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ABSTRACT 
This paper describes the development of a Virtual Reality 
(VR) simulation application for educational purposes in 
assembly production. People are able to retain more 
information by simulating real experiences. Nowadays, 
modern technology can be used to achieve better results in a 
virtual reality learning environment, being available to 
everyone. It is predicted to be more common and low-priced 
in the future. Interactive user gestures and immersive VR 
technologies are used to develop remote solutions for 
engineering students by matching the product components in 
the proper order and location. This research provides 
instructional assembly methods and natural experience in 
interacting with elements, both in a dynamic space or in a 
sitting position. 
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INTRODUCTION 
Modern graphic techniques have changed the way people 
perceive the virtual world, developing a new approach of 
understanding problem solving. Many devices and computer 
software allow us to convert human interaction into 
tridimensional (3D) data, in order to replicate the human 
hand model on screen. So much time is being waste to learn 
a new user interface of an application for a novice computer 
user. People can adapt faster in an immersive experience, 
than using a desktop application. The experience is achieved 
from the first movements and gestures performed by the user, 
without a tutorial or guided texts. The virtual contact with the 
environment is based on user's natural interaction intuition. 

Virtual reality users are growing from day to day, from 
200.000 users in 2014, to over 171.000.000 users in 2018 
[1]. It has become widely spread in the game industry and 
noZ is exSanding on manuIacturing and medical industry� 

7he Iirst Oculus Rift prototype was released in 2012 
by Palmer Luckey and the game engine designer of 
Doom franchise, John Carmack. This start was 
noticed by many big companies and quickly made 
their way into business industry, becoming available to 
the public. 

Nowadays many educational facilities, like mechatronics, 
machine building, aviation or construction technical college 
are missing essential equipment to train students. In many 
cases, students know the theoretical part and even the main 
process, but this data is forgotten in time due to lack of real 
demonstration or simulation. The objectives of this paper is 
to increase learning performance by using modern 
technology to simulate real-life assembly. The graphics 
environment is designed on a long-term human retention, 
based on visual and interactive processes. Simple structures 
can create an attractive and innovative space scene, so that 
users can better perceive the objects’ depths and distances, 
based on 3D placement and shadows [2]. 

The main keys are accuracy and user comfort. Having these 
in mind, environment accommodation during the virtual 
simulation will no longer create confusion or motion 
sickness, while wearing a headset. The graphic scene 
rendered on the screen is designed to send the mind into a 
more immersive 3D experience, having full control on the 
virtual space. 

After a virtual experience session, students are more trained 
to apply what they learned in real situation. Within a virtual 
assembly session, people might try to explore wrong 
alternatives, deviating from the base assembly process, 
which might lead to bad consequences, like breakage, 
nonfunctional devices, short circuit or even accidents. We 
cannot experience wrong possibilities in real life, but in a 
simulation, everything is possible, leading the user to 
identify the correct assembly process and to understand the 
incompatibility of certain parts. 

The proposed solution makes use of the head movements 
and natural hand interactions of user’s actions, in 
order to simulate a virtual model assembly, using 
tracking devices like sensors and cameras. This paper 
elaborates on models orientation, which tries to simulate 
object manipulation by human in real world and presents a 
fresh new graphic engine, as the project’s foundation. The 
VR application was built 
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using OpenGL library with the Oculus Rift Development Kit 
2 (DK2) headset and LeapMotion controller for hand motion 
tracking. The main focus is aimed on simple and complex 
techniques of interaction, in order to reach the behavior of a 
real life object manipulation. 

The rest of the paper is structured as follows. In the next 
section, we present similar ideas and projects designed by 
students and researchers. In the following four sections we 
describe the major graphics engine infrastructure 
components, the interaction algorithms developed for object 
manipulation, parent-child relationship between two objects 
and an overview of the 3D model creation. In the next two 
sections we discuss about different guided methods of model 
assembly and the performance of level completion. In the last 
section we describe the experience gained from 
implementing the overall assembly project, we present our 
conclusions and future project improvements. 

