
The Lib2Life Platform – Processing, Indexing and
Semantic Search for Old Romanian Documents

Irina Mitocaru, Gabriel Guțu-Robu, Melania Nițu, Mihai Dascălu, Ștefan Trăușan-Matu
University Politehnica of Bucharest

Splaiul Independentei 313, 060042, Bucharest, Romania
{irina.mitocaru, suzana_melania.nitu}@stud.acs.pub.ro
{gabriel.gutu, mihai.dascalu, stefan.trausan}@upb.ro

Silvia Tomescu
Carol I Central University Library Bucharest
Boteanu 1, 010027, Bucharest, Romania

silvia.tomescu@bcub.ro

Gabriela Florescu
National Institute for Research and Development

in Informatics ICI Bucharest
Maresal Averescu 8-10, 011455, Bucharest,

Romania

gabriela.florescu@ici.ro

DOI: 10.37789/rochi.2020.1.1.�

ABSTRACT
Preserving the cultural heritage of a nation throughout
generations is essential in a continuously developing society.
This paper introduces the Lib2Life platform powered by
advanced Natural Language Processing techniques, focusing
on the processing, indexing and semantic search of old
documents from the Central University Libraries in
Romania. Our platform enables the upload and text pre-
processing of scanned documents by librarians, who can
afterwards manually correct the extracted content and
corresponding metadata. In addition, Lib2Life ensures the
exploration of the collection of books using a semantic
search engine to retrieve documents fitted to the users’
interests. The platform was evaluated using an usability
questionnaire which pinpointed out that Lib2Life is a modern
and user-friendly smart search engine for old documents
written in the Romanian language. Improvements in terms of
server response time and functionality were suggested. The
platform proved to be intuitive and easy to use, having the
potential to become an analytical system incorporating a rich
and diverse collection of books.
Author Keywords
Library software; automated text extraction; Natural
Language Processing.
ACM Classification Keywords
H.3.7: Information Systems: Information Storage and
Retrieval: Digital Libraries.
H.5.1: Information Systems: Information Interfaces and
Presentation: Multimedia Information Systems
General Terms
Text analysis; Software usability.

INTRODUCTION
The evolution of technology nowadays allows people to use
electronic devices to access digitalized documents.
Digitalization becomes mandatory due to the increased
ubiquity of electronic devices, and their ease of use
compared to traditional reading, as well as document
research methods.
The Central University Libraries from Romania are
dispersed throughout the country and host large numbers of
old documents that are no longer copyrighted. These
documents include books, manuscripts, or newspapers, and
they serve to better understand life during those times in
terms of politics, science, or education. Digital documents
safeguard the initial manuscripts from being naturally
deteriorated and provide an unlimited lifespan within a
virtual environment. Moreover, access to the original
documents can be limited to preserve degradation through
manual handling. In contrast, digital documents can be stored
in a convenient format that does not take too much storage
space, such as the PDF. PDF documents have a structured
format and contain also metadata, which is used either to
properly display the document to the user (such as font types,
font colors, or the physical coordinates of the words), or to
store other annotations. Digitalization also eliminates
distance and time limitations by allowing concurrent access
to documents for individuals, regardless of their physical
location or their time availability.
This paper describes the Lib2Life platform, which integrates
Natural Language Processing (NLP) techniques and allows
Romanian Central University libraries to store digitalized
documents and provide access to resources to the public. The
platform relies on a processing pipeline designed to properly
support the extraction of texts from scanned documents. The
paper continues with the description of related systems and

Proceedings of RoCHI 2020

11

text extraction applications. Then follows a presentation of
our platform, its evaluation, conclusions and future work.

