
RASA Conversational Agent in Romanian for
Predefined Microworlds

Bianca Nenciu, Dragos Georgian Corlatescu, Mihai Dascalu
University Politehnica of Bucharest

313 Splaiul Independenței, Bucharest, Romania
nenciu.bianca@gmail.com, {dragos.corlatescu, mihai.dascalu}@upb.ro

DOI: 10.37789/rochi.2020.1.1.1�

ABSTRACT

Technology is becoming omnipresent in our lives due to its
accessibility and ease of use. Conversational agents facilitate
interactions in natural language and are frequently employed
to perform repetitive tasks in a specific context. We
introduce a conversational agent for Romanian built on top
of the open-source RASA framework, capable to
communicate in predefined microworlds. Two scenarios
were considered, namely: a smart home assistant which
interprets commands to IoT devices, and an interactive info-
point for our university focusing on providing guidance to
students. Several enhancements were considered, including
an NLP pre-processing pipeline from spaCy and a
knowledge graph implemented using Grakn for
conceptualizing the information accessible to the agent. Our
agent can quickly classify intents and extract entities with
high accuracy for a given microworld (F1-score of 97% for
the first microworld and 93% for the second). A survey on
10 users showed high satisfaction in terms of the usefulness
and the succinctness of the provided information.
Author Keywords
Conversational agent; Natural Language Understanding;
Romanian language; Microworlds.
ACM Classification Keywords

H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.
I.2.7 Natural Language Processing: Discourse, Language
parsing and understanding, Text analysis
General Terms

Natural Language; Text analysis.

INTRODUCTION
Internet of Things (IoT) is a concept that has grown in
popularity during the last years due to its utility; numerous
day to day objects, such as lightbulbs, can be connected to
the Internet and can be switched on and off remotely.
Another advantage of IoT is that the interaction with physical
objects can be performed using text or voice commands.
Conversational agents are systems that mimic characteristics
of human interactions and can have unstructured

conversations usually meant to provide information or
entertainment to users. Conversational agents are frequently
employed in many domains and businesses, such as customer
support, sales, marketing, and counseling.
There are multiple frameworks that can be used for
implementing conversational agents, but they are mostly
available for wide-spread languages, such as English,
French, or German. However, there is little to no support for
less-spread languages, such as the Romanian language.
This article introduces a conversation agent for Romanian
language, capable to communicate in specific contexts (i.e.,
microworlds). The agent understands intents from the user's
input and responds accordingly in Romanian. Note that the
methods presented here can be extended to other languages,
as well. A microworld can be described as a part of the entire
world where the agent lives. It knows the rules governing this
small world, can interact with individuals by following those
rules, but going outside this context will dramatically
decrease the quality of the conversation or even making it
inconsistent. Our conversational agent focuses on two
different microworlds: 1) a home assistant responsible for
controlling IoT appliances available in user’s residence; 2) a
university info-point to provide student orientation (e.g.,
guidance on the location of classes or of academic staff).
Two important aspects need to be taken into account when
building conversational agents: a) intent classification – i.e.,
the agent should be able to understand what users are saying
or what are their interests; and b) entities detection – i.e., the
agent needs to detect key components from the user’s
sentence and request missing information. For example, if
the user asks "What will be the temperature tomorrow?" the
system should be able to understand that the question is about
the temperature and also to extract the entities "temperature"
and "tomorrow" so that it can respond with the missing
information, the actual temperature.
This paper continues with a presentation of the commonly
used frameworks for building a chatbot. The following
section describes the used corpora, alongside the method
employed for building our agent. The paper continues with
results in terms of performance and a user survey, followed
by conclusions and future leads meant to improve the overall
capabilities of the system.

Proceedings of RoCHI 2020

87

RELATED WORK

Snips [5] is a lightweight dynamic processing pipeline
implemented in Rust [20] and Python. Snips can be easily
integrated with IoT devices that have limited local resources.
Nenciu et al. [16] have extended its pipeline to provide
support for the Romanian language.
RASA [2] is a mature open-source framework which
contains two main components: RASA Natural Language
Understanding (NLU) and RASA Core. The first component
is responsible for intent classification and entity detection,
whereas the second is the dialogue engine which can be used
to implement the conversational agent.
The approach of identifying the intent, as well as discovering
corresponding entities, can be performed separately or
together. The state of the art model for this task is DIET
(Dual Intent and Entity Transformer) [3] implemented in
RASA. The model tackles the two problems together and can
be trained six times faster than other models, while ensuring
accurate results for intent classification and entity
recognition. As seen in Figure 1, the DIET model can also
receive as input pretrained word vectors from BERT [7],
ConveRT or GloVe [17].