RELATED WORKS 
Zhao et al. [3] present a VR simulation game for 
manufacturing education by interacting with LEGO pieces, 
using wireless controller in hand. The overall goals of the 
project is to provide engineering students with a set of 
scenarios to practice their skills at craft production. They 
describe the development of the immersive experience by 
using a custom fitted headset with Tobii eye-tracking 
technology. The environment is based on assembly station 
for the users to go through and accomplish a set of 
requirements. The user has to choose the components in 
order to start crafting the production process. 

Pujol-Tost and Phil [4] analyze the influence of 
computational VR interactivity in the learning process, based 
on response speed, range of things that can be changed and 
naturality of communication. They analyze them all by 
showing how they involve different learning and interaction 
strategies. The source of motivation in the learning process 
has proven to be higher, the more interactive and immersive 
the experience is. The main key point is the equality of 
conditions when user interacts with the content, simulating 
similar real experience. As formal educational environments 
have demonstrated a positive attitude towards interactive 
devices, they continue to evolve and be more accessible to 
people all over the world. 

Zimmons and Panter [5] proceed an experiment of college-
age participants on how visual elements like lighting, surface 
detail and task performance influence the sense of presence 
of participants in a virtual environment. Based on some 
graphics conditions, the experiment uses a head mounted 
display and a joystick, with a trigger function to grab objects 
from scene. The study suggested that rendering quality 
environments is not significantly affecting the perception of 
depth or user’s precision. A major difference of spatial 
orientation was determined not to be equal between man and 
women. 

Pop and Sabou [6] use the LeapMotion controller to interact 
with virtual scene, using Unity Game Engine. They present 
an approach to dynamic data visualization and manipulation 
through a server-side application, based on hand gestures and 
head movement and orientation, tracked from phone’s 
gyroscopic information. 

Galais et al. [7] evaluated gestural interaction using 
LeapMotion and a traditional interaction device, using 
gamepad controllers. The comparative study is based on the 
cognitive load and performance of object manipulation, 
performed by 11 experienced users and 8 novice users. The 
results indicate a higher execution time and users' errors 
during gestural interaction with the LeapMotion device 
rather than using a controller. The main limitations are 
intermittent hand tracking and the difficulty in interacting 
and reaching the object as no haptic feedback is provided.  

Boud et al. [8] conducted a series of experiments to compare 
assembly completion times after participants study an 
engineering drawing or an assembly plan, using VR and 
Augmented Reality (AR) as training media. In order to 
achieve simple goals of interacting with objects, like 
reaching an object, grasping or placing objects, which 
require different levels of haptic and visual guidance. A VR 
manufacturing environment allows users to manipulate 
objects without the use of the real objects and also to be 
trained for an assembly operation during a product’s design 
cycle, before an actual physical prototype has been 
manufactured. The participants suggested that immersive 
VR was more intuitive as they were able to manipulate 3D 
objects in a 3D space. AR can therefore facilitate fast 
learning for simple assembly tasks, as it allows the user to 
have tactile feedback through the manipulation of the real 
objects. 

Baggett and Ehrenfeucht [9] present how to design 
instructions that show and describe a step by step procedure 
using a hierarchical structure. The structure of an object can 
be represented by a labelled tree, as each node has a value, 
which presents the object's name. The tree shows the model 
breakdown into subassemblies and subsubassemblies, the 
procedure description, which tells the actions performed and 
the goal to build the complete model, which can be divided 
in subgoals. The paper tests the performance in assembly 
from memory, as the object is correctly built by the user. The 
best performance is achieved when combining a top-down 
approach with a sequential execution of actions. It is also 
demonstrated that the presentation of instructions via a video 
can improve performance of assembly operations. Humans 
have a remarkable ability to store visual information over 
short periods of time. Simply seeing the assemblies being 
built was sufficient for experienced participants to be able to 
develop assembly plans. 

