
Proceedings of RoCHI 2021 

 - 90 - 

Intelligent Avatar Interaction in 3D Computer Games 
Miklos Balazs1, Dorian Gorgan2  

Technical University of Cluj-Napoca 
Computer Science Department 

Cluj-Napoca, Romania 
1mklsbali@yahoo.com, 2dorian.gorgan@cs.utcluj.ro  

 
ABSTRACT 
The artificial intelligence elements make the computer game 
more unpredictable and attractive by increasing the creative 
and emotional involvement of the players. An avatar can be 
directly controlled by the user through interaction techniques 
or at certain times, the avatar can make decisions alone in a 
behavior not controlled by the user. This paper attempts to 
determine experimentally how the intelligent characters may 
be trained, what are the level of intelligent behavior an avatar 
can reach through learning, or how the avatar makes 
decisions on his own through an adaptive behavior. The 
paper highlights solutions for efficient and successful 
training of the avatar.   

Author Keywords 
Intelligent agent, computer game, reinforcement learning, 
user interaction, avatar. 

ACM Classification Keywords 
H.5.2 User Interfaces. 

DOI: 10.37789/rochi.2021.1.1.14 

INTRODUCTION 
Computer games have been developed a lot in recent 
decades. The introduction of artificial intelligence elements 
makes the game more interesting and unpredictable, which 
increases the creative and emotional involvement of players 
in the game evolution. 

The characters in the game can adapt to unforeseen situations 
and can make their own decisions. The so-called NPC (Non-
Player Characters) have been defined by Warpefelt [20] such 
as “characters within a computer game that are controlled by 
the computer, rather than the player”. They can be 
represented for instance, by animals, monsters, vehicles, 
plant or various animated objects, and can play different 
roles. But not only NPC characters can be endowed with 
artificial intelligence, but even the avatar, as a representative 
of the user in the game. 

There are not much research and many publications in the 
literature regarding the practical methodology of designing 
and developing computer games by introduction of artificial 
intelligence elements. This paper attempts to find out 
answers to the following questions: 

• How to combine user-controlled interactive behavior 
with free and adaptive avatar behavior in a computer 
game? 

• How does artificial intelligence work in games? 

• How difficult is to design and train an intelligent 
agent and avatar for an adaptive behavior? 

• What is the highest level an agent and an avatar can 
reach through learning? 

For this purpose, the training of an agent is experienced in 
order to be able to pass alone to a destination, among several 
static or dynamic obstacles. Finally, the package of 
knowledge and skills accumulated by the agent is assigned 
to an avatar in a 3D game. 

In an application or a game, the avatar can be controlled 
interactively and directly by the user or the avatar can have 
an adaptive, intelligent behavior, making movement 
decisions himself. The paper aims to explore experimentally 
such a complex interaction.  

The paper is structured as follows. The next section presents 
some related works reported in the game literature. The 
following section describes the game as a framework for the 
experiments. Then, we present some conceptual solutions to 
develop an intelligent agent within an environment. The 
more consistent section experiment and validate solutions 
based on four use cases of an intelligent agent moving 
through obstacles. The following section validate the agent 
as a controlled and intelligent avatar within a game, and the 
last sections concludes the results of the research and the 
paper.  

RELATED WORK 
The scene  crowded by NPC of various roles is developed in 
many games such as Dota 2 [4], Bioshock Infinite [8], 
Skyrim [10], or Mario Series [17]. 

Path planning algorithms based on artificial intelligence 
techniques are used in the game FEAR (First Encounter 
Assault Reconnaissance) [13]. The enemies talk about the 
actions and paths they follow. The psychological factors of 
players in perceiving the virtual world are very important. 

The level of excitement and enjoyability of a user while 
playing games is given by the various events encountered 
during gameplay, by the behavior of the characters, or by the 
interaction with game objects and scene content elements 
[12]. There are different ways to generate content in the 
complex virtual world, such as procedural environment 
generation to different toolkits like DeepMind Control Suite 
[15], or OpenAI Gym [3]. Unity provides a toolkit called 
ML-Agents (Unity Machine Learning Agents) [6] that 



Proceedings of RoCHI 2021 

 - 91 - 

contains a framework for creating intelligent agents for 
computer games. 

