
Proceedings of RoCHI 2021

- 44 -

Terrain Generation with Continuous Level of Detail
Lucian-Valentin Deaconu

Technical University of Cluj-
Napoca

Cluj-Napoca, Romania
valentin.l.deaconu@gmail.com

Constantin Nandra
Technical University of Cluj-

Napoca
Cluj-Napoca, Romania

constantin.nandra@cs.utcluj.ro

Dorian Gorgan
Technical University of Cluj-

Napoca
Cluj-Napoca, Romania

dorian.gorgan@cs.utcluj.ro

ABSTRACT
This paper describes the implementation of a terrain
generation technique, featuring a solution meant to address
the problem of continuous level of detail. The implemented
technique is employed as part of a custom-built rendering
engine that can be extended by programming-proficient
users to create desktop applications with 3D rendering
capabilities. Throughout this paper, we focus on the
challenges posed by generating and rendering terrain with
variable level of detail, dependent upon the camera position.
We analyze the roots of the problem and provide a
tessellation-based solution to solve it, while maintainig the
accuracy of the topology. The description of the various
implementation aspects will also include some insight into
the basic data structures employed.

Author Keywords
Dynamic Terrain Generation; Continous Level of Detail
Problem; OpenGL.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Algorithms; Dynamic Terrain generation; 3D rendering;
GPU rendering.

DOI: 10.37789/rochi.2021.1.1.8

INTRODUCTION
Rendering engines are arguably some of the most important
elements of any real-time rendering application. Their main
purpose is to transpose a virtual scene into a sequence of
digital images through the process called rasterization. A
virtual scene consists of multiple objects. Some of them are
so small that it is acceptable for them not to be displayed due
to the very large distance between them and the camera.
Others can be so large that they are visible from any point
within the virtual scene. These require special optimizations,
based on the reasonable assumption that it is not necessary
to have high quality, detailed renderings of far away
surfaces. Appliyng this simple principle in an effective
manner could lead to significant performance gains when
displaying complex scenes. This is the case with terrain
rendering. The terrain is often one of the most important parts

of the perceived environment in open-world scenes. It should
be visible from far-off distances while also appearing
detailed enough when observing patches which are close to
the camera. In some scenes, the terrain is flat (simple) and
does not require much computational power to render.
However, significant problems may arise when land mass
generation is required, because of details like mountains,
valleys or simple bumps, that require the setup of additional
vertices.

The problem with of detailed terrain rendering is somehow
mitigated by the fact that, usually, only a few small parts of
the terrain are close to the observer and therefore have to be
rendered in high quality. The majority of the terrain will be
far from the camera, and its detail quality could decrease with
the distance. This kind of implementation optimization can
be achived by dividing the surface into multiple patches, with
varying levels of details, where low level of detail (high
quality) will be displayed when the observer is close and high
levels (low quality) will be displayed when the observer is
far away.

When dividing the terrain according to varying levels of
detail, patching them together comes with a visual artefact –
cracks. This is due to neighbouring nodes that are found at
the border of different levels of detail, where their resolution
does not match perfectly. This problem is called “continuous
level of detail” – CLOD and represents one of the main topics
of this paper.

Throughout this paper we will present a method of
generating a dynamic terrain model using the GPU. This
model will be able to support the usage of height maps,
lighting (using computed normals) and multiple textures. In
the end, we will also provide a performance analysis of the
proposed method that was implemented.

RELATED WORK
Land mass generation requires the definition of infinite
meshes. Generating vertices along the x and z axis (latitude
and longitude) does not represent a problem due to terrain’s
property of being a grid of equally distant vertices.
Generating values along the y axis requires an infinite
function that associates any pair of (x, z) coordinates to a
floating-point value. Perlin noise represents a method of
achieving this function in a pseudo-random manner as
described within [1] and [2]. It is the recommended to be

Proceedings of RoCHI 2021

- 45 -

used in terrain generation due to its efficiency and its
property of generating smooth noise.