GRAPHICS ENGINE 
Creating a lightweight graphic engine for this project, 
focused on render algorithms and interaction methods, might 
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be useful for the freedom of using minimum computer 
resources. The free real-time 3D creation platforms Unity 
and Unreal Engine 4 offer a user interface, many options and 
properties for use to design and conceptualise the virtual 
world. Figure 1 displays the engine specifications of 
different free engines. Code files, models and materials are 
efficient organized for the user and the real time application 
scene makes designing easier and faster. Visual scripting 
technique lets user create scene content events without 
coding skills. Both engines have many plugins and scene 
creation tools available on their asset store. The complexity 
as well as the numerous integrated features contribute to the 
final application size, providing additional specifications 
which are not always needed. 

Our application is based on free C++ libraries for graphic 
software developing, based on OpenGL Shading Language 
(GLSL). The efficiency in using a fresh new engine, is based 
on extensions, quality optimization and memory allocation. 
As follows, there are also disadvantages of building a custom 
engine as speed processing, data partitioning, threads 
execution model or the number of features. The application 
is designed as a flexible tool based on virtual interaction 
structure organized in a software architecture, having the 
possibility to study system response to external hardware, 
resource management and 3D transformation concepts.  

Godot Engine is a free and open-source game engine which 
at first sight, it would be the best choice of developing a small 
application, aimed on 2D and simple 3D games. The issue 
might be more of scaling, which might affect the 
performance, but overall it is not at the level of support, 
features and functionality compared to other engines. It has 
its own programming language GDScript, but similar to our 
solution, the application’s configuration has to be made 
manually by the user [10]. 

The overall engine solution comes with visual effects for 
lightning, shadow mapping, environment mapping, 
reflective materials properties creation, text and video 
rendering, Table 1. Sounds and animation elements were 
used for focusing user attention on the action location. The 
main limitations identified are mainly focused on the scene 
realism, low on extensions and complex application 
structure. 

Figure 1. Graphic Engines scene comparison, from left to right: 
Unity, Godot, Unreal Engine, our engine solution 

 Engine 
Service 

Proposed 
Engine Unity UE4 Godot 

3.0 

Programming 
language C C# C++ 

GDScript 
C/C++ 
C# 

Framework OpenGL 
Direct3D 
OpenGL 
Vulkan 

Direct3D OpenGL 

Dimensions 3D 2D, 3D 2D, 3D 2D, 3D 
Storage Space 130 MB 4 - 7 GB 10-15 GB 500 MB 

VR support Yes Yes Yes Yes 

Table 1. Engines specifications 

The immersive components 
The overall VR session is based on the communication 
between human and hardware components. The immersive 
environment is achieved by synchronizing the hand 
interaction, head position and orientation with the virtual 
world, having at least 60 frames per seconds displayed on the 
headset's screen. Communication between user and system is 
done through input devices, by sending the human 
movement and interaction information to the computer and 
output devices, which receive the processed data back to the 
user. The human head is traced by the camera-based system, 
which uses filters to capture infrared light trackers on the 
back of the Oculus headset case. LeapMotion sensors and the 
monochromatic camera allow the user to interact within the 
virtual scene. The software is processing each human hand 
bone, tracked in the device’s range and store them as data, 
which can be accessed by an API for each available frame 
processed. The information is used to trigger scene events, 
recognize hand gestures and render the skeleton of the 
human hand model into the scene. 

The virtual hand system is built of geometric shapes, which 
recreate the hand bones anatomy. For each finger presented 
in Figure 2, we associate four cylindrical bodies, that are 
used for representing bones length and four sphere bodies, 
which connect them together, resulting the skeleton shape of 
the hand. Tracking algorithms interpret the data and deduce 
the positions of the undetectable hand elements from the 
Leap sensors, to ensure a continuous presence of the virtual 
hands on screen, as long as possible. 

Figure 2. Hand anatomy [11] and virtual model used in app [12] 
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Figure 3. The steps of changing objects from one hand to another hand 

The main code path of the VR application is executing a loop 
in which the Oculus camera sensors request the headset 
position, then creates the scene texture for each eye. The 
stereoscopic sensation is operated automatic by the Oculus 
SDK. The final rendered scene is post processed for each 
frame by Oculus Compositor, in order to apply distortion and 
then it is displayed onto the Rift’s screen [13]. 

