of the visual components
(such as painting, checking for collision, setting the location
and size, etc.). This tree of elements should be passed to the
window and then the window will display them on the
screen.
It was noted that supporting a markup language for the
layouts is a big objective. The markup language should be
interpreted at run-time and then a visual tree should be
generated following a description in markup language. The
choice to use the standard XML notation for the layouts was
done due to its flexibility and structure [5].
Besides the visual elements, for modularity, there should be
an extra element that deals with the decorations (such as
borders and effects). Having them described separately from
the main class will give more flexibility in designing
applications and for future changes.
With all those choices in mind, the next step is to present a
conceptual architecture for the system (Figure 4). Two
libraries have been added which are present in the native
JDK so that any system that is compatible with Java will be
compatible with this system. Those two libraries are: Swing
for interacting with the hardware, and XML DOM which is
used by the parser.

Figure 4. The conceptual architecture of JIST

Proceedings of RoCHI 2020

67

RELATED WORK
With user interfaces being as big as they currently are,
naturally there exist a lot of current frameworks for
developing GUIs. It is not practical to try to compare this
solution to all of the other available solutions, as they are so
numerous. There also isn’t a universal best toolkit in this
field, and everyone has their own preferences. The following
paragraphs will describe two of the most widely used
frameworks in Swing and WPF. JavaFX will also be
presented as at one point it was supposed to be the successor
of Swing.

Swing
Swing was designed with a modified model-view-controller
design pattern. It uses the UI component as both the view and
the controller. It was developed entirely in JAVA for cross-
platform support and easier maintenance. It supports
multiple look-and-feels so that it feels native in the platform
it runs in. But the look-and-feel of the application may also
be changed at runtime.
Swing was developed as an upgrade to the existent AWT
API, so it has full compatibility with AWT components. It
handles look-and-feel characteristics in a UIManager class,
which communicates with each component’s UI object to
control the display.

JavaFX
It was initially released in 2008 as the successor to Swing,
which was supposed to create both web and desktop
applications with ease. Since then the web application
support has been deprecated and JavaFX started focusing
solely on desktop applications. It features its own markup
language, the FXML, for declarative description of
interfaces. The structure is separated into stages and scenes.
Each stage is a window, but it may support multiple scenes,
although only one scene is active at a time. All the elements
in a scene create a scene graph. The user interface is not
native, but it supports Cascading Style Sheets (CSS) for
personal touches to applications.

Windows Presentation Foundation (WPF)
WPF: Windows Presentation Foundation is the graphical
sub-system developed by .Net Foundation under Microsoft.
It was released in open source in December 2018 together
with WinForm and WinUI and is the go-to system for
developing Graphical User Interfaces using the .Net
framework.
All display in WPF is done through DirectX so it relies on
Windows for it to function. This also means that it is
significantly more efficient in hardware and software
rendering. It is usually the go-to platform for developing
desktop applications that are only supposed to work on
Windows.
WPF values properties a lot higher than events. The goal is
for the system to have multiple properties that control the
flow of the application. Changes are signaled through

notifications. Dependencies are handled automatically, and
any property change triggers a dependency revalidation. Any
object can provide other objects definitions of its properties.

IMPLEMENTATION
Here the design choices and how most of the framework was
implemented will be laid out.

Storing Elements in Memory
The Window class has an instance of a Java Swing JFrame
which deals with drawing the final virtual image on the
screen. The reason for using Swing is that this ensures the
platform has as few dependencies as possible, and the Swing
library is included in the native JDK. Besides this, Swing
handles all the system calls for hardware interrupts. The
window class acts as an interface between this solution and
the Swing library.
The Visual class is the backbone of the entire structure.
Through this class all the information that should not be
accessible to the user is shared, such as the virtual images of
the components and handling of user events. With the help
of this class, the system may create a visual tree which will
later be used for passing graphics information (figure 5).
Each node in the tree (which is visible on screen) has a virtual
image assigned.

