
Interactive Assembly Simulation in an
Immersive Virtual Environment
Cătălin Moldovan

Technical University of Cluj-
Napoca

Str. G. Barițiu 28, 400027,
Cluj-Napoca, România

catalin.moldovan97@gmail.com

Adrian Sabou
Technical University of Cluj-

Napoca
Str. G. Barițiu 28, 400027,

Cluj-Napoca, România
adrian.sabou@cs.utcluj.ro

ABSTRACT
This paper describes the development of a Virtual Reality
(VR) simulation application for educational purposes in
assembly production. People are able to retain more
information by simulating real experiences. Nowadays,
modern technology can be used to achieve better results in a
virtual reality learning environment, being available to
everyone. It is predicted to be more common and low-priced
in the future. Interactive user gestures and immersive VR
technologies are used to develop remote solutions for
engineering students by matching the product components in
the proper order and location. This research provides
instructional assembly methods and natural experience in
interacting with elements, both in a dynamic space or in a
sitting position.

Author Keywords
Virtual Reality; Leap Motion; Assembly Simulation;
OpenGL; Educational Application;

ACM Classification Keywords
H.5.m. Information interfaces and presentation: Human-
Computer Interaction; Interaction Techniques; Gestures;

General Terms
Virtual Reality; Computer graphics; Algorithms; Input
devices; Head-mounted display;

INTRODUCTION
Modern graphic techniques have changed the way people
perceive the virtual world, developing a new approach of
understanding problem solving. Many devices and computer
software allow us to convert human interaction into
tridimensional (3D) data, in order to replicate the human
hand model on screen. So much time is being waste to learn
a new user interface of an application for a novice computer
user. People can adapt faster in an immersive experience,
than using a desktop application. The experience is achieved
from the first movements and gestures performed by the user,
without a tutorial or guided texts. The virtual contact with the
environment is based on user's natural interaction intuition.

Virtual reality users are growing from day to day, from
200.000 users in 2014, to over 171.000.000 users in 2018
[1]. It has become widely spread in the game industry and
noZ is exSanding on manuIacturing and medical industry�

7he Iirst Oculus Rift prototype was released in 2012
by Palmer Luckey and the game engine designer of
Doom franchise, John Carmack. This start was
noticed by many big companies and quickly made
their way into business industry, becoming available to
the public.

Nowadays many educational facilities, like mechatronics,
machine building, aviation or construction technical college
are missing essential equipment to train students. In many
cases, students know the theoretical part and even the main
process, but this data is forgotten in time due to lack of real
demonstration or simulation. The objectives of this paper is
to increase learning performance by using modern
technology to simulate real-life assembly. The graphics
environment is designed on a long-term human retention,
based on visual and interactive processes. Simple structures
can create an attractive and innovative space scene, so that
users can better perceive the objects’ depths and distances,
based on 3D placement and shadows [2].

The main keys are accuracy and user comfort. Having these
in mind, environment accommodation during the virtual
simulation will no longer create confusion or motion
sickness, while wearing a headset. The graphic scene
rendered on the screen is designed to send the mind into a
more immersive 3D experience, having full control on the
virtual space.

After a virtual experience session, students are more trained
to apply what they learned in real situation. Within a virtual
assembly session, people might try to explore wrong
alternatives, deviating from the base assembly process,
which might lead to bad consequences, like breakage,
nonfunctional devices, short circuit or even accidents. We
cannot experience wrong possibilities in real life, but in a
simulation, everything is possible, leading the user to
identify the correct assembly process and to understand the
incompatibility of certain parts.

The proposed solution makes use of the head movements
and natural hand interactions of user’s actions, in
order to simulate a virtual model assembly, using
tracking devices like sensors and cameras. This paper
elaborates on models orientation, which tries to simulate
object manipulation by human in real world and presents a
fresh new graphic engine, as the project’s foundation. The
VR application was built

DOI: 10.37789/rochi.2020.1.1.22

Proceedings of RoCHI 2020

145

using OpenGL library with the Oculus Rift Development Kit
2 (DK2) headset and LeapMotion controller for hand motion
tracking. The main focus is aimed on simple and complex
techniques of interaction, in order to reach the behavior of a
real life object manipulation.