If infinite terrain is not a requirement, the altitude values can
be pre-processed and stored in a digital image named, called
a height map, which contains normalised values (between 0
and 1). One such example is described within [3]. The
authors propose a solution for generating terrain from small
resolution height maps, in a bid to allow users lacking
sophisticated tools to create detailed features with minimal
input.

In the case of large-scale land masses, the mesh can become
very complex, with a large number of vertices implying a
direct impact on performance. Dividing the mesh into
different levels of details can improve the execution time. In
[4] a hierarchical division is described. The author uses a
quad-tree data structure to split terrain into patches with
varying levels of details. The authors of [5] also tackle the
problem of variable levels of detail by using a hierarchical
model, based on a construction tree representation. In this
model, the leaves represent generic terrain features that can
be instantiated with provided parameter sets, such as river
beds, cliffs and ridges. Meanwhile, the intermediary nodes
act as operations, meant to combine the leaves in different
manners. This allows the creation of complex terrain models
starting from a set of primitive features and operations.

Generally, the number of vertices involved in the mesh
definition is directly proportional to the quality of the object,
but inverse proportional to its performance. This is especially
true in the exponential growth achieved by a hierarchical
division. Some aditional geometry can be provided using the
graphics card’s tessellation functionality. This method is
described in [6] and suggests the creation of new primitives
inside of the existent primitive available in the mesh
structure. The new verticies’ properties can be obtained by
interpolating those of the original vertices.

In [7], a solution for using tessellation in terrain generation
is described with an example of graphic pipeline
implementation, using OpenGL’s shader programs. The
author aimed at developing an adaptive tesselation algorithm
that would balance the capability to display detailed terrain
features and the computing resource utilization that it would
entail. The authors of [8] also describe the employment of
tesselation to add surface detail to terrain meshes generated
from height maps. The solution presented within the paper is
meant to tackle the memory limitations that the detailed
visualization of such models could entail, while also
compensating for the limited availability of large-scale
elevation maps. In [9], the authors describe a rendering
approach utilising a tile-based division of the terrain, with
each tile associated to a quad-tree structure, whose nodes are
then being fed to the GPU pipeline for tesselation. The
described implementation can utilize both height maps and
geometry images for generating surface detail data.

When working with terrain models with varying levels of
detail across its surface, one of the most important problems
to solve would be dealing with the transition from high-level
to low-level areas. This tends to affect the smooth transitions
of the height (Z axis) dimension, often leading to artifacts
seen as gaps into the mesh. This issue is tackled in various
souces, in manners pretty much dependent on the chosen
terrain representiation model. For example, the authors of
[10] describe a solution based on Dynamic Stitching Strips
(DSS) used in conjunction with terrain tesselation to achieve
smooth transitions between levels. This solution, the authors
argue, is well suited for real-time rendering. A quad-tree
representation model is described within [11]. With the
terrain organized as a quadtree of tiles, the authors propose a
morphing-based approach to solve the level transition
problem.

Within this paper, we describe our own implementation of a
solution meant to address, among others, the problem of gaps
between the terrain tiles within a quad-tree. It has the benefits
of being adaptable to different heightmaps and featuring a
logarithmic search time for neighbouring tiles to determine
the how to divide the patches along the boundry.

TERRAIN GENERATION
The solution described in this paper was developed as a
module for a rendering engine, designed for use by the
developers of 3D applications. Within the engine, this
component can provide a default implementation of the
ground upon which the virtual scene can be built. Figure 1
shows a screenshot of a demo scene that was built and
rendered using the above-mentioned engine.

Figure 1. Landscape formed by the terrain with decorations,

skybox, fog and sun with lens flare effect

In terrain generation, the basic approach suggests generating
a simple two-dimensional grid of vertices on the X and Z
axes, ignoring the height (Y axis). The obtained mesh, in a
three-dimensional space, is represented in the form of a
simple plane, or flat terrain (Figure 2).