STATE OF THE ART
A well-known web application used for accessing online
books is Google Books (http://books.google.com), which
includes a large collection of books retrieved from different
data sources. Google Books indexes data on their servers and
provides access to portions of texts from the books. Links to
buy or to allow further reading the entire document are
included. Google Books is equipped with a smart search
engine that uses NLP techniques to retrieve the most relevant
books and corresponding passages, given the user query.
Google also provides a facility named Talk to Books, which
compares the user query with every sentence in over 100,000
books to find responses that would most likely be related
with that text or that could be an answer to the user’s query.
The suitable documents are then retrieved and shown in bold
to the user, together with portions of text to provide a better
contextualization. This approach came from the idea of
mimicking a real conversation by using billions of lines of
dialogue to teach an AI how human conversations flow.
Their model can predict how likely a statement would follow
another as a response based on a collection of possible
responses [9; 14]. Similarly, the user can search for books in
the Lib2Life platform using a free input text field, which is
then semantically compared with portions of texts from the
indexed books. Moreover, the user has the ability to find
similar books using semantic similarity. The process is
detailed further on in the Method section.
At national level, existing solutions to access digitalized
documents from Central University Libraries (CULs) are
outdated and provide rather limited functionalities (e.g., no
search within the actual documents). For example, the Carol
I Central University Library relies on Vubis [1] to save
various metadata and Restitutio (http://restitutio.bcub.ro/),
which is based on DSpace [15]. CUL Cluj has created their
online catalog (http://aleph.bcucluj.ro:8991) designed to
help people find the physical location of a book easier when
that desired book is available in the library. Users have to
provide search metadata, such as the book’s identifier, the
name of the author, the book’s title, the publishing house, or
the publishing year. Multiple databases are available, like
book catalogues or bibliographies. Results can be further
restricted by using specific filters, such as the language, time
constraints (specific publication period), or the book’s
publication domain. BCU Cluj also has a digital library
(http://dspace.bcucluj.ro) based on DSpace that provides
online access to books contained in the physical library. The
platform is accessible through a user-friendly and more
intuitive interface than the interface provided by the Vubis
catalog system. Each book can be read online using a PDF
reader incorporated in the browser, or it can be downloaded
on user’s computer. The intuitiveness behind the
incorporated filters and the multitude of options also served
as an inspiration for developing the Lib2life platform, which

incorporates a similar approach of filtering criteria for the
semantic search engine.
Recommender systems are frequently applied in domains
like online shopping and entertainment to predict user
preferences. However, the same approach can be used to
recommend books by relying on user profiles [13]. Their
proposed recommended system takes into account multiple
aspects for matching a book with a user. The first aspect
consists of matching other users’ interests, while the second
refers to considering the temporal dimension. Specifically,
the temporal dimension relies on the fact that user’s
preferences change over time.
The previously presented systems helped us into shaping the
Lib2Life platform based on the requirements of librarians.
Lib2Life provides three major functionalities. First, the
system’s focus is to centralize documents from multiple
sources, more specifically from Romanian Central
University Libraries, offering a single point of access for
their entire data. Second, Lib2Life incorporates a multitude
of NLP approaches, like a semantic search engine. Third, the
platform also relies on an ontology for properly categorizing
documents.

METHOD
Corpora
The Central University Libraries in Romania built up a
collection of about 2,000 scanned documents written in
Romanian. This dataset consists mostly of books dated in the
19th or 20th century scanned using high resolution scanners.
However, part of the collection was not in a proper format
for applying Optical Character Recognition (OCR) due to
human errors or scanner issues. In addition, the OCR process
encountered problems due to the limited resolution of the
documents in some cases, or their degraded physical format.
The OCR process relies on the Tesseract API [16] applied on
scanned documents before uploading them to the Lib2Life
platform. The API was adapted to allow a good precision in
detecting characters and to compress the file into a rather
small size PDF document in the end. This requirement also
resulted after an iterative process of understanding
limitations and improving the general workflow. Large
documents (i.e., tens of megabytes) were time consuming
when uploaded to the Lib2Life platform, when processing
them, and also when accessing them via the integrated PDF
viewer in the web browser. Currently, the size of an OCR-
ized document is about 10-15 MB.
The target of Lib2Life is to share the cultural heritage of
millions of processed historical pages existent in CULs.
Nevertheless, the Carol I Central University currently hosts
about 2.4 millions of volumes (http://www.bcub.ro/colectii).
However, part of the collection contains documents with
publishing rights which cannot be used in our platform.