INTERACTION 
Each device has their own coordinate system, which has to 
be synchronized, in order to be correctly displayed on the 
screen. Leap Motion tracking software processes the human 
hand on its visual angle, then Oculus library render the scene 
and place the virtual hand. model on its coordinate system. 
In order to use the LeapMotion device attached on the Rift 
headset, some operations are needed for placing the hand 
system in front of the virtual camera. As the Leap Motion 
company does not provide a mirrored hand system 
technique, all bones and joints have to be manually oriented, 
by flipping the hand information, received from Leap API, 
on the local Z axis [14]. Rotating the system at 90° on user's 
local X axis, will result in rendering the human hand motion 
in the intended place, similar to real interaction. These 
operations are also needed to be applied on objects, when 
interacting with them, in order to maintain the same 
coordinate system as the hand. When using LeapMotion 
device on a surface, there is no need of this correction 
anymore. 

Figure 4. Hand elements of grabbing objects from scene, sphere 
diameter 180mm (a), ideal grab event 90mm (b), 0mm (c) 

Leap SDK offers controller positions, rotations, normals and 
other data as 3D coordinates vectors. Hand rotation is 
computed based on hand direction, as the distance from the 
middle of the palm towards the fingers, and palm normal, as 
a vector pointing downward of the palm [15]. Based on 
palm's information, user can grab objects from the scene just 
by clenching their fist. For that, we create a virtual sphere 
which covers the length of the fingers, Figure 4. The sphere 
is placed roughly as if the hand was holding a ball. As fingers 
are closer to the palm, the sphere radius is reduced and when 
is used near an object, the grabbing event is triggered. The 
object is linked to the center of the sphere so that it gives the 
impression of holding it. In order to interact with a part of the 
assembly model, a free user hand has to be near the object. 
The sphere diameter is tested so as not to exceed a constant 
value, which matches the 45° hand angle. Touching the 
collision mesh of the object causes the link between hand and 
object. Both hands can be used simultaneously to interact 
with the scene and also to move objects from one to another 
hand, see Figure 3. 

Complex gestures are available to be used by experienced 
users, to rotate model parts directly in the hand, without 
placing and grabbing them again from conveyor belt. This 
technique uses two hands, one is holding the object and the 
other one is performing gestures, in order to rotate the object 
based on the movement direction, Figure 5. To access free 
object rotation mode, user will perform a pinch gesture, with 
the other three fingers raised up, so that it is not interpreted 
like a grabbing gesture. 

Figure 5. Complex gesture local coordinate system 
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Figure 6. Object transformation order in application code 

Overall, the object interaction is composed of 3 levels of 
rotation. When grabbing an object from scene, their 
coordinate system is attached to the corresponding virtual 
hand system, so that each tilt performed with the hand in any 
direction of the axis will be followed by the object. As the 
object can be grabbed from the conveyor belt in any direction 
user want, the rotation has to be made on global axis, after 
the local rotation computation, see Figure 6. All the 
operations made on the object are computed starting from the 
identity matrix, Equations 1 and 2, where 𝑚00, 𝑚10, 𝑚20
represent the 𝑋 axis coordinate, 𝑚01, 𝑚11, 𝑚21 represent the
𝑌 axis coordinate, 𝑚02, 𝑚12, 𝑚22 represent the 𝑍 axis
coordinate.  

𝑀𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = (
𝟏
0
0
0

0
𝟏
0
0

0
0
𝟏
0

0
0
0
𝟏

) (1) 

𝑀𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = (

𝒎𝟎𝟎
𝒎𝟏𝟎
𝒎𝟐𝟎
𝑚30

𝒎𝟎𝟏
𝒎𝟏𝟏
𝒎𝟐𝟏
𝑚31

𝒎𝟎𝟐
𝒎𝟏𝟐
𝒎𝟐𝟐
𝑚32

𝑚03
𝑚13
𝑚23
𝑚33

) (2) 

Beside their original importing process into scene, objects 
can be discarded in any posture when they touch the belt. The 
orientation is retained and recalculated throughout the entire 
running application, based on the final projection matrix of 
the object, Equations 3, 4 and 5, where 𝛼, 𝛽, 𝛾 are the roll, 
yaw and pitch angle rotations [16]. 