In order to add bumps, height information has to be added on
each vertex. In order to achieve this, a height function should
exist. It can be defined as

ℎ:	ℤ! → [0,∞)

Proceedings of RoCHI 2021

- 46 -

and should return for each pair of coordinates (x, z) a positive
height value. Such a function can be obtained by pre-
processing a height map using noise generators and storing
them in a digital single-channel image, normalising the
values (Figure 3).

When a height map is read, the values should be multiplied
with a constant N, representing the maximum height allowed
in the terrain mesh (minimum height allowed will be 0).

Terrain can be mapped 1:1 to the height map, meaning that
their dimensions should be equal and any pixel in the height
map should have an equivalent as vertex in the terrain’s mesh
(Figure 4). This approach can yield terrain of scalable
quality, dependent upon the complexity of the height map.
The main benefit is the possibility of generating new terrain
by changing the height map, without the need to make
changes to the underlying code. However, the quality of the
mesh overall is limited by the image resolution (high
resolution height maps occupy more memory).

Figure 2. Flat terrain (without any height information)

Figure 3. Example of height map (greyscale)

Figure 4. Simple terrain, with height informations

Navigation
To navigate over the terrain it is necessary to know the bi-
dimensional coordinates (axes x and z) and using those to
compute the y-axis value, by using the height function
described previously, , = 	ℎ(/, 0) ∗ 2, where N is the height
constant. The height value will always be positive (see the
function definition) so the scaled value will also be positive.

In order to keep an object on the surface of the ground while
moving, it is only necessary to keep track of the two axes,
computing the third only when their value is changed. This
method will allow the object to follow the terrain surface.

Increasing terrain quality
To obtain a high-quality terrain with an admissible resolution
height map some vertices must exists without being mapped
to exactly one pixel, implying that the height function should
also provide values for those “sub-pixels”. A simple
approach to achieve this behaviour is using interpolations.
On digital images, bilinear and bicubic interpolations obtain
the best results [12]. This method also comes with limitations
due to pixels’ depth but compared with the previous
approach it can provide a higher quality.

Tessellation
Tessellation or tiling represents the process of covering a
plane (flat surfaces) using one or more geometric shapes with
no gaps. Graphic cards come with the ability of tessellating
primitives (triangles and quads) into multiple primitives. By
taking advantage of this feature, new vertices can be created
inside the terrain’s mesh. Those new vertices will obtain their
height value by interpolating the original primitive vertices’
height values.

Optimization
Combining the methods mentioned until this point will result
in a decent terrain representation, but the performance is
highly impacted by the large number of vertices that must be
processed for every frame.

The mesh processing step can be optimized based on the
observation that it is not necessary to display the same
number of vertices everywhere; the density may be different,
based on the observer position in the virtual scene. The

Proceedings of RoCHI 2021

- 47 -

quality may decrease with distance because less pixels are
covering more vertices in the respective areas.

Figure 5. Simple terrain divided into quad-tree structure

Dividing the mesh into multiple levels of detail can achieve
the desired behaviour, displaying the highest level of detail
on nodes that are closer to the observer and the lowest level
of detail on nodes that are far away from the observer (Figure
5).

Using a hierarchical structure, such as a quad-tree, the terrain
can be properly displayed on each level of the tree, even
when levels are combined, due to the property of the tree,
where each list of sub-nodes can be entirely replaced by the
super-node they belong to. The requirement in using such a
technique is that the terrain can only have square shapes
initially. This is because we need to divide each node in 4
similar sub-nodes, each of which occupy 25% of the surface.

Rendering
Due to the tree hierarchical structure, the rendering process
can be achieved using a recursive method. Starting from the
root node(s), on each node the distance to the observer will
be computed. If the distance is less than the node’s level of
detail threshold, the nodes will be divided into their children
and the process will be resumed on each of them. The process
will continue until a leaf node is found or a node that has the
distance to the observer higher than the threshold level of
detail.