Figure 1. High level illustration of DIET [18].

SpaCy [12] integration is another valuable asset for RASA,
especially for low resource languages, such as Romanian.
SpaCy is a Natural Language Processing (NLP) tool that
provides a common interface for processing all integrated
languages. SpaCy can be used to perform part of speech
tagging and dependency parsing, whereas these additional
insights can help the RASA pipeline provide more accurate
results.
In past years, various approaches for simultaneous intent
classification and entity recognition have been researched
and published. One of the oldest approach was described by
Zhang and Wang [26], who used joint models built using
Gated Recurrent Unit (GRU) [4], where the hidden state was
used for both tasks; their approach managed to outperform
the state-of-the-art solutions of that time.
A more recent approach for dual intent classification intent
and entity extraction architecture was proposed by Vanzo et
al [22] who used both a self-attention mechanism [23] and
bidirectional Long Short Term Memory (LSTM) layers [11].
They managed to score better than older versions of Rasa,
Dialogflow [8] and LUIS [15].

All previously specified frameworks are focusing on a task-
oriented dialogue system. As described by [1] Almansor and
Hussain [1], those kinds of systems are solving a specific
problem or live in a specific context; this is the reason for
being commonly desired by companies. As stated by
Sandbank et al. [21], around 80% of interviewed companies
want to migrate to this type of solutions in 2020 due to their
utility when interacting with a client. The development of
such systems is quite straightforward, involving predefined
rules and pre-scripted conversations.
For more generic chat bots that are not task-oriented, more
advanced solutions are required while relating to their usage
scenarios. For example, a chit-chat bot can have issues such
as: it can lack specificity, the personality it exposes can be
inconsistent, or it can become boring with standard and
repetitive responses [25]. State of the art models (e.g.,
TransferTransfo [24]) for this type of bots consists of
approaches using transfer learning and Transformer-based
models [23].

METHOD

Corpus

In general, chatbots are task-specific, meaning that they can
handle requests from a predefined microworld. This implies
that a specific corpus has to be created for each experiment.
Two microworlds were explored in this study, namely: a
smart home assistant and an interactive info-point for our
university. The first corpus was manually created, and it
contains 250 sentences on 35 possible intents (see Figure 2
for sample statements). We can further categorize the intents
into 12 actions, such as asking about the calendar of the day
or controlling home devices. One issue with this corpus was
that two intents could have very similar forms, where only
one word is different (e.g., "turn the music up" versus "turn
the music down"), making it difficult for a model to
differentiate between intents.

Figure 2. Sample phrases for the first microworld.

The second corpus (see Figure 3) was designed for the
university info-point and it consists of both manual and
automatically generated sentences. First, we developed a list
of entities that can appear in a sentence, such as: name of
course subjects (e.g., "Object Oriented Programming",
"Electronics"), name of classrooms (e.g., "EG105"), name of
teachers, among others. Second, we manually created
sentences that had placeholders for the previously mentioned
entities. Third, we generated sentences by randomly

setTemperature intent
- Setează temperatura la [roomTemperature](19

degrees) în [room](bedroom)
- Poți crește temperatura la [roomTemperature](22

degrees)?
getRecipe intent
- Spune-mi rețeta pentru [recipe](pizza).
- Găsește-mi rețeta pentru [recipe](clătite).

Proceedings of RoCHI 2020

88

selecting entities from the specific sets. Given this approach,
we generated 80 sentences representing 11 actions which
were more different from each other in comparison to the
home assistant corpus.

Figure 3. Sample phrases for the second microworld.

Architecture

The proposed pipeline uses Rasa NLU and corresponding
components, and combines them into a new pipeline which
offers support for Romanian. We rely on the spaCy model
integrated in the ReaderBench framework [6] to perform
dependency parsing and part of speech tagging. Figure 4
introduces the overarching pipeline from RASA that relies
on spaCy to parse the user query.