Proceedings of RoCHI 2020

12

Architecture
The Lib2Life platform contains a web portal that allows
librarians and users to interact with the system. The
architecture of the platform is presented in Figure 1. The
backend of the system integrates several digital services, for
example: 1) document categorization; 2) semantic search;
3) semantic recommendations of similar documents.
Assigning a category to the document is performed after
uploading it and setting its corresponding metadata. The
service is based on the Lib2Life ontology [7], which
incorporates several domains and the relations established
between them. The second service includes the facility to
search the indexed documents using filtering criteria or
keywords. Semantic algorithms are used to find documents
matching the user’s keywords. The third service consists of
semantic recommendations – similar documents with the
accessed one are provided. Both document search and
semantic recommendations rely on Elasticsearch
indexing [6]. Elasticsearch (https://www.elastic.co) is a non-
relational database that stores and indexes the documents’
metadata and their content using the JSON format.
Elasticsearch provides fast and easy to use queries, filters,
and aggregations mechanisms, which were incorporated in
the search functionalities provided by the Lib2Life platform.

Figure 1. Lib2Life platform architecture.

Tools and models from the ReaderBench framework
(http://readerbench.com) [8] are used to provide the previous
services. The document pre-processing pipeline refers to the
extraction of metadata from the OCR-ized document. The
NLP pre-processing pipeline consists of several steps, such
as tokenization, part of speech tagging, and lemmatization.
The considered unsupervised semantic models include
Latent Semantic Analysis [4], Latent Dirichlet Allocation
[2], and word2vec [11]. These models are trained on
language-specific corpora of documents.

The last layer from the Lib2Life architecture considers data
modeling, namely: OCR-ized PDF documents, personal
users’ data used to interact with the Lib2Life web portal, as
well as information related to documents indexed in
Elasticsearch.
Document Pre-Processing Workflow
Prior to indexing documents in Elasticsearch, text
preprocessing steps are applied. The input data consists of
old scanned books on which Optical Character
Recognition (OCR) is applied. The OCR process brought
challenges in order to allow proper extraction of texts. These
included different font types and sizes identified in the same
section or line of text, different styles for headers and footers
in the same document, disruption of paragraphs, improper
page breaks, loss of content structure, or misinterpretation of
certain characters and hyphenated words. Currently existing
systems are not designed to work with OCR-ized PDFs [12],
raising challenges while trying to properly restructure the
recognized text. The identified issues imposed the necessity
of a workflow that can identify and correlate section titles
with their content, recognize paragraphs boundaries, merge
hyphenated words and accurately identify and extract images
or tables. The Lib2Life document processing workflow (see
Figure 2) is designed to index documents into Elasticsearch
and facilitate the search for relevant resources based on
keywords.

Figure 2. Lib2Life document processing workflow.

Documents are parsed line by line, identifying relevant
sections and metadata within the document such as section
titles, section headings, paragraphs, images, tables, and the
table of contents. Paragraph boundaries are reconstructed,
and hyphenated words are merged. The document title, the
author, and the publishing year are extracted from the first
page (if they are available) and are passed to the processing
phase. The librarian has the facility to manually introduce a
document’s metadata when uploading the file – see Figure 3.
After the initial upload, three steps are performed:
1) detection and extraction of the table of contents and
corresponding text; 2) information extraction using NLP
techniques and heuristics; and 3) manual text editing.

Proceedings of RoCHI 2020

13

Figure 3. Document uploading and corresponding metadata.