Figure 5. Conceptualization of the visual tree

Any parent node has access to all its children nodes through
the findByName method. The parent node decides when and
how to place the children nodes in its visual image. A node
that sustained a change which requires a repaint needs to
signal all the way up the tree that the repaint is necessary.
The request is propagated up the tree and only the direct

Proceedings of RoCHI 2020

68

ancestors of that node will need to be repainted while the
other nodes remain valid.
The only way for children to pass information to a parent is
through notifications, which the parent decides if and how to
handle.

Event Handling
The importance of user events for any graphical user
interface cannot be overstated, so triggering them
appropriately is a must. There are some rules which describe
how events are passed to the components on the screen:

• Only one element on the screen can have the focus
• The mouse is considered on top of an element if

the collision method (isInside) for the mouse
coordinates returns true

• Mouse events are triggered only on the front-most
component (which returned true for isInside)

The framework currently supports three kinds of events:
mouse events, keyboard events and mouse wheel events.
The window gets the hardware information from Swing and
then passes that information down the visual tree until the
right component is reached. The keyboard, mouse pressed,
and mouse wheel events are passed directly to the focused
element, which is stored as a singleton in the window.

Drawing on the Screen
Each visual component is assigned a virtual image the
moment when it is added to a window (so it is displayable).
The window class extends the visual class, so it also has a
virtual image, which is passed to the JFrame the moment a
frame needs to be drawn. This ensures that all the frames
drawn on screen are complete images using double
buffering.
Every node first applies its own graphic logic on the virtual
image and afterwards paints the child nodes’ virtual images
on top of its own image. This way, if any node in the visual
tree needs to be updated, it will only affect the direct ancestor
nodes. Any other node can keep painting the same virtual
image with no repainting needed.
The moment a new window is created, a Painting Thread
will also be created. The window also stores the information
on the number of frames to be displayed per second. The
painting thread makes sure that frames are displayed at the
correct rate, and that each image is the most up to date image
the system has.
The painting algorithm is composed of two methods:
revalidate and repaint. The thread calls the repaint method
for every frame. The method first runs all the animations, and
then the method checks if any component needs revalidation,
if this is not the case, then the virtual image of the Window
is still up to date and can be displayed on the screen as is. If
a component was changed and the image needs to be
updated, then the revalidation method is called. In
revalidation, any outdated nodes in the visual tree will clear

their virtual images, and then proceed to repaint them to be
up to date.
Since when a node requests an update, all the ancestors of
that given node need to be updated also, all the updates
requests will propagate all the way up to the window. This
way, if the window doesn’t require any updates, neither does
any other node in the visual tree, and the check can be done
in O(1).

Window

Figure 6. The structure of the window

Any GUI application using JIST requires a Window to
function. All the visual elements must be placed inside a
visual tree which has a window as the root. This ensures both
that the element is displayed on screen, and that the user can
interact with that element using the mouse or the keyboard.
The window is first created with a generic title bar. The title
bar may be removed or replaced at any time. Any new title
bar must extend the title bar class. The active title bar is also
an instance of Visual so some attributes such as the colors
may be changed as necessary without the need to change the
entire title bar.
The window is composed of a Main Panel which stores a
Content Panel and a Title Bar (Figure 6). Any component
added with the add Visual method to the window, is
automatically added to the Content Panel.

Animations
Animations are a way of displaying multiple images in a very
short period which gives us the feeling of movement. Small
animations can give an, otherwise bland, application a
livelier feel.
Since the animations need to change with each frame,
triggering the animations is done in the repaint method,
triggered by the Painting Thread. This ensures that before
each virtual image is validated, each existing animation is
executed with one step.
To make sure that developers can implement their
animations with as little hustle as possible, an Animation

Proceedings of RoCHI 2020

69

Interface is created, which specifies the number of frames per
second and a step method, which returns false while the
animation is running and true when the animation is done.
This is done so that the painting thread can remove finished
animations from the window’s list of animations.
Animations can be added on any node in the visual tree, and
they will be recursively passed all the way up to the window,
which stores a list of all the running animations from the
components displayed in it.
There are currently 3 types of animations that are used by
existing components: color, location and size animations.