The neural networks are used to generate new frames of 
animation in order to provide more realistic movements to 
avatars that look similar to humans [5]. The avatars learn to 
walk, climb, or even jump over obstacles, while maintaining 
their balance. 

Blaga et al., design a dodgeball non-player character (NPC) 
that can be integrated to give more dynamics to a digital 
game [2]. They explore the capabilities of the Unity ML-
Agents technology and test its performance, while analyzing 
the ways in which it can be used to enrich a computer game. 

Mario Kart [7] has used a Recurrent Neural Network for 
training to predict what controller inputs a player would use 
in a particular case, rather than concerning with a direct way 
to win. This is a method that works well for games that can 
be represented by a time series, such as a racing, and for 
agents that get as input visual information.  

Belle et al. [1], by using behavior trees and Unreal Engine 
technology, explain how artificial intelligence can be 
created. They determine which behavior an agent should 
perform depending on its health amount - it should fight or 
run away. 

GAME DESCRIPTION 
This paper presents an application as a game, which concerns 
on experimenting solutions for user interaction techniques 
with intelligent avatars (Figure 21). An avatar can be directly 
controlled by the user through interaction techniques or at 
certain times, the avatar can make decisions alone in a 
behavior not directed by the user.  

The avatars aim to walk toward a target position through a 
complex scene of moving obstacles. This paper attempts to 
determine experimentally how the intelligent characters may 
be trained, what are the level of intelligent behavior an avatar 
can reach through learning, or how the avatar makes 
decisions on his own through an adaptive behavior. 

Through the graphical user interface, the user can set the 
value for some parameters of the movement such as walking 
speed, sprint speed, crouch movement, jump force, bullet 
jump force, and rolling speed.   

The application, and the intelligent agents/avatar have been 
developed in the Unity technology and the ML-Agents 
toolkit. The scene of objects has been developed in Unity. 
The humanoid avatar that inherits the intelligent behavior of 
the agent, and its animations has been developed.  

INTELLIGENT BEHAVIOR  
The avatar and NPC objects should be able to make decisions 
according with information they get from environment. They 
need knowledge to understand the environment and be able 
to choose the next actions. The agent perceives the state of 
the environment and decides to perform an action that 
change the environment [19]. As a result of new state, the 
agent gets a reward. In order to complete convergently to the 
goal, the agent tries to maximize the reward (Figure 22).  

One solution could be to describe the cases by behavioral 
patterns, and each pattern is described by rules, decision 
trees, or mathematically when you can describe conceptually 
and formally the cases. When this formalism is quite 
impossible for diversity or less understanding of the multiple 
cases, a solution is to describe the cases by examples, and 
particularly to train the objects by positive examples. 

Such a solution is to train the objects for various cases in 
order to be able to understand a particular situation within 
the environment, to make a decision and to execute some 
actions. In fact, the behavioral patterns are embodied within 
models that are assigned to various objects within the game.  

Reinforcement learning is a very promising solution through 
which the agents are trained to achieve a goal in an uncertain, 
potentially complex environment [14]. To get the machine to 
reach the appropriate target the agent gets either rewards or 

Figure 21. User interaction techniques in the game: (1) GUI by mouse and keyboard, (2) intelligent avatar behavior. 

Figure 22. The agent perceives the state of the environment 
and decides to perform an action in order to get a reward. 



Proceedings of RoCHI 2021 

 - 92 - 

penalties for the actions it performs. Its goal is to maximize 
the total reward. 

Although the designer sets the reward policy–that is, the 
rules of the game–he gives the model no hints or suggestions 
for how to solve the game [9]. The model learns how to 
complete the task and to maximize the reward by training, 
starting from totally random trials and finishing with 
sophisticated tactics and skills. This approach avoids 
completely the formal description. 

The Unity ML-Agents technology provides the agent 
possibility to perceive the environment through rays casted 
around (Figure 23). 

EXPERIMENTAL EVALUATION AND VALIDATION 
This section analyses the results obtained during the training 
and the inference of the behavioral models. The TensorBoard 
visualization tool has been used to generate some graphics 
about different parameters of the training phase [16]. 

The trainings were done by the PPO (Proximal Policy 
Optimization) algorithms [11], [18]. The meaning of some 
parameters is the following: 

• Cumulative Reward - represents the cumulative average 
reward of agents. This value should increase in the case of a 
successful training. Being a learning process, the value of the 
reward varies in small steps, depending on the bonuses and 
penalties received. 