The most important components from the NLU engine are
the tokenizers – which split the input phrase into smaller
semantical units (i.e. words), featurizers – which convert the
words into float vectors, and intent classifiers and entity
extractors – which in this case are handled all at once by the
DIET component. Initial releases of RASA used only a
simple CRF (Conditional Random Field) [14], which had
problems when the number of training sentences was large
(hundreds). DIET has a Transformer-base architecture [23]
that uses multiple consecutive CRFs; thus, the new model is
no longer susceptible to the initial problems.
Additional relevant Romanian resources integrated in our
agent include the DexOnline.ro database, a popular
Romanian dictionary. The dictionary itself provides a
comprehensive list of word definitions, alongside with word
types, popularity, and inflections. Our Romanian resource
files consists the following:
• Top 10,000 most used words, together with their

corresponding inflections;
• Top 2,000 verbs and lexemes;
• Stop words (i.e., words having no contextual

information);
• Randomly generated word lists (i.e., noise used for data

augmentation and training the intent classifier);
• Over 1000 of Romanian texts relevant for our

microworld scenarios: books, news article, Wikipedia
pages.

Figure 4. The RASA pipeline integrated with spaCy.

Dialog Management

A dialog manager is responsible for the flow of the dialog
between the user and the conversational agent. Figure 5
introduces the steps for the dialog manager, which takes the
output of the NLU component, updates the current state of
the dialog, the user’s history, as well as other important
information, and outputs instructions for the response
selector.
The input to the dialog manager is a human utterance,
converted to its semantic representation by going through the
intent classification and the entity extraction process. For
example, a question like “Unde găsesc cursul de programare
orientată pe obiecte?” (eng. “Where do I find the Object

Oriented Programming class?”) will be transformed to a
query like “find(class=’OOP’)”. As the input is too
ambiguous, the dialog management will try to find relevant
user information, such as their class name. Furthermore, the
knowledge base is queried for information about that specific
class and its name. Finally, the agent will output an
instruction like “class_location (class_name=’2CB’,
class=’OOP’, room=’PR001’)” which is outputted into
natural language: “Cursul de programare orientată pe obiecte
pentru seria 2CB se ține în sala PR001 la ora 18:00.” (eng.
“The Object Oriented Programming course for the 2CB
series takes place in room PR001 at 18:00.”).

find_schedule_with_course
- Unde se desfășoară cursul de [Metode

Numerice](course)?
- Spune-mi, te rog, în ce sală pot participa la

[Algoritmi Paraleli și Distribuiți](course)
find_schedule_with_class_and_class_type
- Unde se ține [laboratorul](class_type) pentru

grupa [311CB](group_name)?
- Unde se ține [cursul](class_type) pentru seria

[CB](group_name)?
find_schedule_with_course_and_class_and_class_type
- Unde se ține [cursul](class_type) de

[Engleză](course) pentru grupa
[321CC](group_name)?

Proceedings of RoCHI 2020

89

Figure 5. Dialog management architecture.

Intent Classification and Entity Extraction

The first step of every conversation consists of waiting for
user’s input, which is a characteristic specific to any dialog
management system, followed by classifying and extracting
entities using DIET. One improvement that can occur at this
stage and might be implemented in the future consists of
transforming the extracted entities into machine readable
representations (e.g., “mâine la 8” / eng. “tomorrow at 8”
could be converted to a timestamp).
Context Tracking

User history or previous states must be maintained between
queries and replies for conversations to become stateful. For
this purpose, a small knowledge base called a “tracker” is
built and stored in an in-memory data structure offered by a
Redis [19] backend. When a new session starts, a token is
randomly generated, which is afterwards passed along with
each parsed input. For an even better tracking, the user’s
username, name, or any form of identification can be passed.
In the context of the university chatbot, the tracker can fetch
information about courses and other public information after
an initial authentication which consists of stating your name.
Response Handling