XML Parser
Using the XML as the declarative markup language, makes
it possible for the system to avoid any external dependencies
and to keep the system lightweight.
The parser uses reflection to search for all the classes in the
current project or .jar executable, and then matches the tags
in xml to classes. This makes it possible to just create a new
class which will be usable in xml description right away. The
only condition for a class to be declarable in xml is that the
class must extend, directly or indirectly, the visual class.
The only knowledge that the parser requires is a string to the
xml file that is going to be parsed.
The root element from the XML (which usually is the
Window) is first instantiated and has its attributes set, the
same goes for all the child nodes until the file is covered.
After all the instances are created and have had their
attributes set, the parser starts returning bottom-up adding all
the nodes to their parent nodes.

Hardware Acceleration
Although it was not an initial requirement, it was important
to give to the developers the option of enabling hardware
acceleration for the drawing. The first step in enabling
hardware acceleration in Java is to set the flags in the JVM.
The flags must be set before any graphical processing is
done, so it is important that hardware acceleration is enabled
first in the project if needed. The second step is setting a flag
in the visual class which will cause all the virtual images
created to be changed from bufferedImage to volatileImage
to ensure that the entire advantage of the hardware
acceleration is used.

Contextual Size and Location
The location of an element is given by a locationPlacer,
which receives the size of the element and of its parent
element, and then it decides on where the element should be
placed. The placers are created through a factory pattern so
that developers can create their own placing logic. As of right
now, there are 10 available placers: top-right, top-center, top-
left, middle-right, middle-center, middle-left, bottom-right,
bottom-center, bottom-left and a general placer. The first 9
placers do exactly what their name suggest.

The general placer has two parameters, a relative position
and an absolute position. The relative position is given in the
form of two float numbers between 0 and 1 and describes the
position inside the parent element. If the relative position is
missing, then the placer will use the absolute position for the
location of the element.
The size of elements is decided similarly to how the general
placer chooses the location of elements.

EXPERIMENTAL EVALUATION
There were three types of testing done for JIST. Performance
testing, scalability testing and integration testing.
Afterwards, an evaluation for the usability of the system is
provided.

Performance Testing
The performance of the system is decided by the rate in
which frames may be repainted, while increasing the depth
of the visual tree. The test consists in creating a new window
of size 1024 x 576 and adding a panel of the same size. Then
before every repaint, ask for the panel to be revalidated and
save the number of frames displayed on the screen in one
second. To avoid erroneous data, the test was repeated 60
times. After that, a new panel of the same size was added as
a child to the last panel, thus deepening the visual tree. Now
the new panel was asked for revalidation, which would cause
both the panels and the window to be revalidated. The same
pattern was repeated until a depth of 30 elements in the visual
tree was reached.
The entire test was done two times, the first time the system
had no hardware acceleration, and the second time hardware
acceleration was activated.
The test checks the performance in the case of constant
revalidations which is usually seen in games. Static
applications don’t usually need to revalidate the image
before each frame, but even in these circumstances, without
the use of hardware acceleration JIST can display over 30
FPS up to a depth of 7 nested elements (Figure 7).

Figure 7. The FPS graph without hardware acceleration

0

10

20

30

40

50

0 10 20 30 40

Fr
am

es
 P

er
 S

ec
on

d

Visual Tree Depth

Proceedings of RoCHI 2020

70

Figure 8. The FPS graph with hardware acceleration

When using hardware acceleration JIST could display 60
FPS, which was the capped value, up until the depth of 17.
Even on the depth of 30 the system could display at a rate of
40 FPS.