• Episode Length - the average length of episodes for agents. 
Represents the minimum number of steps by which the agent 
manages to complete his task, respectively to reach the 
destination 

• Value loss - represents the value of the function that shows 
the loss in relation to the reward. Correlates to how well the 
agent is able to predict each step. It should have higher values 
at the beginning and during training and lower values at the 
end of training, when the reward has become stable. 

• Entropy - shows how random are the decisions of the agent. 
The entropy value should decrease slowly during a 
successful training.  

The avatar adaptive behavior has been experimented in four 
use cases of different level of difficulties: Demo, Level 1, 
Level 2, and Level3.  

Demo basic use case 
Before implementing more complex tasks, a demonstration 
of using the Unity ML Agents toolkit is implemented. In this 
basic demonstration, a game scene is implemented where the 
avatar and the target are two cubes. The avatar aims to reach 
the target in the scene. Each environment is limited by 
surrounding walls. If the agent cube meets a wall, its position 
is reset to the initial position and receives a penalty (negative 
reward). If the agent achieves the target it receives a positive 
reward. The experiment proved that the agent accumulates 
knowledge and becomes more and more smart in reaching 
the target. 

Level 1 - The avatar avoids static obstacles 
The first game scene (Level 1) is a training environment in 
which the agent must reach the target to avoid some static 
obstacles along the way. To speed up the learning process, 
we train the agent in parallel in several stages. 

If the agent reaches a checkpoint, it receives a reward. If the 
agent collides with a wall or obstacle, it receives a penalty 
and the agent's position is reset to a random position at the 
beginning of the training environment, also the position of 
the obstacles changes according to a randomization logic. If 
the agent manages to reach the final target the episode ends, 
and it receives a reward. There is a time limit within which 
the agent must reach that destination. If it does not finish on 
time, the episode ends, and it receives a negative reward. The 
time required to complete each level was established 
heuristically, by direct manipulation of the avatar. 

At this scene, 3 training phases were run in an environment 
where the agent had to reach a target, bypassing 3 obstacles 

Figure 23. The agent senses the environment by casting rays around. In the left scene the agent senses the 
walls, the obstacles and the checkpoints. In the right scene the agent senses the next checkpoints on the 

trajectory, as well as the target position. 



Proceedings of RoCHI 2021 

 - 93 - 

whose position changed randomly each time an episode 
ended. 

1. In the first phase, a training from scratch was initiated, 
where the agent learned to walk the scene without obstacles. 

2. The second training phase was initialized from the 
previously obtained model. Now the agent has learned to 
walk the stage with obstacles in 30 seconds. 

3. The third training phase was initialized from the previous 
training phase model. In the end, the agent learned to walk 
the stage with obstacles in 15 seconds. 

Below will be presented the results obtained in the trainings 
in phases 2 (30 seconds, blue line) and 3 (15 seconds, red 
line), (Figure 24). For a more efficient and fast learning, it is 
necessary the training hyperparameters (i.e., number of 
hidden layers, number of units or sets of nodes in the hidden 
layer, learning rate, number of iterations, optimizer, 
activation function, batch size, etc.), are configured as well 
as possible. 

The second training phase (30 seconds) needs 450,000 steps, 
and the third training needs 500,000 of steps. The maximum 
reward (Cumulative Reward), obtained in the case of 30 
seconds, reaches approximately the value of 5.4. It can be 
seen that the reward drops to 4.8 when the agent has only 15 
seconds to go through the scene. 

It can be seen that the length of the episodes decreases from 
the value of 216 to the value of 96, especially in the case of 
complete learning of the scene in 30 seconds (blue line). In 
the case of training in phase 3, the length of the episode 
becomes stable with a value of 95-100 (red line). This means 
that the agent has a positive evolution. At the beginning it 

needs a sequence of 200 steps for the complete passing 
through the scene, and finally it manages to complete the 
scene in 95-100 steps. 

The loss decreases from 0.28 to 0.04 in the case of 
completing the scene in 30 seconds (blue line). This means 
the agent has a good evolution. If the agent has only 15 
seconds, an increase in loss can be observed (red line). In this 
case, the agent has more difficulty completing the scene, 
when it has less time available. 