The rendering process can be optimized based on the
observation that each node contains the same geometry, so
all collected nodes to be rendered can be submitted to the
graphics card using instanced rendering. This technique will
reduce the number of draw calls to 1, but will increase the
memory load, due to the necessity of submitting the
transformation matrices for each node.

Another optimization can be achieved by clippping against
the frustum. Due to the fact that the terrain is now divided
into multiple nodes, some of them may find themselves
outside the visibile frustum, so there is no need in
processing/rendering them. Checking against the visibile
frustum can be a difficult problem by itself, but a good
aproximation is to compute the tri-dimensional bounding
box using the physical position of the node with the

minimum and maximum values of the height in the entire
world. A better approximation suggests pre-computing the
local minimum and maximum for respective patch. This can
be achieved using bi-dimensional Range Minimum Queries
(RMQ) – a concept described within [13].

CONTINOUS TERRAIN
Once the mesh generation stage is completed and rendered
to the screen, some visual artefacts (gaps) can be seen
between the terrain nodes. Those gaps appear when two
siblings/cousins are found at the border of a level of detail,
one of them being divided into 4 children (and increasing the
quality with a factor of 2) and one of them being rendered at
it’s current quality. Two of the children will be placed at the
border, so a T-junction is formed, meaning that an extra
vertex will be placed at the middle of the edge, adding height
information to that edge.

Due to their discontinuity (a node has it’s own geometry),
that extra piece of information will be the reason for a crack
to appear (Figure 6). The crack represents a gap between
patches, where the viewer can see the objects that is placed
behind the terrain. In figure, the crack has the color gray
because that is the clear color of the GPU (the background).
Also, in the picture it can be seen that the gap has a triangular
shape, due to the fact that an extra vertex is added in between
two vertices with similar coordinates, so the extra vertex will
have a different height value, generating a triangular shaped
discontinuity.

The solution to this problem, as proposed in here, would be
to use the tessellation factor to fix the gaps, by telling the
graphics card to add an extra vertex to the edges that are
found at the border of the level of detail.

Finding edges at the border
Edges that are found at the border of a level of detail share
the property of being part in two different level of detail
nodes. To find those edges, a search in the quad-tree structure
can be made, so that each node will find out if it shares an
edge with a neighbour that have a higher level of detail than
itself.

Each non-leaf node is divided into 4 sub-nodes. It is fair to
assume that every leaf and non-leaf node, except the root
nodes, will have at least 2 neighbouring siblings nodes, and
2 neighbouring cousins nodes.

Figure 6. Example of cracks (T-junctions) when height
information is applied

Proceedings of RoCHI 2021

- 48 -

The sibling nodes can be queried in a constant time and the
cousin nodes require a search in the tree. Each node knows
its position in the bi-dimensional space (ignoring the height),
so it can compute its neighbour’s position, which is on the
same level of detail. This neighbour does not necessarily
have to exist within the tree. This information can be used to
optimize the search, pruning the nodes that does not contain
the theoretical computed square. From a list of 4 nodes, only
one should contain the desired square, or none at all, meaning
that the node cannot be found on this branch.

The search is done when a node is found having the
computed position or when it is a leaf containing the
geometric square. When no node is found it means that the
looking-for node happens to be outside of the terrain. This
case can be entirely pruned by checking the theoretical
positions to be inside the terrain’s border. The total search
time complexity is logarithmic, so the overall searching
algorithm has a logarithmic time complexity (by running 2
constant time operations and 2 logarithmic time searches).

If a node has all neighbours at the same or higher level of
detail, it is rendered using the same tessellation level on all 4
edges. If a node has a neighbour with lower level of detail, it
will multiply the tessellation factor on the shared edge with
a factor of 2 (Figure 7).

This method reduces the maximum supported tessellation
level by the graphics card with a factor of 2. It allows the
developer to compute dynamically the tessellation factor on
each node, because of the search returning the exact
neighbour. A simpler approach, when all nodes use the same,
constant, tessellation factor, can be achieved by
mathematically computing each neighbour’s level of detail,
therefore avoiding the tree search.