The rest of the paper is structured as follows. In the next
section, we present similar ideas and projects designed by
students and researchers. In the following four sections we
describe the major graphics engine infrastructure
components, the interaction algorithms developed for object
manipulation, parent-child relationship between two objects
and an overview of the 3D model creation. In the next two
sections we discuss about different guided methods of model
assembly and the performance of level completion. In the last
section we describe the experience gained from
implementing the overall assembly project, we present our
conclusions and future project improvements.

RELATED WORKS
Zhao et al. [3] present a VR simulation game for
manufacturing education by interacting with LEGO pieces,
using wireless controller in hand. The overall goals of the
project is to provide engineering students with a set of
scenarios to practice their skills at craft production. They
describe the development of the immersive experience by
using a custom fitted headset with Tobii eye-tracking
technology. The environment is based on assembly station
for the users to go through and accomplish a set of
requirements. The user has to choose the components in
order to start crafting the production process.

Pujol-Tost and Phil [4] analyze the influence of
computational VR interactivity in the learning process, based
on response speed, range of things that can be changed and
naturality of communication. They analyze them all by
showing how they involve different learning and interaction
strategies. The source of motivation in the learning process
has proven to be higher, the more interactive and immersive
the experience is. The main key point is the equality of
conditions when user interacts with the content, simulating
similar real experience. As formal educational environments
have demonstrated a positive attitude towards interactive
devices, they continue to evolve and be more accessible to
people all over the world.

Zimmons and Panter [5] proceed an experiment of college-
age participants on how visual elements like lighting, surface
detail and task performance influence the sense of presence
of participants in a virtual environment. Based on some
graphics conditions, the experiment uses a head mounted
display and a joystick, with a trigger function to grab objects
from scene. The study suggested that rendering quality
environments is not significantly affecting the perception of
depth or user’s precision. A major difference of spatial
orientation was determined not to be equal between man and
women.

Pop and Sabou [6] use the LeapMotion controller to interact
with virtual scene, using Unity Game Engine. They present
an approach to dynamic data visualization and manipulation
through a server-side application, based on hand gestures and
head movement and orientation, tracked from phone’s
gyroscopic information.

Galais et al. [7] evaluated gestural interaction using
LeapMotion and a traditional interaction device, using
gamepad controllers. The comparative study is based on the
cognitive load and performance of object manipulation,
performed by 11 experienced users and 8 novice users. The
results indicate a higher execution time and users' errors
during gestural interaction with the LeapMotion device
rather than using a controller. The main limitations are
intermittent hand tracking and the difficulty in interacting
and reaching the object as no haptic feedback is provided.

Boud et al. [8] conducted a series of experiments to compare
assembly completion times after participants study an
engineering drawing or an assembly plan, using VR and
Augmented Reality (AR) as training media. In order to
achieve simple goals of interacting with objects, like
reaching an object, grasping or placing objects, which
require different levels of haptic and visual guidance. A VR
manufacturing environment allows users to manipulate
objects without the use of the real objects and also to be
trained for an assembly operation during a product’s design
cycle, before an actual physical prototype has been
manufactured. The participants suggested that immersive
VR was more intuitive as they were able to manipulate 3D
objects in a 3D space. AR can therefore facilitate fast
learning for simple assembly tasks, as it allows the user to
have tactile feedback through the manipulation of the real
objects.

Baggett and Ehrenfeucht [9] present how to design
instructions that show and describe a step by step procedure
using a hierarchical structure. The structure of an object can
be represented by a labelled tree, as each node has a value,
which presents the object's name. The tree shows the model
breakdown into subassemblies and subsubassemblies, the
procedure description, which tells the actions performed and
the goal to build the complete model, which can be divided
in subgoals. The paper tests the performance in assembly
from memory, as the object is correctly built by the user. The
best performance is achieved when combining a top-down
approach with a sequential execution of actions. It is also
demonstrated that the presentation of instructions via a video
can improve performance of assembly operations. Humans
have a remarkable ability to store visual information over
short periods of time. Simply seeing the assemblies being
built was sufficient for experienced participants to be able to
develop assembly plans.

GRAPHICS ENGINE
Creating a lightweight graphic engine for this project,
focused on render algorithms and interaction methods, might

Proceedings of RoCHI 2020

146

be useful for the freedom of using minimum computer
resources. The free real-time 3D creation platforms Unity
and Unreal Engine 4 offer a user interface, many options and
properties for use to design and conceptualise the virtual
world. Figure 1 displays the engine specifications of
different free engines. Code files, models and materials are
efficient organized for the user and the real time application
scene makes designing easier and faster. Visual scripting
technique lets user create scene content events without
coding skills. Both engines have many plugins and scene
creation tools available on their asset store. The complexity
as well as the numerous integrated features contribute to the
final application size, providing additional specifications
which are not always needed.