𝛼 = 𝑎𝑟𝑐𝑡𝑔 (
𝑚10

𝑚00
) ∗

180
𝜋 (3) 

𝛽 = 𝑎𝑟𝑐𝑡𝑔 (
−𝑚20

√𝑚21
2  + 𝑚22

2
) ∗

180
𝜋 (4) 

𝛾 = 𝑎𝑟𝑐𝑡𝑔 (
𝑚21

𝑚22
) ∗

180
𝜋 (5) 

The final layer of rotation is acquired by hand gestures, 
which is added to the local object rotation. The movement 
performed by the hand will be mapped on the next rotation 
axis of the object. An example is presented in Figure 5, when 
moving the left hand on X axis, will result in rotating the 

object around Y axis. This way, the object manipulation will 
rotate on the respective axis of the user performing the hand 
movement, making intended rotation behavior. All layers put 
together will result in a predictive system response to the 
human hands motion. 

Beside their original importing structure into scene, objects 
are oriented based on the current state of rotation on the 
conveyor belt, LeapMotion sensor’s horizontal angle of view 
and simple and complex hand interactions. 

Algorithm 1. Hand-object matrix transformation 
GETOBJECTLOCATIONANDORIENTATION() 
.IDENTITYMATRIX() 
.TRANSLATION(palmSphereCenter) 
.ROTATION(90 * toRadians, AXIS(1,0,0)) 
.ROTATION(180 * toRadians, AXIS(0,0,1)) 
.ROTATION(pinchMovement.z, AXIS(1,0,0)) 
.ROTATION(pinchMovement.x, AXIS(0,1,0)) 
.ROTATION(pinchMovement.y, AXIS(0,0,1)) 
.ROTATION(hand.direction().pitch, AXIS(1,0,0)) 
.ROTATION(hand.direction().yaw, AXIS(0,1,0)) 
.ROTATION(hand.palmNormal().roll, AXIS(0,0,1)) 
.ROTATION(obj.rotation().x, AXIS(1,0,0)) 
.ROTATION(obj.rotation().y, AXIS(0,1,0)) 
.ROTATION(obj.rotation().z, AXIS(0,0,1)) 
.SCALING(obj.scale()) 
.RENDERMODEL() 

CHILD OBJECTS 
Interacting with a virtual world is not always friendly, 
because your real body is not transferred in the new 
environment. The presence of an avatar, which illustrate the 
human body, may give the impression of trust and also 
provides distance approximation of the virtual world. We 
attach a 3D model to the camera, so that looking down to the 
feet, the user will see parts of the model, see Figure 7 (a). 
Each user movement performed in real life will be followed 
in moving the virtual body model with the camera's position. 

Figure 7. Child/Parent relations based on Oculus sensors (a) 
and Leap sensors (b). Final scene projection (c) 
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In the previous section we discussed about object interaction 
based on the virtual hand system, provided by Leap sensors, 
as shown in Figure 7 (b). Now, we will present a method of 
linking the objects to the virtual camera, based on Oculus 
sensors. Assuming we have a helmet, presented as a part of 
the model assembly, users may attempt to put it on them, 
finding themself inside the object. The virtual camera is now 
covered with the 3D model, which block a part of the eye 
visualization. Based on the headset’s rotation on all the three 
axis, the object is now repeating the translation and 
orientation transformations after the camera’s point of view, 
see Figure 7 (c). 

VR headset orientation is provided by the Oculus library, in 
the right-handed cartesian coordinate system, stored in a 
quaternion. In order to use the same transformations 
technique as presented in Algorithm 1, we have to convert 
data orientation in Euler angles, which store all the X, Y and 
Z rotation angles in a vector, Equations 6, 7 and 8, where 
𝑞𝑟, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧  represent the four quaternion elements and
𝜙, 𝜃, 𝜓 are the yaw, pitch and roll angle rotations in radians 
[17]. 