Shading
To add lighting in the scene, normals have to be computed
on each vertex. This is expensive and it should happen in a
pre-processing stage. Due to the property of having the same
vertex position in the tri-dimensional space (by reading the
height value from a height map instead of generating it), the
pre-processing can happen only once and store the results in
a digital image, called a normal map. This information can
be later mapped the same way height is mapped on each
vertex. In order to compute normals a Sobel filter [14] can
be used, sampling 8 neighbours (from the grid) for each
vertex and using their height information. If a node is located
at the border of the terrain’s grid, will assume his “outside”
neighbours as having the height value equal to a constant
(usually 0).

This process is highly independent from one vertex to
another, so it can be parallelized using a compute shader
program. The height map can be passed as a texture to the
compute shader and for each pixel the Sobel filter can be
applied, generating the normals (Figure 8).

Figure 7. Continuous terrain using tessellation factor

Figure 8. The normal map resulted from the height map in figure
2

Multi-texturing
To decorate the terrain, multiple textures should be
combined. Decorating using a single texture is simple, but
not realistic. Pre-processing a multiple textures in a single
texture in a digital image processor software is hard and not
scalable. The solution left is to texture the terrain while
generating using a set of textures.

The solution proposed in this paper suggests using a splat
map (also named blend map) to define where to apply a
texture on the terrain plane. The textures must be blended
together and the splat map must be interpolated due to the
tessellation step, so the only available choise is to use a
floating point digital image. Each image can cover a bi-
dimensional area (matching the terrain) and can store for
each pixel at most 4 float channels. Each channel can be used
to define the percentage of importance of a single texture, so
a simple splat map can be used to combine a maximum of 4
textures. Depending on the developer’s preferences, those
can be either enough or not. In case they are not enough, a
texture atlas can be generated. This is a digital image in
which multiple smaller digital images are stored in a known
grid format. For example, creating a 2x2 grid will allow
storing 4 digital images with 4 channels each, so it can define
up to 16 textures. Each increment of the grid will decrease
the quality of the images (usually with a factor of 2, but it is
not a rule) and increase the number of digital images it can
store.

Proceedings of RoCHI 2021

- 49 -

Figure 9. The splat map generated from the height map in figure 2

and normal map in figure 7

Using this approach, the system can use compute shaders to
generate based on the height and the slope of the map in a
given point the textures that applies in the respective
position. The compute shader will input the number of
textures, the height map and the normal map and will
compute the size of the grid of the atlas (e.g.: using only
power of 2 sizes for the grid, for 5 textures the grid size will
be 2 x 2 = 4 digital images => 4 x 4 (channels each) textures
= 16 textures) using the inputted number of textures. It will
read the values from both height map and normal map for a
pixel and compute which textures apply in the respective
area (which texture is complient with both the height and the
slope values). Figure 9 shows the output of this processed,
using a set of 5 textures. It can be seen in the figure that it
only contains colors in the top half. This is because the digital
image has been splitted into a grid of 4 smaller digital
images. The example contains only 5 textures, so only 5
color channels are used. In the top right digital image, all 4
color channels are used, each representing the coresponding
texture (channel red for texture #1, channel green for texture
#2, channel blue for texture #3, channel alpha for exture #4).
There’s only 5 textures, so in the top right digital image will
contain only the red channel, and the bottom left and bottom
right parts will contain no information, so will be completely
dark.

RESULTS
Combining all the previously described techniques will
generate an efficient and ready to use terrain. This terrain can
be scaled and improved in quality, based on the developer’s
preferences, by tweaking some values, such as number of
root nodes for the quad-tree structure, tessellation factor,
terrain size (scales on XZ-axis or Y-axis), textures and their
conditions to apply on the map. The implementation can be
scaled based on user’s computer configuration, to result in a
good performance on low-end devices.