Table of Contents Extraction

Two approaches were considered for extracting the Table of
Contents (TOC): 1) correlating section titles with their
content; 2) finding the predominant font type. The TOC
extraction is performed by identifying the first page of the
TOC within the first or last pages of a document. Specific
words from the Romanian dictionary, such as „cuprins”,
„tabela”, or „tabla de materii”, are looked for. The OCR-ized
text may contain errors like white spaces or symbols or may
be split on several lines, which imposed additional
validations using regular expressions. Mapping the section
title with its corresponding page number was done in
accordance with lines ending with digits. Additionally,
empirical values were set for the number of lines ending with
digits (more than 3), the max number of pages for TOC (10
pages). TOC entries are then parsed using regular
expressions to extract the section title and the associated
page range. Figure 4 shows an extracted TOC.
For documents that lack the presence of TOC, the second
approach is used in order to identify sections and paragraphs
based on the most common font available in the document.

Figure 4. Table of Contents Extraction

Font name, font size, and text positions are stored in a list
that is later on used to identify the type of the text (section
title or body content), by comparing each line of text with the
predominant font existing within the page. The two models
were combined into a robust text extraction algorithm [12],
that can easily adapt to most of the PDF document formats.
The extracted text is then displayed in a rich text editor,
enabling librarians to improve the extracted content by
manually modifying the text.
Extracting and Reconstructing Paragraphs

At least one of the following conditions must be satisfied to
detect a paragraph: 1) the previous line marks an ending
sentence and the current line begins with an uppercase
character; 2) the current line starts with a hyphen, depicting
a conversation. A comparison of the original text versus the
extracted text is shown in Figure 5.

(a)

(b)

Figure 5. Part of the a) original text contained within the
document versus b) text extracted by the algorithm.

Proceedings of RoCHI 2020

14

Image Extraction

The image extraction task is based on two approaches:
1) parsing image identifiers, and 2) searching for unusual
shapes within a page and identifying the number of contained
colors. For example, if a page contains only text in the middle
top area and in the middle bottom of a specific area, with an
irregularly shaped rectangle designed on white, gray, and
black colors, then most probably the rectangle is an image,
even if no identifier is found. Image and text extraction tasks
were joined into one document iteration to reduce the time
complexity; thus, image extraction is automatically applied.
When parsing the text, three heuristics were applied. First, if
a designated word for figure descriptions (e.g., “Figura” or
“Fig.” in Romanian) is encountered, the location of the figure
is saved. Second, we conducted an experiment on the number
of characters existing in a page, which revealed the images
were found on pages with less than 200 characters. Thus, the
second heuristic compares the similarity of pixels and is
applied on pages with no characters: if the pixels on the page
are identical, the page is considered to be blank and it is thus
skipped. Third, one of the following conditions must be
satisfied to mark an entire page as an image: 1) the number
of characters is zero and the pixels are different; 2) the
character count is less than 200 and the text contains the
figure identifier caption. The extracted images are converted
to the base 64 format and the text caption is inserted into an
HTML tag at the end of each section or at the end of the book,
depending on the identified document structure.
Extraction of Tables

The table extraction task raised several challenges due to
improper state of the OCR-ized PDF documents. An analysis
performed on the collection of documents showed that most
tables contained un-aligned lines, missing data, or an
irregular structure. Some documents contained hand-written
tables, on which the existing APIs are not able to accurately
detect table boundaries, or the content itself. The current
table extraction algorithm is Nurminen Detection Algorithm
from Tabula API (https://github.com/tabulapdf), which
showed an average accuracy of 40%. If a TOC is detected,
table extraction is applied on each page, storing the
coordinates of all tables and mapping the table with the
corresponding section. If no TOC found, the details of the
detected tables are stored, mapped with page numbers, and
appended at the end of the section or of the book, depending
on the identified document structure.
In addition, text cleaning steps are applied after extracting
text from the document. These steps include removal of
empty lines, removal of leading trailing spaces and other
delimiter characters, concatenation of hyphenated words,
appending white spaces for lines ending without whitespace,
skipping pages with less than 400 characters (or 60 words, as
in (Foundant, n.d.). Figure 6 shows an example of a page
skipped because it contained too few characters.

Figure 6. Page skipped because it contains too few characters.

Manual Content Editing

The refined text is sent to the user interface in an editable
rich text area using TinyMCE (https://www.tiny.cloud),
which enables the user to modify the extracted text before
saving the file in Elasticsearch– see Figure 7. The processed
text is then converted to JSON and sent to Elasticsearch for
indexing. The indexed documents are used in advanced
features, such as the keywords-based and semantic search.