Our application is based on free C++ libraries for graphic
software developing, based on OpenGL Shading Language
(GLSL). The efficiency in using a fresh new engine, is based
on extensions, quality optimization and memory allocation.
As follows, there are also disadvantages of building a custom
engine as speed processing, data partitioning, threads
execution model or the number of features. The application
is designed as a flexible tool based on virtual interaction
structure organized in a software architecture, having the
possibility to study system response to external hardware,
resource management and 3D transformation concepts.

Godot Engine is a free and open-source game engine which
at first sight, it would be the best choice of developing a small
application, aimed on 2D and simple 3D games. The issue
might be more of scaling, which might affect the
performance, but overall it is not at the level of support,
features and functionality compared to other engines. It has
its own programming language GDScript, but similar to our
solution, the application’s configuration has to be made
manually by the user [10].

The overall engine solution comes with visual effects for
lightning, shadow mapping, environment mapping,
reflective materials properties creation, text and video
rendering, Table 1. Sounds and animation elements were
used for focusing user attention on the action location. The
main limitations identified are mainly focused on the scene
realism, low on extensions and complex application
structure.

Figure 1. Graphic Engines scene comparison, from left to right:
Unity, Godot, Unreal Engine, our engine solution

 Engine
Service

Proposed
Engine Unity UE4 Godot

3.0

Programming
language C C# C++

GDScript
C/C++
C#

Framework OpenGL
Direct3D
OpenGL
Vulkan

Direct3D OpenGL

Dimensions 3D 2D, 3D 2D, 3D 2D, 3D
Storage Space 130 MB 4 - 7 GB 10-15 GB 500 MB

VR support Yes Yes Yes Yes

Table 1. Engines specifications

The immersive components
The overall VR session is based on the communication
between human and hardware components. The immersive
environment is achieved by synchronizing the hand
interaction, head position and orientation with the virtual
world, having at least 60 frames per seconds displayed on the
headset's screen. Communication between user and system is
done through input devices, by sending the human
movement and interaction information to the computer and
output devices, which receive the processed data back to the
user. The human head is traced by the camera-based system,
which uses filters to capture infrared light trackers on the
back of the Oculus headset case. LeapMotion sensors and the
monochromatic camera allow the user to interact within the
virtual scene. The software is processing each human hand
bone, tracked in the device’s range and store them as data,
which can be accessed by an API for each available frame
processed. The information is used to trigger scene events,
recognize hand gestures and render the skeleton of the
human hand model into the scene.

The virtual hand system is built of geometric shapes, which
recreate the hand bones anatomy. For each finger presented
in Figure 2, we associate four cylindrical bodies, that are
used for representing bones length and four sphere bodies,
which connect them together, resulting the skeleton shape of
the hand. Tracking algorithms interpret the data and deduce
the positions of the undetectable hand elements from the
Leap sensors, to ensure a continuous presence of the virtual
hands on screen, as long as possible.

Figure 2. Hand anatomy [11] and virtual model used in app [12]

Proceedings of RoCHI 2020

147

Figure 3. The steps of changing objects from one hand to another hand

The main code path of the VR application is executing a loop
in which the Oculus camera sensors request the headset
position, then creates the scene texture for each eye. The
stereoscopic sensation is operated automatic by the Oculus
SDK. The final rendered scene is post processed for each
frame by Oculus Compositor, in order to apply distortion and
then it is displayed onto the Rift’s screen [13].

INTERACTION
Each device has their own coordinate system, which has to
be synchronized, in order to be correctly displayed on the
screen. Leap Motion tracking software processes the human
hand on its visual angle, then Oculus library render the scene
and place the virtual hand. model on its coordinate system.
In order to use the LeapMotion device attached on the Rift
headset, some operations are needed for placing the hand
system in front of the virtual camera. As the Leap Motion
company does not provide a mirrored hand system
technique, all bones and joints have to be manually oriented,
by flipping the hand information, received from Leap API,
on the local Z axis [14]. Rotating the system at 90° on user's
local X axis, will result in rendering the human hand motion
in the intended place, similar to real interaction. These
operations are also needed to be applied on objects, when
interacting with them, in order to maintain the same
coordinate system as the hand. When using LeapMotion
device on a surface, there is no need of this correction
anymore.