Figure 10 illustrates an example rendering of a terrain sample
generated by using the approach described within this paper.

To test the performance of the implementation, some
benchmarking was done. The computer on which the tests
ran had the following configuration:

• CPU: Intel® Core™ i7-7700HQ CPU @ 2.80GHz x 8

• RAM: 16 GB

• GPU: NVIDIA GeForce GTX 1050/PCIe/SSE2 (Mobile)

• VRAM: 4 GB

• OpenGL 4.1.0, on NVIDIA 465.31

• OS: Ubuntu 20.04

• Compiler: GNU G++ 9.3.0

Table 1 shows the test results. The columns have the
following meaning:

• Root nodes: the number of individual patches that are
combined to form the final terrain;

• Processed vertices (CPU): the average number of vertices
that are processed by the CPU at each frame; the
number of vertices in the total scene can be larger, but
due to frustum culling, some of them are cut out of the
processing stage

• Level of detail: specifies if the level of detail is enabled on
the respective tests. If enabled, the CPU handles the
update method on each frame, for each node. This
carries a O(log) complexity. If disabled, the update
method has a constant time complexity;

• Tessellation Level (GPU): specifies the constant level of
tessellation used by the GPU to add extra vertices to the
patches;

• Frames per second: the resulted metric used to compare the
performance of the entire system;

The tests were divided into 4 categories, depending on the
root nodes (with 4, 16, 32 and 64) root nodes, each
containing 3 individual tests (except the category with 64
root nodes, which contains 4). With these tests, we wanted
to demonstrate the performance impact in scenarios when the
GPU receives a higher workload (when the tessellation level
increases) or when the CPU receives a higher workload
(when the level of detail is increased). In the last category,
an additional test was made, in which we wanted to describe
the huge impact on GPU performance, even with a low
tessellation level.

In each category, the first test (and the second in the last
category) proves that the performance decreases 3 to 4 times
due to an exponential increas in the number of vertices
processed on the GPU. The second test (respectively the last)
proves that the performance decreaseses 4.5 to 5.5 times with
an exponential increase in the number of vertices processed
on the CPU and an addition of an extra O(log) method
running each frame for each drawn node.

Proceedings of RoCHI 2021

- 50 -

• Table 8. Results obtained for the terrain generation system
benchmarking.

Root
Nodes

Processed
vertices
(CPU)

Level of
detail

Tessellat
ion Level
(GPU)

Frames
per
second

4 256 Disabled 1 5720.53

4 256 Disabled 32 2351.13

4 4194304 Enabled 32 447.27

16 1024 Disabled 1 5211.73

16 1024 Disabled 32 1368.60

16 16777216 Enabled 32 294.07

32 2048 Disabled 1 5246.13

32 2048 Disabled 32 1369.6

32 33554432 Enabled 32 254.93

64 4096 Disabled 1 4450.53

64 4096 Disabled 32 742.80

64 67108864 Enabled 32 152.13

The tests were made with V-sync disabled, forcing both the
CPU and the GPU to run at 100% usage, generating the
maximum number of frames.

In real use-cases, it is reasonable to assume that only high
quality terrain will be used, so filtering the entries with level
of detail enabled and plotting them will return the following
plot (Figure 11).

It can be seen (Figure 11) that the number of frames per
second decreases linearly with a linear increase in the
number of vertices processed. The reason behind their
inverse proportionality is that because more vertices have to
be processed, each consuming some execution time. The
entire frame costs more execution time so the overall
performance is affected, returning a decreased number of
frames per second.

Figure 11. Tabular data plotted, on horizontal axis –
processed vertices on CPU side, on vertical axis – frames

per second

The value 32 for the tessellation level have been chosen
because it is the maximum value the algorithm can use. The
maximum value the GPU allows for the tessellation level is
64, but due to the fac that the algorithm requires multiplying
the tessellation level on some edges with 2, the maximum
allowed value is decreased to 32.