Response handling is the last, but one of the most important
components in building conversational agents. It takes all the
information that has been parsed by the NLU engine and
previous information held by the tracker, and builds a
meaningful answer. There are multiple alternatives in which
an agent can produce a reply, which can even involve natural
language generation. However, we focused on two simpler
techniques: predefined responses and custom actions.
Predefined Responses. The agent can also be trained to
associate arrays of predefined responses with intents similar
to how it is trained with various input phrases and queries,
Moreover, responses do not need to be static, in the sense
that the sentences may differ for a set of queries. The
simplest strategy for making the conversation more human-
like is to define multiple responses for the same intent and
randomly select one of those. In addition, placeholders can
be automatically replaced based on the extracted entities. For

example, if the user greets the agent, then it replies with a
greeting as well. A common interaction could be started by
the user with a “Hei!” (eng. “Hey!” message, while the agent
would respond with “Hei. Cu ce te pot ajuta?” (eng. “Hey!
How may I help you?”).
Custom Actions. Conversational agents can reply using a
custom action implemented in a given programming
language that follows an imposed application logic. The
usual problem with this approach is that the interactions
often seem unnatural, as there is very little nondeterminism
or randomness in the output. For this specific reason, custom
actions may be combined with predefined responses to reply
to the user. Another use case for custom actions is when
additional information is needed from the user, or when third
party APIs are queried.
Knowledge Representation

Our conversational agent needs to store and retrieve relevant
information, as well as the context of a discussion to respond
to the user’s input. We opted for a non-relational database –
Grakn [9] –, an open-source knowledge graph representation
that provides an excellent fit for systems operating with
highly interconnected data. Grakn provides a concept-level
schema which implements the Entity-Relationship model
and provides reasoning capabilities. Figure 6 introduces the
model corresponding to our second microworld scenario.
The agent can perform slot filling tasks by using Graql [10],
Grakn’s Reasoning and Analytics Query Language, in order
to properly continue the conversation with the user.

Figure 6. Grakn knowledge graph for the university info-point.

One of the most important and complex parts of the agent
while considering the second micro-world relates to
navigation queries. The difficulty of answering navigation-
related queries comes not only from the absence of a
localization system, but also from the fact that a long list of
steps may be too difficult to remember. Thus, the agent

Proceedings of RoCHI 2020

90

attempts to describe the destination using the surrounding
environment, points of interest, or any other information that
the user may already have. Some directions, such as the floor
where the room is found, are more important than others,
which describe minor details from the surrounding area (see
Figure 7).

Figure 7. Schema definition for a point of interest.

Sample conversation

Figure 8 introduces a sample conversation between a user
and our conversational agent.

RESULTS

Performance
The training of our agent for each microworld was done on
80% of the corpus; the remaining 20% was used for testing.
Although the number of examples is small, this is not a
problem due to the characteristics of a microworld which is
self-contained, and it considers similar ways to express an
intent. The considered metric for assessing the performance
of our system was the F1-score.
The first microworld contained 203 phrases belonging to 35
categories, while our test suite contained 94 phrases from the
same categories. The system achieved a 97% F1-score with
the corresponding confusion matrix from Figure 9. The
confusion matrix itself shows promising results and most test
phrases were correctly classified. Some pairs of intents
which were difficult to classify consist of: “playSong” with
“previousSong”, or “volumeUp” with “volumeDown. For
example, “previousSong” had the lowest F1 scores of 75%,
partially because it is an intent with very few phrases which
can be mixed up with “playSong”. This is somewhat
expected, given how similar two inputs are, with the only
difference between them being “on” versus “off”. In a

production environment, we recommend keeping logs for
intents and periodically updating the dataset to further
increase the system’s accuracy and its performance. This can
be either done automatically by using clustering algorithms
or by manually curating the logs.

Figure 8. Sample conversation between a human (left side) and
our agent (right side).

The second microworld contains 80 phrases belonging to 11
intents, and our test set contained 27 phrases covering all
intents. This microworld included eight predefined dialogs
using 23 responses from 9 categories. The predefined dialogs
and responses were used to train the response selector. The
agent achieved a 93% F1-score and the corresponding
confusion matrix is depicted in Figure 10.

floor sub attribute,
 datatype string;

room sub entity,
 has name,
 has floor,
 plays location;

direction sub attribute,
 datatype string;

map sub relation,
 relates location,
 has direction;

$pr-001 isa room, has name "PR 001", has floor
"parter";

$map-pr-001 (location: $pr-001) isa map,
 has direction "vis-a-vis de grupurile sanitare",
 has direction "accesibil din holul principal";

Proceedings of RoCHI 2020

91

Figure 9. Confusion matrix for the first microworld (home assistant).