Figure 4. Hand elements of grabbing objects from scene, sphere
diameter 180mm (a), ideal grab event 90mm (b), 0mm (c)

Leap SDK offers controller positions, rotations, normals and
other data as 3D coordinates vectors. Hand rotation is
computed based on hand direction, as the distance from the
middle of the palm towards the fingers, and palm normal, as
a vector pointing downward of the palm [15]. Based on
palm's information, user can grab objects from the scene just
by clenching their fist. For that, we create a virtual sphere
which covers the length of the fingers, Figure 4. The sphere
is placed roughly as if the hand was holding a ball. As fingers
are closer to the palm, the sphere radius is reduced and when
is used near an object, the grabbing event is triggered. The
object is linked to the center of the sphere so that it gives the
impression of holding it. In order to interact with a part of the
assembly model, a free user hand has to be near the object.
The sphere diameter is tested so as not to exceed a constant
value, which matches the 45° hand angle. Touching the
collision mesh of the object causes the link between hand and
object. Both hands can be used simultaneously to interact
with the scene and also to move objects from one to another
hand, see Figure 3.

Complex gestures are available to be used by experienced
users, to rotate model parts directly in the hand, without
placing and grabbing them again from conveyor belt. This
technique uses two hands, one is holding the object and the
other one is performing gestures, in order to rotate the object
based on the movement direction, Figure 5. To access free
object rotation mode, user will perform a pinch gesture, with
the other three fingers raised up, so that it is not interpreted
like a grabbing gesture.

Figure 5. Complex gesture local coordinate system

Proceedings of RoCHI 2020

148

Figure 6. Object transformation order in application code

Overall, the object interaction is composed of 3 levels of
rotation. When grabbing an object from scene, their
coordinate system is attached to the corresponding virtual
hand system, so that each tilt performed with the hand in any
direction of the axis will be followed by the object. As the
object can be grabbed from the conveyor belt in any direction
user want, the rotation has to be made on global axis, after
the local rotation computation, see Figure 6. All the
operations made on the object are computed starting from the
identity matrix, Equations 1 and 2, where 𝑚00, 𝑚10, 𝑚20
represent the 𝑋 axis coordinate, 𝑚01, 𝑚11, 𝑚21 represent the
𝑌 axis coordinate, 𝑚02, 𝑚12, 𝑚22 represent the 𝑍 axis
coordinate.

𝑀𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = (
𝟏
0
0
0

0
𝟏
0
0

0
0
𝟏
0

0
0
0
𝟏

) (1)

𝑀𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = (

𝒎𝟎𝟎
𝒎𝟏𝟎
𝒎𝟐𝟎
𝑚30

𝒎𝟎𝟏
𝒎𝟏𝟏
𝒎𝟐𝟏
𝑚31

𝒎𝟎𝟐
𝒎𝟏𝟐
𝒎𝟐𝟐
𝑚32

𝑚03
𝑚13
𝑚23
𝑚33

) (2)

Beside their original importing process into scene, objects
can be discarded in any posture when they touch the belt. The
orientation is retained and recalculated throughout the entire
running application, based on the final projection matrix of
the object, Equations 3, 4 and 5, where 𝛼, 𝛽, 𝛾 are the roll,
yaw and pitch angle rotations [16].

𝛼 = 𝑎𝑟𝑐𝑡𝑔 (
𝑚10

𝑚00
) ∗

180
𝜋 (3)

𝛽 = 𝑎𝑟𝑐𝑡𝑔 (
−𝑚20

√𝑚21
2 + 𝑚22

2
) ∗

180
𝜋 (4)

𝛾 = 𝑎𝑟𝑐𝑡𝑔 (
𝑚21

𝑚22
) ∗

180
𝜋 (5)

The final layer of rotation is acquired by hand gestures,
which is added to the local object rotation. The movement
performed by the hand will be mapped on the next rotation
axis of the object. An example is presented in Figure 5, when
moving the left hand on X axis, will result in rotating the

object around Y axis. This way, the object manipulation will
rotate on the respective axis of the user performing the hand
movement, making intended rotation behavior. All layers put
together will result in a predictive system response to the
human hands motion.

Beside their original importing structure into scene, objects
are oriented based on the current state of rotation on the
conveyor belt, LeapMotion sensor’s horizontal angle of view
and simple and complex hand interactions.