The behavior of the entropy function is similar to that of the 
loss function. If it has 30 seconds available, the entropy 
decreases from 1.4 to 1.22, meaning the agent makes fewer 
random decisions, so it evolves. A small increase of entropy 
(up to 1.28) in the case of 15 seconds, means that the agent 
has more difficulties, having less time. 

These graphs highlight the progress of the agent's learning in 
completing this game scene. 

Level 2 - The avatar follows a given trajectory 
In this case, the agent's goal is to follow a path marked with 
checkpoints. They must be followed in order and the agent is 
not allowed to bypass a checkpoint. The agent must not start 
at every failure from the starting position but must start from 
the last checkpoint where it arrived. 

We use assisted learning by introducing additional 
constraints in the form of interior walls. This assistance was 
necessary because without the interior walls, the agent failed 
to learn the curved trajectory correctly:  

1. The first phase a training process was run where the agent 
learned to complete the scene with the inner helper walls in 
50 seconds. 

Figure 24. Level 1 – The agent is moving to the target through the static obstacles. 

Figure 25. Level 2 – Cumulative Reward, Episode Length, Value Loss and Entropy graphical presentation for 
movement of the agent along a given trajectory. 



Proceedings of RoCHI 2021 

 - 94 - 

2. After that, another training process was initiated from the 
first model where the agent learned to complete the scene in 
30 seconds. 

3. Finally, another training process from model 2 was 
initiated, where the agent learned to complete the scene in 30 
seconds, but without auxiliary walls inside the training 
environment. 

As a first observation, the length of the curves on the graphs 
differs from the three training processes (Figure 25): 

1. The first training (orange), in which the agent learned to 
complete the scene in 50 seconds, has approximately 
260,000 steps. The maximum reward is about 5.8. 

2. The second training (blue), in which the agent learned to 
complete the scene in 30 seconds has about 350,000 steps. 
The reward increases to a value of 8.7. 

3. The third training (green) has the fewest steps, 130,000) 
and a reward almost as high as that obtained after the second 
training. This means that the agent learned in a shorter time 
to complete the scene in 30 seconds without walls / obstacles 
inside. Obviously, each stage / training was initialized with 
the previous training. Otherwise, such effective learning 
would not be possible. 

The episode of the Episode Length function highlights the 
good evolution of the agent's learning. It can be seen that the 
average length of the episodes decreases with the training 
described above. 

1. At the first training (orange) the shortest episode length is 
about 475 at step 300,000. 

2. In the second training (blue), which was initialized from 
the first training, the shortest episode length is 148 at step 
350,000. 

3. After the third drive (green), which was initialized from 
the second drive, the shortest episode length is 144. 

In the graph of the loss function it can be seen that in most 
trainings (orange and green) the loss decreases. This means 
a good evolution of the agent. When training to complete the 
scene in 30 seconds with interior walls (blue), unlike the two 
training, it is observed that the loss increases, but still, it is 
not very high. The biggest evolution of the agent, in terms of 
losses, is the third training (30 seconds without interior 
walls). In this case, a sudden decrease in the values of the 
loss function can be observed from a value of over 0.4 to a 
value below 0.1. 

The entropy function has a decrease in the 3 training phases. 
This means that the agent makes fewer random decisions, so 
he evolves in learning to complete the scene. It can be seen 
that the entropy decreases from the first training phase to the 
third training phase. The best entropy, 144 was obtained after 
the third training. The graphs show good results, so our agent 
evolved in this case study as well. 

Level 3 - The avatar avoids dynamic obstacles 
In this game scene the obstacles are dynamic. This means the 
obstacles follow a certain trajectory during the game 
according to a certain algorithm. The goal of our agent is to 
cross the stage successfully without encountering obstacles. 
The training environment with checkpoints, walls and the 
final target is similar to the training environment at the 
Level1, the difference lies in the behavior of the obstacles. 

Figure 26. Level 3 – Obstacles are moving horizontally (left), vertically (middle) and on both directions (right). 

Figure 27. Level 3 – Cumulative Reward, Episode Length, Value Loss and Entropy graphical presentation for 
avoiding the obstacles with horizontal movement. 



Proceedings of RoCHI 2021 

 - 95 - 

The agent has 15 predefined seconds to complete this level 
of play. 