𝜙 = 𝑎𝑟𝑐𝑡𝑔 (2 ∗
(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧)

1 − 2(𝑞𝑥
2 + 𝑞𝑦

2)
) (6) 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (2 ∗ (𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥)) (7) 

𝜓 = 𝑎𝑟𝑐𝑡𝑔 (2 ∗
(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦)

1 − 2(𝑞𝑦
2 + 𝑞𝑧

2)
) (8) 

The results are used to define helmet’s correct orientation, 
then used together with camera’s position in virtual world, 
we can render the 3D model in front of the camera. 

Algorithm 2. Head-object tracking transformation 
GETOBJECTLINKEDTOCAMERA() 
.IDENTITYMATRIX() 
.TRANSLATION(camera.postion()) 
.ROTATION(camera.rotation().pitch, AXIS(1,0,0)) 
.ROTATION(camera.rotation().yaw, AXIS(0,1,0)) 
.ROTATION(camera.rotation().roll, AXIS(0,0,1)) 
.TRANSLATION(objectPositionOffset) 
.SCALING(obj.scale()) 
.RENDERMODEL() 

Naturally, light propagation or objects attached to other 
objects are following direct motion of the parent’s model. 
For instance, placing a part of the assembly model in a 
pocket, will change its position based on the movement of 
the body. A light source emitted from a flashlight, which is 
hold by one of the hand has 2 levels of ascendancy. 

MODEL BUILD 
Model composition has steps and sometimes it has 
alternatives of the assembly process, by starting with base 
parts and finishing with covers, circuit boxes or supporting 
parts. The model building might be completed using parallel 

assembly, presented as a generic tree graph, which 
distributes the product parts in levels of requirements, Figure 
8. The nodes represents the model parts and the connected
networks define the attaching rules. Performing a level order
traversal, we are making sure the correct workflow is
provided.

Figure 8. Assembly process based on N-array tree graph of the 
model parts 

Creating an efficient mode of interaction with the objects, 
allow the user to stay still with the body. Model parts are split 
in hidden and visible objects, placed on a conveyor belt. 
Moving the belt forward or backward, will bring parts closer 
to the user and will make other parts visible to the camera’s 
point of view. The assembly is constraints to all components, 
which makes the final model to be accomplished with all 
parts pieced together, which were initially on the conveyor 
belt. 

Model creation 
The engineering model has to be decomposed in parts and 
exported, using modelling tools, in the origin of the 
coordinate system. Based on object position and orientation 
in the final assembly form, the application can create events 
and correct areas of reconstruction in the virtual 3D world. 
All model parts are placed randomly on the conveyor belt 
and some rotation transformations are also applied to each of 
them. This way, the simulation will always be different. As 
not all the objects fit on the belt, some of them are excluded 
from the rendering process. Searching for other parts is done 
by sliding the belt in a certain direction, using directional 
buttons. 

GUIDED ASSEMBLY 
The application comes in many forms of learning, by 
evaluating the assembly performance, inspecting model 
parts, practice or testing the user composition capacity and 
problem solving skills. An instruction manual projected on a 
table might help people to identify the correct objects and 
accurately connect parts together, as shown in Figure 9. 
Novice users achieve experience by guided visual steps. All 
the possible parts are marked on screen, by creating a virtual 
bounding box model around the object, placed on conveyor 
belt. Grabbing the object will display the correct position and 
orientation on the assembly station. 
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Figure 9. Virtual scene application split in two, corresponding 
to left and right eye 

The Oriented Bounding Box (OOB) geometry mesh is 
computed using Vertex Buffer Objects (VBOs) by loading 
the lower and upper vertex limits of the object on all axis. 
The attributes are stored in memory as data vectors and 
therefore used to render the model behavior and properties 
on screen, like world position, texture coordinates, normals, 
colors, etc. 