Algorithm 1. Hand-object matrix transformation
GETOBJECTLOCATIONANDORIENTATION()
.IDENTITYMATRIX()
.TRANSLATION(palmSphereCenter)
.ROTATION(90 * toRadians, AXIS(1,0,0))
.ROTATION(180 * toRadians, AXIS(0,0,1))
.ROTATION(pinchMovement.z, AXIS(1,0,0))
.ROTATION(pinchMovement.x, AXIS(0,1,0))
.ROTATION(pinchMovement.y, AXIS(0,0,1))
.ROTATION(hand.direction().pitch, AXIS(1,0,0))
.ROTATION(hand.direction().yaw, AXIS(0,1,0))
.ROTATION(hand.palmNormal().roll, AXIS(0,0,1))
.ROTATION(obj.rotation().x, AXIS(1,0,0))
.ROTATION(obj.rotation().y, AXIS(0,1,0))
.ROTATION(obj.rotation().z, AXIS(0,0,1))
.SCALING(obj.scale())
.RENDERMODEL()

CHILD OBJECTS
Interacting with a virtual world is not always friendly,
because your real body is not transferred in the new
environment. The presence of an avatar, which illustrate the
human body, may give the impression of trust and also
provides distance approximation of the virtual world. We
attach a 3D model to the camera, so that looking down to the
feet, the user will see parts of the model, see Figure 7 (a).
Each user movement performed in real life will be followed
in moving the virtual body model with the camera's position.

Figure 7. Child/Parent relations based on Oculus sensors (a)
and Leap sensors (b). Final scene projection (c)

Proceedings of RoCHI 2020

149

In the previous section we discussed about object interaction
based on the virtual hand system, provided by Leap sensors,
as shown in Figure 7 (b). Now, we will present a method of
linking the objects to the virtual camera, based on Oculus
sensors. Assuming we have a helmet, presented as a part of
the model assembly, users may attempt to put it on them,
finding themself inside the object. The virtual camera is now
covered with the 3D model, which block a part of the eye
visualization. Based on the headset’s rotation on all the three
axis, the object is now repeating the translation and
orientation transformations after the camera’s point of view,
see Figure 7 (c).

VR headset orientation is provided by the Oculus library, in
the right-handed cartesian coordinate system, stored in a
quaternion. In order to use the same transformations
technique as presented in Algorithm 1, we have to convert
data orientation in Euler angles, which store all the X, Y and
Z rotation angles in a vector, Equations 6, 7 and 8, where
𝑞𝑟, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧 represent the four quaternion elements and
𝜙, 𝜃, 𝜓 are the yaw, pitch and roll angle rotations in radians
[17].

𝜙 = 𝑎𝑟𝑐𝑡𝑔 (2 ∗
(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧)

1 − 2(𝑞𝑥
2 + 𝑞𝑦

2)
) (6)

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (2 ∗ (𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥)) (7)

𝜓 = 𝑎𝑟𝑐𝑡𝑔 (2 ∗
(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦)

1 − 2(𝑞𝑦
2 + 𝑞𝑧

2)
) (8)

The results are used to define helmet’s correct orientation,
then used together with camera’s position in virtual world,
we can render the 3D model in front of the camera.

Algorithm 2. Head-object tracking transformation
GETOBJECTLINKEDTOCAMERA()
.IDENTITYMATRIX()
.TRANSLATION(camera.postion())
.ROTATION(camera.rotation().pitch, AXIS(1,0,0))
.ROTATION(camera.rotation().yaw, AXIS(0,1,0))
.ROTATION(camera.rotation().roll, AXIS(0,0,1))
.TRANSLATION(objectPositionOffset)
.SCALING(obj.scale())
.RENDERMODEL()

Naturally, light propagation or objects attached to other
objects are following direct motion of the parent’s model.
For instance, placing a part of the assembly model in a
pocket, will change its position based on the movement of
the body. A light source emitted from a flashlight, which is
hold by one of the hand has 2 levels of ascendancy.

MODEL BUILD
Model composition has steps and sometimes it has
alternatives of the assembly process, by starting with base
parts and finishing with covers, circuit boxes or supporting
parts. The model building might be completed using parallel

assembly, presented as a generic tree graph, which
distributes the product parts in levels of requirements, Figure
8. The nodes represents the model parts and the connected
networks define the attaching rules. Performing a level order
traversal, we are making sure the correct workflow is
provided.