Scalability Testing
The scalability of JIST may be tested, by checking the
number of components that can be added on a visual tree.
Again, two cases were considered. The first case was adding
elements with a size of 0x0. The test was stopped after
10,000 elements were added, because the system showed no
signs of slowing down or troubles.
The second test was done by adding elements of the same
size as the window (1024 x 576). This time the creation of
elements took a longer time and it seemed as the system
would crash. The problem is that each component is given a
virtual image of its own size, and the system runs the risk of
running out of memory. But in our test case the JVM would
always be able to allocate more memory before the system
would run out of memory. The test was stopped at 3500
elements, but after 1000 element the creation of new
elements started to take considerably longer.
It is worth noting that the elements were all added at the same
depth inside the visual tree, to avoid any recursive calls and
stack overflow errors. It is very hard to imagine a real case
scenario where a user might need more than 3500 elements
the size of the screen. The test does show that it takes
considerably more time to create new elements the larger
they are, and this causes rises in the response time and falls
in performance while the system handles the creation of the
element. The response time and performance quickly
readjust once the elements are created.

Integration
For integration testing, multiple applications were
developed. All through the development of JIST new
applications were developed with the purpose of seeing how
the system handles real scenarios.

Figure 9. Breakout replica

Figure 10. A mock application

Figure 11. A Chess game

All the above figures (figures 9, 10 and 11) are applications
developed completely in JIST. The layouts were written
completely in xml.

Usability
It is hard to rate the usability of such a project objectively,
since the toolkit choice of each developer is very much
subjective.
The usability is described in [6] as: “the extent to which a
system, product or service can be used by specified users to
achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”. The usability is
highly related to the target audience of the system. The target

0
10
20
30
40
50
60
70

0 10 20 30 40

Fr
am

es
 P

er
 S

ec
on

d

Visual Tree Depth

Proceedings of RoCHI 2020

71

audience is the software developers that want to create
desktop graphical user interfaces in Java.
Several efforts were made to make the toolkit as friendly as
possible to new developers and to keep it extendable so that
everyone may implement their own vision. A few examples
of those efforts are making sure that any class is usable in
xml description, making sure that every functionality can be
extended upon and providing a set of interaction techniques
or widgets that are required in almost any interface. The set
of available components is still expanding, but currently
consists of:

• Buttons and toggle button
• Text boxes and input text boxes
• Panels, scrollable panels and grid panels
• Check boxes and radio buttons
• Dropdown menus
• Sliders
• Images

Another part of usability was giving the developers the
possibility to reference images by just specifying the name.
The developer can just add an image in .png format to the
class-path and reference it through just the name.

CONCLUSIONS
In conclusion, it is entirely possible to develop both static
applications and games using JIST. The final library is
lightweight and with a set of icons bundled into it, the size
does not exceed 200 KB.
What separates JIST from other available solutions is that: it
was developed with the intention of describing layouts in a
markup language, it is lightweight, and it is easy and straight-

forward to use without compromising in the performance,
customizability or response time departments.

REFERENCES
1. Anderson, C. “Essential Windows Presentation

Foundation (WPF)”, Addison-Wesley Professional,
2009

2. Barnes, S. B. “User friendly: A short history of the
graphical user interface”, Sacred Heart University
Review: Vol 16, Issue 1, Article 4, 2010

3. Clark, J., Connors, J., Bruno, E. “JavaFX: Developing
Rich Internet Applications”, Addison-Wesley
Professional, 2009

4. Desktop Operating System Market Share Worldwide,
https://gs.statcounter.com/os-market-
share/desktop/worldwide/#monthly-201906-202006,
visited: 20-jun-2020

5. Harold, E. R. “Processing XML with JavaTM: A Guide
to SAX, DOM, JDOM, JAXP, and TrAX “, Addison-
Wesley Professional, 2002

6. IOS, “Ergonomics of human-system interaction — part
11: Usability: Definitions and concepts”, 2018

7. Oracle, “Java Client Roadmap Update”, 2018,
https://www.oracle.com/technetwork/java/javase/javacli
entroadmapupdate2018mar-4414431.pdf, visited: 17-
nov-2019

8. Subhashini, C., Premalatha, S., “XAML - a user
interface markup language”, i-manager’s Journal on
Software Engineering, 4(1), pp. 1-3, 2009

9. Macvittie L. A., “XAML in a Nutshell: A desktop Quick
Reference (In a Nutshell O’Reilly))”, O’Reilly Media
Inc, USA, 2006

Proceedings of RoCHI 2020

72