Obstacles can have 3 types of behavior: horizontal 
movement, vertical movement or combined movement (both 
horizontal and vertical), (Figure 26). 

Horizontal movement of obstacles 

This scene contains 3 obstacles, which have a movement in 
the horizontal direction (x-axis). We used two configurations 
of hyperparameters, and in both configurations the agent was 
trained in 2 million steps, for the scene is more complex. In 
the second configuration the parameters batch size, buffer 
size and num_epoch have higher values than the first 
configuration. 

The reward function shows that in both hyperparameter 
configurations, the agent's reward increases rapidly between 
steps 200,000 and 300,000 (Figure 27). At step 300,000 the 
reward has a value of 2.2 for configuration 1, and a value of 
1.9 for configuration 2. Somewhere in step 700,000 the value 
of the reward in configuration 2 exceeds the value of the 
reward in configuration 1. At step 2,000,000 the rewards 
become stable in both configurations, reaching an 
approximate value of 2.7. 

The length of the episodes decreases sharply between steps 
200,000 and 300,000. The length it reaches from a value of 
over 200 to a value of about 100 after the end of the training, 
which means that the agent is able to complete the scene in a 
few steps. 

The graph of the loss function shows that the training by the 
hyperparameters of configuration 1 has a lower loss than the 
one with configuration 2. Both trainings are successfully, 
because in both cases the loss decreases. 

The entropy graph similarly shows the good evolution of the 
agent, because during the training a decreasing entropy can 

be observed, which means that the agent makes fewer 
random decisions. The entopy function of the training in 
configuration 1 has a lower value than the entropy in 
configuration 2. 

Each graph highlights the positive evolution of the agent's 
training. Configuration 1 is better for loss and entropy 
functions, and configuration 2 is better for functions of 
reward and length of episodes. 

Vertical movement of obstacles 

This scene contains 3 obstacles moving vertically, along the 
direction of z axis. The agent has 15 seconds to reach the 
destination, bypassing obstacles. 

In this experiment we analyze the trainings, by using the two 
previous configurations. The training is divided into 2 major 
phases, the total length of the training is 1 million steps 
(Figure 28): 

1. The first training phase contains 500,000 steps, and it is 
initiated from the neural network model that knows how to 
walk the scene without obstacles (steps 0 - 500,000). 

2. The second training phase is initiated from the first 
training phase, and it contains a total of 500,000 steps (steps 
500,000 - 1,000,000). 

Between steps 0 - 500,000 the reward function has a greater 
variation. Training with configuration 1 (green line), at step 
500,000 has a higher value (2.4) than training at 
configuration 2 (1.9), (grey line). The length of the episodes 
shows a decrease from 200 to about 120 in both 
configurations.  

At steps 500,000 - 1,000,000 it can be seen that the reward 
has reached in configuration 1 (orange line) up to the value 
of 3, as opposed to configuration 2 (blue line) which has the 
maximum reward 2.6. The length of the episodes decreased 

Figure 28. Level 3 – Cumulative Reward, Episode Length, Value Loss and Entropy graphical presentation for avoiding the 
obstacles with vertical movement. Steps: 0 - 500,000 upper diagrams (green line for Configuration 1, and grey line for 

Configuration 2), steps: 500,000 - 1,000,000 bottom diagrams (orange line for Configuration 1, and blue line for Configuration 2). 



Proceedings of RoCHI 2021 

 - 96 - 

from 110 to 88 in the case of configuration 1 and up to 100 
in the case of configuration 2. In conclusion, after 1 million 
steps the agent has an increase in reward from a value less 
than 1, up to a maximum value of 3. The length of the 
episodes decreased from 220 to 88. 

It is obvious that the training graphs with configuration 1 
show better values than with configuration 2 both in terms of 
reward and length of the episodes. Both the increase in the 
reward and the decrease in the length of the episodes show 
the good evolution of the agent in both training cases. 

In steps 0 - 500,000 the loss functions have a higher 
oscillation in both training configurations, because the 
reward has not yet stabilized. Entropy, in both cases has a 
decrease and after step 500,000 reaches an approximate 
value of 1.4. 

At steps 500,000 - 1,000,000 the loss function begins to 
decrease, which is a good evolution that the reward has 
stabilized. The entropy function of the training by the 
configuration 2 has a larger decrease than the other curve, 
reaching the value of 1.32. 