Figure 8. Assembly process based on N-array tree graph of the
model parts

Creating an efficient mode of interaction with the objects,
allow the user to stay still with the body. Model parts are split
in hidden and visible objects, placed on a conveyor belt.
Moving the belt forward or backward, will bring parts closer
to the user and will make other parts visible to the camera’s
point of view. The assembly is constraints to all components,
which makes the final model to be accomplished with all
parts pieced together, which were initially on the conveyor
belt.

Model creation
The engineering model has to be decomposed in parts and
exported, using modelling tools, in the origin of the
coordinate system. Based on object position and orientation
in the final assembly form, the application can create events
and correct areas of reconstruction in the virtual 3D world.
All model parts are placed randomly on the conveyor belt
and some rotation transformations are also applied to each of
them. This way, the simulation will always be different. As
not all the objects fit on the belt, some of them are excluded
from the rendering process. Searching for other parts is done
by sliding the belt in a certain direction, using directional
buttons.

GUIDED ASSEMBLY
The application comes in many forms of learning, by
evaluating the assembly performance, inspecting model
parts, practice or testing the user composition capacity and
problem solving skills. An instruction manual projected on a
table might help people to identify the correct objects and
accurately connect parts together, as shown in Figure 9.
Novice users achieve experience by guided visual steps. All
the possible parts are marked on screen, by creating a virtual
bounding box model around the object, placed on conveyor
belt. Grabbing the object will display the correct position and
orientation on the assembly station.

Proceedings of RoCHI 2020

150

Figure 9. Virtual scene application split in two, corresponding
to left and right eye

The Oriented Bounding Box (OOB) geometry mesh is
computed using Vertex Buffer Objects (VBOs) by loading
the lower and upper vertex limits of the object on all axis.
The attributes are stored in memory as data vectors and
therefore used to render the model behavior and properties
on screen, like world position, texture coordinates, normals,
colors, etc.

Some of the model parts might be similar, having the same
structure, but different in terms of assembly steps. A
labelling system is developed to show the object
specifications, like name and metrics, so that users will be
capable of associating easier and faster the parts, in order to
achieve the final model. During the assembly session, users
can check the parts properties from assembly station by
passing the index finger through the model. Also this
technique is used in triggering object events and buttons
interaction.

PERFORMANCE
Performance is directly related with the human experience in
using similar applications, motivation, attention to details
and the level of knowledge. The first usage of virtual
equipment by the user leads to accommodation with the
system and adaptation with simple and complex interaction
techniques available for use. In time, he might improve the
experience, by training and by changing the application
difficulty.

Other VR equipment uses physical buttons on hand
controllers to activate interaction events. All buttons
behavior are determined by the application and the
interaction response might be defined as long-press or short-
press of the button. Our solution set aside alternative touch
interaction equipment, so that users are not learning new
styles that are not related to real world interaction. Natural
hand gestures detected by the LeapMotion sensor have the
potential to be more natural and familiar than traditional
methods. Based on hand gestures, the system analyzes the
hand structure and performs one of the following actions:
linking an object to the hand system, switching item's parent,
releasing structure connection, running device response or
enabling free object rotation. The amount of time spent by an

user to understand the basic interaction features of the
application is completed in a short period of time, achieved
in the beginning of the simulation. To successfully make an
action in the virtual world, the system leads the user intuition
to try performing different gestures.

The assembly process requires users to have conceptual
knowledge, analytical knowledge and metacognitive
awareness. We did some tests on how much time it takes for
the user to complete the reconstruction model of a robot
composed of 14 parts, with both guided assembly methods
combined and individuals. Five students and two employees
aged between 21 and 35, who have not used a VR headset
before, participated in this immersive assembly test. After
some successful attempts, the following day, users were
given the same model to assembly, without guidance
elements. This way, we tested human retention and
attentiveness. The final results are presented in Table 2.

Guidance Both
methods

Interactive
Indicators

Instr.
Manual None

Completion
Time (min.)