Fewer problems are identified since the training dataset was
stricter, with fewer categories and with little overlap between
the intents. We notice that the “find schedule with course and
class and class type” intent is overlapped with “find schedule
with class and class type” (without the actual “class”);
nevertheless, this does not matter in practice because both
intents are handled by the same action. Therefore, the end the
user receives the same expected answer.
In addition, the agent has to provide near real-time responses
to ensure the flow of the conversation. We achieved response
times of less than two milliseconds, which can guarantee the
naturalness of the conversation.
User Survey

The NLU engine was evaluated using a small group of 10
undergraduate and Master degree students from our
university who queried the conversational agent for
information, using the second microworld scenario. The
users were afterwards asked to rate their interaction on a
Likert scale from 1 to 10 based on the following criteria:
1. How useful was the information? (1 – “Not usefully at

all”; 10 – “Extremely useful”; M = 9.00, SD =0.77);

2. How pleasant was the interaction? (1 – “Completely
unpleasant”; 10 – “Extremely pleasant interaction”;
M = 9.40, SD =0.77);

3. Have you ever considered the other conversation party
was a machine? (1 – “I thought I was talking with a
person”; 5 – “I cannot say”; 10 representing “I knew that
I was talking with a chat bot” M = 5, SD =0.87).

The Intraclass Correlation Coefficient [13] is 0.888, which
suggests strong agreement between the replies to the survey.
All individuals found the information to be very useful, with
a high user satisfaction (9 on a 10-point scale). Most users
were satisfied in terms of the quality and the succinctness of
the information. The less satisfied users reported they were
looking for additional information and they would have
preferred to avoid the necessity of a secondary query. While
relating to the pleasantness of the conversation, part of the
users considered the agent should have included some chit-
chat messages, while others considered it to be a very
pleasant and the dialog was natural; thus, the low ratings to
the last question.

Proceedings of RoCHI 2020

92

Figure 10. Confusion matrix for the second microworld (university info-point).

CONCLUSION
This paper introduced an NLU engine for Romanian built on
top of RASA, capable to quickly classify intents and extract
entities with high accuracy for a given microworld. The
results are promising for small microworlds that contain a
limited number of phrases used to express an intent, and most
alternatives are similar. We are working towards building
and testing on a larger corpus, which should result in a more
general system.
In contrast to close source alternatives, our project runs
locally, and it requires few resources after the DIET classifier
was trained. Intent classifying with an external service could
be easier to implement, but the processing would take a
considerably longer time because even the ideal round trip
time could already be over 20 times slower than the usual
processing time of our engine (1-2ms).
We consider that an important improvement for the NLU
engine consists of integrating advanced language models
(e.g., a Romanian BERT model), which would expand
further the agent’s capability across microworlds. In
addition, we plan to expand our research to corpus-based
architectures to ensure more natural conversations.

Another interesting area of research relates to the
classification of multiple intents from a single user
statement. In real world situations, we often find ourselves
building complex phrases containing multiple actions. The
current system returns only the most probable action or none,
if no probability is greater than the imposed threshold. In
tight correlation to the previous research lead of using the
agent in real-life scenarios, our approach was evaluated
independently from a speech-to-text engine, which would
induce additional errors; however, our training set only
contains correct phrases, with no spelling errors. Thus,
additional fine-tuning, integration of correction mechanisms,
and extensive testing are required.

ACKNOWLEDGMENTS

This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS – UEFISCDI, project number PN-III 72PCCDI ⁄
2018, ROBIN – “Roboții și Societatea: Sisteme Cognitive
pentru Roboți Personali și Vehicule Autonome”.

Proceedings of RoCHI 2020

93

REFERENCES
1. Almansor, E.H. and Hussain, F.K., 2019. Survey on

Intelligent Chatbots: State-of-the-Art and Future
Research Directions. In Proceedings of the Conference
on Complex, Intelligent, and Software Intensive
Systems (Sydney, Australia), Springer, 534-–543.

2. Bocklisch, T., Faulkner, J., Pawlowski, N., and Nichol,
A., 2017. Rasa: Open source language understanding
and dialogue management. arXiv preprint
arXiv:1712.05181.

3. Bunk, T., Varshneya, D., Vlasov, V., and Nichol, A.,
2020. DIET: Lightweight Language Understanding for
Dialogue Systems. arXiv preprint arXiv:2004.09936.

4. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y., 2014.
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078.

5. Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier,
A., Leroy, D., Doumouro, C., Gisselbrecht, T.,
Caltagirone, F., and Lavril, T., 2018. Snips voice
platform: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

6. Dascalu, M., Dessus, P., Trausan-Matu, Ş., Bianco, M.,
and Nardy, A., 2013. ReaderBench, an environment for
analyzing text complexity and reading strategies. In
Proceedings of the International Conference on
Artificial Intelligence in Education (Memphis, TN,
United States), Springer, 379–388.

7. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.,
2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805.

8. Google, 2020. Dialogflow. Retrieved September 30th
2020 from https://cloud.google.com/dialogflow.

9. Grakn, n.d. Grakn webpage. Retrieved July 27th 2020
from https://grakn.ai/.

10. Graql, n.d. Graql Query Language. Retrieved July 27th
2020 from https://dev.grakn.ai/docs/query/overview.

11. Hochreiter, S. and Schmidhuber, J., 1997. Long short-
term memory. Neural computation 9, 8, 1735–1780.

12. Honnibal, M. and Montani, I., 2017. spacy 2: Natural
language understanding with bloom embeddings.
convolutional neural networks and incremental parsing
7, 1.

13. Koch, G.G., 1982. Intraclass correlation coefficient. In
Encyclopedia of Statistical Sciences, S. Kotz and N.L.
Johnson Eds. John Wiley & Sons, New York, NY,
213–217.

14. Lafferty, J., McCallum, A., and Pereira, F.C., 2001.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings
of the ICML (Williamstown, MA, USA), Morgan
Kaufmann, 282–289.

15. Microsoft, 2020. LUIS. Retrieved September 30th
2020 from https://www.luis.ai/.

16. Nenciu, B., Ruseti, S., and Dascalu, M., 2018.
Extracting Actions from Romanian Instructions for IoT
Devices. In Proceedings of the 13th Int. Conf. on
Linguistic Resources and Tools for Processing
Romanian Language (ConsILR 2018) (Iasi, Romania),
168–176.

17. Pennington, J., Socher, R., and Manning, C.D., 2014.
Glove: Global vectors for word representation. In
Proceedings of the Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP) (Doha, Qatar), Association for
Computational Linguistics, 1532–1543.

18. RASA, 2020. Introducing DIET: state-of-the-art
architecture that outperforms fine-tuning BERT and is
6X faster to train. Retrieved July 27th 2020 from
https://blog.rasa.com/introducing-dual-intent-and-
entity-transformer-diet-state-of-the-art-performance-
on-a-lightweight-architecture/.

19. Redis, n.d. Redis Homepage. Retrieved July 27th 2020
from https://redis.io.

20. Rust, n.d. Rust documentation. Retrieved July 27th
2020 from https://prev.rust-lang.org/en-US/.

21. Sandbank, T., Shmueli-Scheuer, M., Herzig, J.,
Konopnicki, D., Richards, J., and Piorkowski, D.,
2018. Detecting egregious conversations between
customers and virtual agents. In Proceedings the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics, Volume 1
(New Orleans, Louisiana), ACL, 1802–1811.

22. Vanzo, A., Bastianelli, E., and Lemon, O., 2019.
Hierarchical multi-task natural language understanding
for cross-domain conversational ai: HERMIT NLU.
arXiv preprint arXiv:1910.00912.

23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I.,
2017. Attention is all you need. In Proceedings of the
Advances in neural information processing systems
(Long Beach, CA, USA), Curran Associates, Inc.,
5998–6008.

24. Wolf, T., Sanh, V., Chaumond, J., and Delangue, C.,
2019. Transfertransfo: A transfer learning approach for
neural network based conversational agents. arXiv
preprint arXiv:1901.08149.

25. Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D.,
and Weston, J., 2018. Personalizing dialogue agents: I
have a dog, do you have pets too? arXiv preprint
arXiv:1801.07243.

26. Zhang, X. and Wang, H., 2016. A joint model of intent
determination and slot filling for spoken language
understanding. In Proceedings of the IJCAI (New
York, New York, USA), AAAI Press / International
Joint Conferences on Artificial Intelligence, 2993–
2999.

Proceedings of RoCHI 2020

94