Figure 7. Editing the automatically extracted text.

After performing all the document processing steps, the book
is saved and available to be accessed by users. Librarians can
later on continue with editing the contents of the book and its
metadata, while regular users can access its contents,
perform searches and access the original PDF document.
Semantic Search

The search facility incorporated in the Lib2Life web portal
relies on a semantic search algorithm. Due to the lack of
annotations, the algorithm currently uses a K-Nearest
Neighbors classifier with semantic distances based on word
embeddings from ReaderBench. The workflow for semantic
search is shown in Figure 8.

Proceedings of RoCHI 2020

15

Figure 8. Semantic search algorithm.

The service extracts keywords from the input query text
using the Keywords Extraction endpoint provided by the
ReaderBench framework. The output consists of lemmatized
content words, with their corresponding relevance score.
This set of words is used to find the top k-nearest documents
using the “More Like This” query incorporated in
Elasticsearch. The result of this query consists of a list of
paragraphs with at least one of the keywords. The similarity
between the paragraph and the query embeddings is
afterwards used to predict the top nearest documents. The
corresponding document for each paragraph is retrieved, and
a list with the most similar documents is returned (see Figure
9).

Figure 9. The semantic search functionality besides traditional
search mechanisms.

The Web Portal
The Lib2Life platform provides a web interface developed
for librarians and readers – see Figure 10. The User Interface
(UI) is created using the Angular framework, version 9
(https://angular.io). Specific functionalities were developed
for the two main roles: administrators (librarians) and
readers. Librarians are able to upload, modify, and delete
documents, while readers are only able to access the
documents’ content. Both librarians and readers can use the
keyword-based search with filtering criteria, as well as the
semantic similarity function to retrieve similar documents.
The web UI is connected to two application servers, one on
Java, and another using the Flask framework developed in
Python (https://github.com/pallets/flask). Both servers
interact with an Elasticsearch instance for storing and
retrieving indexed data. The ReaderBench API is used for
performing advanced NLP processing, both for semantic
search, and also for text extractions.

Figure 10. The Lib2Life dashboard.

The web portal incorporates an ontology viewer based on
Protégé [10] – WebVOWL (http://vowl.visualdataweb.org/
webvowl.html). The underlying ontology is used for text
categorization and for better contextualizing the covered
domains [7]. Figure 11 introduces the Lib2Life ontology
viewer depicting a knowledge domain, namely Linguistics
and Philology together with its corresponding subclasses.

RESULTS
A survey was conducted, and a questionnaire was distributed
to evaluate the initial version of our platform. Twenty-three
users aged between 20 and 50 years old, with a background
ranging from students to Ph.D., working in a wide range of
activity domains, were asked various questions about the
platform and their experience with it. Demographic data
showed that 54% of the respondents were aged 20-30, 21%

Proceedings of RoCHI 2020

16

were aged 30-40, while 20% were aged higher than 40 years
old. In terms of gender, 59% of users were women, while
41% were men. The education background included: high
school – 4%, bachelor – 17%, master’s degree – 54%, and
Ph.D. – 25%. The activity domain ranged from IT in general
– 34%, research in NLP – 29%, education – 29%, medicine
– 4%, and graphic design – 4%. The users had to answer 14
Likert scale (1 – strongly disagree; 5 – fully agree) questions,
which are presented in Table 1. Users found the web
application intuitive, easy to use, and with a pleasing design.
The questionnaire included four open-ended questions,
allowing users to write opinions in natural language about
what they liked or disliked, what features they missed, and
what improvements should be performed to the application.

Figure 11. The Lib2Life ontology viewer.