In conclusion, the lowest loss (0.08) was obtained in the case 
of training with configuration 1, and the best entropy was 
obtained in the case of training with configuration 2 (1.32). 
These data show that the agent evolved well and managed to 
successfully learn the task throughout the training. In terms 
of reward, episode length and losses, the configuration 1 of 
the hyperparameters has achieved better results than 
configuration 2. 

Combined movement of obstacles 

In this scene there are only 2 obstacles in order to reduce the 
training time and required computation resources. The 
obstacles have combined movements along the x-axis and 
along the z-axis. The agent has only 15 seconds to reach the 
destination. 

The training has 3 phases that are performed in 1,500,000 
steps totally (Figure 29): 

1. The first training phase (steps 0 - 500,000) is initialized 
with the neural network model that is the result of learning 
to walk the scene without obstacles. 

2. The second training phase (steps 500,000 - 1,000,000) is 
initialized with the final result of the first phase. 

3. The third training phase (steps 1,000,000 - 1,500,000) is 
initialized with the final result of the second phase. 

At each training phase, configuration 2 is used, rather than 
configuration 1, because it has higher values for the 
hyperparameters batch_size, buffer_size and num_epoch.  

Each reward function has an evolution compared to the 
previous phase. After 500,000 steps, the reward reaches 
approximately 2. After 1 million steps the reward increases 
to almost 2.4, and after 1.5 million steps the maximum 
reward value is approximately 2.6. The largest increase in 
reward function is in the first phase, between steps 0 - 
500,000. This means that the agent learned the most in the 
first phase of training. 

Therefore, the value of the rewards increased from 0 to 2.6 
after the 3 training processes. This means a good evolution 
of the agent training process. 

The functions of the episode lengths have a decrease in the 
third training processes. The average length of the episodes 
decreases from a value higher than 140 to a value lower than 
100, which shows the good evolution of the agent. 

The graphs of the loss functions have many oscillations at 
the third training phase. The oscillation becomes higher after 
the third training phase, but the loss is smaller. These 
oscillations of the loss function show the higher difficulty of 
this scene compared to the others. 

The entropy graph shows a good result, because the entropy 
decreases by increasing the number of training steps. After 
the first training phase, the entropy has the best value of 1.4. 
After the second training phase the value of the entropy 
reaches 1.3, and finally after the 1.5 million steps, the 
entropy reaches almost 1. So, the agent no longer makes so 
many random decisions, which shows a good evolution of 
the learning process. 

In conclusion, each graph shows a good development of the 
agent, in the case of the scene that contains dynamic 
obstacles with combined movements. 

Figure 29. Level 3 – Cumulative Reward, Episode Length, Value Loss and Entropy graphical presentation for avoiding the 
obstacles with combined movement. There are 3 phases: steps 0 - 500,000 (blue line), steps 500,000 - 1,000,000 (red line), and 

steps 1,000,000 – 1,500,000 (green line). Blue, red and green lines are in a sequence of 500,000 steps each phase. 



Proceedings of RoCHI 2021 

 - 97 - 

INTELLIGENT AVATAR WITHIN THE GAME 
The behavior of the intelligent agent within the scene may be 
analyzed through the game and various scenes of objects. 
The two interaction techniques are exemplified: (1) the 
avatar is directly controlled by the user through interaction 
techniques, and (2) at certain times, the avatar can make 
decisions alone in a behavior not directed by the user. 

In the case (2) there are four scenes of different level of 
difficulties: Demo, Level 1, Level 2, and Level3. These 
scenes highlight intelligent behavior and evolution of the 
avatar, as well as the limits of its adaptive ability. The avatar 
goes through the scenes successfully, but sometimes makes 
mistakes determined by the speed of the objects and the 
complexity of the scene.  

CONCLUSIONS 
In this paper we present some approach of training agents 
through four use cases in order to assign the accumulated 
acknowledge to the avatar in the game. The experiments 
have proved successfully the efficient training and the 
adaptive behavior of the avatar through the dynamical 
obstacles in the scene. 

First of all, machine learning is a complex concept, difficult 
to understand. It is very difficult and time consuming for a 
developer to become an expert in this field. For instance, it 
is difficult to determine whether all the learning processes 
the agent goes through are well configured, or environment 
parameters are well configured, or the learning environments 
are well defined. It is certain that there are many ways to 
improve the solutions. 