Some of the model parts might be similar, having the same 
structure, but different in terms of assembly steps. A 
labelling system is developed to show the object 
specifications, like name and metrics, so that users will be 
capable of associating easier and faster the parts, in order to 
achieve the final model. During the assembly session, users 
can check the parts properties from assembly station by 
passing the index finger through the model. Also this 
technique is used in triggering object events and buttons 
interaction. 

PERFORMANCE 
Performance is directly related with the human experience in 
using similar applications, motivation, attention to details 
and the level of knowledge. The first usage of virtual 
equipment by the user leads to accommodation with the 
system and adaptation with simple and complex interaction 
techniques available for use. In time, he might improve the 
experience, by training and by changing the application 
difficulty. 

Other VR equipment uses physical buttons on hand 
controllers to activate interaction events. All buttons 
behavior are determined by the application and the 
interaction response might be defined as long-press or short-
press of the button. Our solution set aside alternative touch 
interaction equipment, so that users are not learning new 
styles that are not related to real world interaction. Natural 
hand gestures detected by the LeapMotion sensor have the 
potential to be more natural and familiar than traditional 
methods. Based on hand gestures, the system analyzes the 
hand structure and performs one of the following actions: 
linking an object to the hand system, switching item's parent, 
releasing structure connection, running device response or 
enabling free object rotation. The amount of time spent by an 

user to understand the basic interaction features of the 
application is completed in a short period of time, achieved 
in the beginning of the simulation. To successfully make an 
action in the virtual world, the system leads the user intuition 
to try performing different gestures. 

The assembly process requires users to have conceptual 
knowledge, analytical knowledge and metacognitive 
awareness. We did some tests on how much time it takes for 
the user to complete the reconstruction model of a robot 
composed of 14 parts, with both guided assembly methods 
combined and individuals. Five students and two employees 
aged between 21 and 35, who have not used a VR headset 
before, participated in this immersive assembly test. After 
some successful attempts, the following day, users were 
given the same model to assembly, without guidance 
elements. This way, we tested human retention and 
attentiveness. The final results are presented in Table 2. 

Guidance Both 
methods 

Interactive 
Indicators 

Instr. 
Manual None 

Completion 
Time (min.) 

3:45 4:10 5:05 6:20 

Table 2. Assembly performance time 

SYSTEM REQUIREMENTS 
The ideal virtual reality experience using DK2 is achieved 
with the maximum allowable latency of about 20ms and 
75Hz application frame rate, based on the recommended 
hardware requirements for Oculus Rift. In this case, the 
whole scene is rendered in approximately 9ms and the rest of 
the time up to 13.33ms is allocated to image distortion for 
each frame. Once the double scene image is sent to headset 
screen, the system initializes the parameters for the next 
frame. The following software were used for the application 
implementation: 

• Oculus Setup (latest version)
• Leap Motion Developer Kit version 4.0.0
The main libraries used are: 

• Oculus SDK for Windows version 1.38.0
• Leap Motion Orion version 3.2.0

CONCLUSION 
The assembly simulation using VR technology involves 
designing a model, breaking it down into pieces and 
developing a reconstruction process, based on linking rules. 
The purpose of this paper was to describe a virtual reality 
training tool of assembling a product in an immersive 
environment, based on human hand interaction. The engine 
developed processes the render algorithms, displays scene 
elements and computes 3D operations on objects based on 
user gestures. The overall solution inspired us to see many 
innovative ideas in which students and employees can 
benefit. Developing new learning tools by using current 
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technology may affect future education system, so that the 
new generation to be more advanced on performing practical 
skills. 

Future improvements include further refinement of hand 
gestures and may involve using special gloves equipment 
with wireless technology for interaction with the virtual 
world. The sensation would be much similar with reality by 
feeling that the objects are held in the user's hand, based on 
tiny vibrations applied to the fingers. Combining soft 
interactions, such as hand gesture and hard interactions, such 
as vibro-tactile feedback provides more natural interaction 
with virtual objects, similar to manipulation tasks. The result 
allows an improvement in the sense of presence perceived by 
the user during the interaction. 
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