3:45 4:10 5:05 6:20

Table 2. Assembly performance time

SYSTEM REQUIREMENTS
The ideal virtual reality experience using DK2 is achieved
with the maximum allowable latency of about 20ms and
75Hz application frame rate, based on the recommended
hardware requirements for Oculus Rift. In this case, the
whole scene is rendered in approximately 9ms and the rest of
the time up to 13.33ms is allocated to image distortion for
each frame. Once the double scene image is sent to headset
screen, the system initializes the parameters for the next
frame. The following software were used for the application
implementation:

• Oculus Setup (latest version)
• Leap Motion Developer Kit version 4.0.0
The main libraries used are:

• Oculus SDK for Windows version 1.38.0
• Leap Motion Orion version 3.2.0

CONCLUSION
The assembly simulation using VR technology involves
designing a model, breaking it down into pieces and
developing a reconstruction process, based on linking rules.
The purpose of this paper was to describe a virtual reality
training tool of assembling a product in an immersive
environment, based on human hand interaction. The engine
developed processes the render algorithms, displays scene
elements and computes 3D operations on objects based on
user gestures. The overall solution inspired us to see many
innovative ideas in which students and employees can
benefit. Developing new learning tools by using current

Proceedings of RoCHI 2020

151

technology may affect future education system, so that the
new generation to be more advanced on performing practical
skills.

Future improvements include further refinement of hand
gestures and may involve using special gloves equipment
with wireless technology for interaction with the virtual
world. The sensation would be much similar with reality by
feeling that the objects are held in the user's hand, based on
tiny vibrations applied to the fingers. Combining soft
interactions, such as hand gesture and hard interactions, such
as vibro-tactile feedback provides more natural interaction
with virtual objects, similar to manipulation tasks. The result
allows an improvement in the sense of presence perceived by
the user during the interaction.

REFERENCES
1. Active Virtual Reality Users Forecast Worldwide,

Statistica Research Department.
https://www.statista.com/statistics/426469/active-
virtual-reality-users-worldwide

2. Daniel Kersten, Pascal Mamassian and David C Knill,
Moving cast shadows induce apparent motion in depth,
Perception, vol. 26 (1997), 171–92.

3. Zhao, Richard & Aqlan, Faisal & Elliott, Lisa & Lum,
Heather, Developing a virtual reality game for
manufacturing education (2019).

4. Laia Pujol-Tost and M. Phil, Interactivity in virtual and
multimedia environments: a meeting point for education
and ICT in archaeological museums, University of the
Aegean, Department of Cultural Technology and
Communication (2020).

5. Paul Zimmons and Abigail Panter, The Influence of
Rendering Quality on Presence and Task Performance in
a Virtual Environment, Proceedings - Virtual Reality
Annual International Symposium (2003), 293-294.

6. Mihai Pop and Adrian Sabou, Gesture-based Visual
Analytics in Virtual Reality, Revista Română de
Interacțiune Om-Calculator 10, Issue 3 (2017), 216–
230.

7. Thomas Galais, Rémy Alonso and Alexandra Delmas,
Natural Interaction in Virtual Reality: Impact on the
Cognitive Load, The Human Factors and Ergonomics
Society / Europe (2019).

8. A.C. Boud, D.J. Haniff, C. Babe, and S.J. Steiner,
Virtual reality and augmented reality as a training tool
for assembly tasks, Proceedings of IEEE International
Conference on Information Visualization (1999), 32–36.

9. Patricia Baggett and Andrzej Ehrenfeucht, Building
physical and mental models in assembly tasks,
International Journal of Industrial Ergonomics, Volume
7, Issue 3 (1991), 217–227.

10. Unity, Unreal, Godot, How to choose the best real-time
3D solution.
https://www.ausy.com/en/technical-news/unity-unreal-
godothow-choose-best-real-time-3d-solution-0

11. Kevin Horowitz, Skeletal Tracking 101: Getting Started
with the Bone API.
http://blog.leapmotion.com/skeletal-tracking-101-
getting-started-with-the-bone-api-and-rigged-hands

12. Alex Colgan, Hand Hierarchy.
http://blog.leapmotion.com/getting-started-leap-motion-
sdk/hand-hierarchy

13. Oculus Documentation, Rendering to the Oculus Rift.
https://developer.oculus.com/documentation/native/pc/d
g-render

14. A. D. Bradley, B. Karen and A. B. Phillips, Oculus Rift
in Action, Manning Publications (2015).

15. Computing the Hand Orientation.
https://developer-archive.leapmotion.com/
documentation/csharp/devguide/Leap_Hand.html

16. Steven M. LaValle, Planning Algorithms, Cambridge
University Press (2006), 97-100.

17. Josè Luis Blanco Claraco, A tutorial on SE(3)
transformation parameterizations and on-manifold
optimization, University of Málaga (2020), 15–16.

Proceedings of RoCHI 2020

152