Another issue that has been identified is the computing time 
that is closely related to the performant hardware resources 
(e.g. cloud or cluster with virtualized GPUs) the performance 
would be significantly improved. 

Future works will focus on extending the intelligent behavior 
to more various cases by composing hierarchically the 
complex behavior from basic abilities. 

REFERENCES 
[1] Belle, S., Gittens, C. and Graham, T.N., Programming 

with Affect: How Behaviour Trees and a Lightweight 
Cognitive Architecture Enable the Development of 
Non-Player Characters with Emotions. In 2019 IEEE 
Games, Entertainment, Media Conference (GEM) (pp. 
1-8). 2019. 

[2] Blaga B.C.Z., Gorgan D., Performance Analysis in 
Implementation of a Dodgeball Agent for Video Games. 
International Journal of User-System Interaction 12(4), 
pp.225-240, (2019). 

[3] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., 
Schulman, J., Tang, J. and Zaremba, W., Openai gym. 
arXiv preprint arXiv:1606.01540. 2016. 

[4] Drachen, A., Yancey, M., Maguire, J., Chu, D., Wang, 
I.Y., Mahlmann, T., Schubert, M. and Klabajan, D., 
Skill-based differences in spatio-temporal team 
behaviour in defence of the ancients 2 (dota 2). In 2014 
IEEE Games Media Entertainment, 2014. 

[5] Holden, D., Komura, T. and Saito, J., Phase-functioned 
neural networks for character control. ACM 
Transactions on Graphics. 2017. 

[6] Johansen, M., Pichlmair, M. and Risi, S., Video Game 
Description Language Environment for Unity Machine 
Learning Agents. In 2019 IEEE Conference on Games 
(CoG) (pp. 1-8). 2019. 

[7] Lei, J., Chen, S. and Zheng, M., Using Machine 
Learning to Play the Game Super Mario Kart. 2019. 

[8] Lizardi, R., BioShock: Complex and alternate histories. 
Game Studies, 2014. 

[9] Osinski B., Budek K., What is reinforcement learning? 
The complete guide, 2018, https://deepsense.ai/what-is-
reinforcement-learning-the-complete-guide/ 

[10] Puente, H. and Tosca, S., The Social Dimension of 
Collective Storytelling in Skyrim. In DiGRA 
Conference. 2013. 

[11] Schulman J., Wolski F., Dhariwal P., Radford A., 
Klimov O., Proximal Policy Optimization Algorithms, 
arXiv:1707.06347v2, 2017. 

[12] Shaker, N., Yannakakis, G. and Togelius, J., Towards 
automatic personalized content generation for platform 
games. In Sixth Artificial Intelligence and Interactive 
Digital Entertainment Conference. 2010. 

[13] Spittle, S. Did This Game Scare You? Because it Sure 
as Hell Scared Me! FEAR, the Abject and the Uncanny. 
Games and Culture, 6(4), pp.312-326. 2011. 

[14] Sutton R.S., Barto A.G., Reinforcement Learning: An 
Introduction, Second Edition, MIT Press, Cambridge, 
MA, 2018. 

[15] Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, 
D.D.L., Budden, D., Abdolmaleki, A., Merel, J., 
Lefrancq, A. and Lillicrap, T., Deepmind control suite. 
arXiv preprint arXiv:1801.00690. 2018. 

[16] TensorBoard as TensorFlow's visualisation toolkit, 
https://www.tensorflow.org/tensorboard. 

[17] Togelius, J., Karakovskiy, S., Koutn k, J. and 
Schmidhuber, J., Super Mario evolution. In 2009 IEEE 
symposium on computational intelligence and games, 
pp. 156-161, 2009. 

[18] Understanding PPO Plots in TensorBoard 
https://medium.com/aureliantactics/understanding-ppo-
plots-in-tensorboardcbc3199b9ba2. 

[19] Unity Machine Learning Agents Toolkit, 
https://github.com/Unity-Technologies/ml-agents. 

[20] Warpefelt, H., The Non-Player Character: Exploring the 
believability of NPC presentation and behavior. 
Doctoral dissertation, Department of Computer and 
Systems Sciences, Stockholm University. 2016.  

 