Based on the answers to the open-ended questions, we found
that the full document visualization page needs to be
modified, both in terms of performance and of functionality.
Users also requested having access to additional filtering
criteria for browsing the collection of books. In addition,
users encountered some errors and requested optimizations
in terms of response time. Moreover, the implementation of
a personalized bookshelf was also suggested.
A system limitation was met when text extraction algorithms
did not work properly for some of the scanned documents.
The solution relied on iteratively improving the OCR
process. However, issues caused by improper scanning could
not be always addressed.
In addition, the Lib2Life system did not differentiate
amongst document types. Using another iterative process,
the text extraction algorithm had to be constantly adapted
based on characteristics shown by each new analyzed
document. However, different categories or domains of
documents may exhibit category-specific characteristics.

Thus, we will consider improving the text extraction process
by taking into account the domain of the document.

CONCLUSIONS AND FUTURE WORK
The Lib2Life platform aims to empower virtual restoration
of historical documents owned by Central University
Libraries in Romania by providing access to the digitalized
documents in an online environment. Lib2Life currently
stores about 100 documents provided by partner libraries
which were manually corrected and used for testing.

Table 1. Feedback Questions.

Question M (SD)

1 The Lib2Life application is intuitive. 4.57 (0.51)

2 The Lib2Life application is easy to
use. 4.87 (0.34)

3 I could use the Lib2Life application
without encountering errors. 4.13 (0.97)

4 The uploading and correction
processes are easy to use. 4.52 (0.68)

5 The uploading and correction
processes cover all the necessities. 4.43 (0.68)

6 The documents’ visualization page is
intuitive. 4.74 (0.69)

7 The search engine and the filters work
as expected. 4.22 (0.80)

8 The search engine and the filters are
intuitive. 4.22 (0.80)

9 The information included in the
statistics page is useful. 4.90 (0.30)

10 The ontology is useful. 4.87 (0.34)

11 The Lib2Life application has an
intuitive design and is suited to a
system dedicated to libraries.

4.82 (0.50)

12 I would like to see more statistics
about available documents. 4.43 (.843)

13 I would like to have more filters at my
disposal on the dashboard page. 4.57 (.788)

14 I would like to be able to access
documents from multiple domains and
multiple languages.

4.91 (.288)

Lib2Life is a novel platform that includes useful filters for
searching books, as well as the opportunity to read a
document in PDF format. Users can also explore the entire
domain ontology. The semantic search algorithm allows
readers to find the most relevant documents for a query, or
to be provided with similar documents to a selected one.
A usability questionnaire distributed to multiple users
showed that the application is useful and includes a

Proceedings of RoCHI 2020

17

convenient semantic search functionality. The questionnaire
argued that Lib2Life stands as a suitable software application
to enable individuals to access digitalized historical
documents. However, users requested improved response
times, reducing error messages, and fixing server-related
issues. In addition, a simpler user interface, but with more in-
depth search criteria was also suggested.
The particularities of the old Romanian language used in the
indexed historical documents should be also further
explored. Namely, archaic words and structures should be
considered in ReaderBench as the current version only
supports contemporary language. This can be performed
with the help of the eDTLR dictionary [3], which is an
electronic Romanian dictionary containing more than
175,000 words. The temporal dimension should also be taken
into account in a future version of the system, namely
understanding how user preferences evolve over time, and
followed by adjusting their recommendations.
Lib2Life enables librarians to build up a repository for their
collection of documents. The resulting collection may be
used for performing analyses focused on the evolution of
literature across time. Example analyses include correlations
to major historical events, changes in writing styles [5], as
well as exploring inter-textual links between documents.

ACKNOWLEDGMENTS
This work was supported by a grant of the Romanian
Ministry of Research and Innovation, CCCDI - UEFISCDI,
project number PN-III-P1-1.2-PCCDI-2017-0689 /
„Lib2Life - Revitalizarea bibliotecilor si a patrimoniului
cultural prin tehnologii avansate” / "Revitalizing Libraries
and Cultural Heritage through Advanced Technologies",
within PNCDI III.

REFERENCES
1. Alewaeters, G., 1982. VUBIS: A user-friendly online

system. Information Technology and Libraries 1, 3,
206-221.