The value 64 for the root nodes has been chosen as the
maximum to perform the test, due to the fact that using 128
(the next value) will already cover the entire height map used
for this development process, so each level of detail will
require to compute the height values by linear interpolating,
reaching the maximum precision values (8-bit per channel),
generating the so called “step artifacts”.

CONCLUSION
In this paper we have described a method that was used to
generate the terrain for a custom-built game engine. The
terrain generation technique is capable of producing dynamic
terrain efficintly, with features such as varying level of
detail, shading and multi-texturing. This method is efficient
due to its ability to be entirely pre-computed, its cost being
reduced to only a tree search, with an overall complexity of
O(log4). Using tessellation, the workload is split on both
CPU and GPU and the communication between them is
reduced to a single draw call.

Figure 10. Left: final result in wireframe mode, right: final result with multiple textures and lighting

Proceedings of RoCHI 2021

- 51 -

The results from the tests show that the proposed
implementation is capable of producing a upwards of 150
frames per second for geometries of up to 67 million vertices.
In our opinion, this indicates a pretty robust implementation,
that could potentially see usage even on devices with more
modest computing capabilities.

REFERENCES

[1] T. Archer, “Procedurally Generating Terrain,”
Morningside College, Sioux City, USA, 2011.

[2] D. Maung, Y. Shi and R. Crawfis, “Procedural textures
using tilings with Perlin Noise,” Proceedings of the
2012 17th International Conference on Computer
Games: AI, Animation, Mobile, Interactive
Multimedia, Educational & Serious Games
(CGAMES), p. 60–65, 2012.

[3] A. Mangra, A. Sabou and D. Gorgan, “TSCH
algorithm - Terrain synthesis from crude heightmaps,”
Revista Romana de Interactiune Om-Calculator, vol.
9, no. 2, pp. 119-144, 2016.

[4] J. R. Woodward, “The explicit quad tree as a structure
for computer graphics,” The Computer Journal, vol.
25, no. 2, pp. 235-238, 1982.

[5] J. Génevaux, G. E., A. Peytavie, E. Guérin, C. Briquet,
F. Grosbellet and B. Benes, “Terrain Modeling from
Feature Primitives,” Computer Graphics Forum, vol.
34, no. 6, 2015.

[6] J. Pelikán and J. Horáček, “Geometry and
tessellation,” 2012.

[7] A. K. Jakobsen, “Tessellation based terrain rendering,
Master thesis,” Norwegian University of Science and

Technology, Department of Computer and
Information Science, 2012.

[8] A. Frasson, T. Engel and C. Pozzer, “Improving
Terrain Visualization Through Procedural Generation
and Hardware Tessellation,” Proceedings of SBGames
2016, 2016.

[9] H. Kang, H. Jang, C.-S. Cho and J. Han, “Multi-
resolution terrain rendering with GPU tessellation,”
The Visual Computer, vol. 31, no. 4, 2014.

[10] L. Zhang, J. She, J. Tan, B. Wang and Y. Sun, “A
Multilevel Terrain Rendering Method Based on
Dynamic Stitching Strips,” International Journal of
Geo-Information, vol. 8, no. 6, 2019.

[11] S. Kalem and A. Kourgli, “Irregular Morphing for
Real-Time Rendering of Large Terrain,” ISPRS -
International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, pp.
755-762, 2016.

[12] P. Thévenaz, T. Blu and M. Unser, “Image
Interpolation and Resampling,” in Handbook of
Medical Imaging: Processing and Analysis, I. N.
Bankman., Ed., Academic Press, 2000.

[13] A. Amir, J. Fischer and M. Lewenstein, “Two-
Dimensional Range Minimum Queries,” in
Proceedings of the Combinatorial Pattern Matching,
18th Annual Symposium, CPM 2007, 2007.

[14] I. Sobel and G. Feldman., “An Isotropic 3×3 image
gradient operator,” 1990.