2. Blei, D.M., Ng, A.Y., and Jordan, M.I., 2003. Latent
Dirichlet Allocation. Journal of Machine Learning
Research 3, 4-5, 993–1022.

3. Cristea, D., Răschip, M., Forăscu, C., Haja, G.,
Florescu, C., Aldea, B., and Dănilă, E., 2007. The
Digital Form of the Thesaurus Dictionary of the
Romanian Language. In Proceedings of the 4th
International IEEE Conference SpeDIEEE, 195-206.

4. Crossley, S.A., Dascalu, M., and McNamara, D.S.,
2017. How important is size? An Investigation of
Corpus Size and Meaning in both Latent Semantic
Analysis and Latent Dirichlet Allocation. In
Proceedings of the 30th Int. Florida Artificial
Intelligence Research Society Conf. (Marco Island,
FL), AAAI, 293–296.

5. Gifu, D., Dascalu, M., Trausan-Matu, S., and Allen,
L.K., 2016. Time Evolution of Writing Styles in

Romanian Language. In Proceedings of the 28th Int.
Conf. on Tools with Artificial Intelligence (ICTAI
2016) (San Jose, CA), IEEE, 1048–1054.

6. Gormley, C. and Tong, Z., 2015. Elasticsearch: The
definitive guide: A distributed real-time search and
analytics engine. O'Reilly Media, Inc.

7. Gutu-Robu, G., Ruseti, S., Tomescu, S.-A., Dascalu,
M., and Trausan-Matu, S., 2020. Designing an
Ontology for Knowledge-Based Processing in
Romanian University Libraries. In Proceedings of the
The 16th International Scientific Conference eLearning
and Software for Education (Bucharest).

8. Gutu-Robu, G., Sirbu, M.-D., Paraschiv, I.C., Dascalu,
M., Dessus, P., and Trausan-Matu, S., 2018. Liftoff -
ReaderBench introduces new online functionalities.
Romanian Journal of Human - Computer Interaction
11, 1, 76–91.

9. Hämäläinen, W. and Vinni, M., 2006. Comparison of
machine learning methods for intelligent tutoring
systems. In Proceedings of the Int. Conf. in Intelligent
Tutoring Systems (Jhongli, Taiwan), Springer, 525–
534.

10. Knublauch, H., Fergerson, R.W., Noy, N.F., and
Musen, M.A., 2004. The Protégé OWL plugin: An
open development environment for semantic web
applications. In Proceedings of the International
Semantic Web ConferenceSpringer, 229–243.

11. Mikolov, T., Chen, K., Corrado, G., and Dean, J.,
2013. Efficient Estimation of Word Representation in
Vector Space. In Proceedings of the Workshop at ICLR
(Scottsdale, AZ).

12. Nitu, M., Dascalu, M., Dascalu, M.-I., Cotet, T.-M.,
and Tomescu, S., 2019. Reconstructing Scanned
Documents for Full-text Indexing to Empower Digital
Library Services. In Proceedings of the 12th Int.
Workshop on Social and Personal Computing for Web-
Supported Learning Communities (SPeL 2019) held in
conjunction with the 18th Int. Conf. on Web-based
Learning (ICWL 2019) (Magdeburg, Germany),
Springer, 183–190.

13. Rana, C. and Jain, S.K., 2012. Building a Book
Recommender system using time based content
filtering. WSEAS Transactions on Computers 11, 2, 27-
33.

14. Sebastiani, F., 2002. Machine learning in automated
text categorization. ACM Comput. Surv. 34, 1, 1-47.
DOI= http://dx.doi.org/10.1145/505282.505283.

15. Smith, M., Barton, M., Bass, M., Branschofsky, M.,
McClellan, G., Stuve, D., Tansley, R., and Walker,
J.H., 2003. DSpace: An open source dynamic digital
repository.

16. Smith, R., 2007. An overview of the Tesseract OCR
engine. In Proceedings of the Ninth international
conference on document analysis and recognition
(ICDAR 2007)IEEE, 629-633.

Proceedings of RoCHI 2020

18

