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ABSTRACT 
This paper describes the implementation of a terrain 
generation technique, featuring a solution meant to address 
the problem of continuous level of detail. The implemented 
technique is employed as part of a custom-built rendering 
engine that can be extended by programming-proficient 
users to create desktop applications with 3D rendering 
capabilities. Throughout this paper, we focus on the 
challenges posed by generating and rendering terrain with 
variable level of detail, dependent upon the camera position. 
We analyze the roots of the problem and provide a 
tessellation-based solution to solve it, while maintainig the 
accuracy of the topology. The description of the various 
implementation aspects will also include some insight into 
the basic data structures employed. 

Author Keywords 
Dynamic Terrain Generation; Continous Level of Detail 
Problem; OpenGL. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

General Terms 
Algorithms; Dynamic Terrain generation; 3D rendering; 
GPU rendering.  

DOI: 10.37789/rochi.2021.1.1.8 

INTRODUCTION 
Rendering engines are arguably some of the most important 
elements of any real-time rendering application. Their main 
purpose is to transpose a virtual scene into a sequence of 
digital images through the process called rasterization. A 
virtual scene consists of multiple objects. Some of them are 
so small that it is acceptable for them not to be displayed due 
to the very large distance between them and the camera. 
Others can be so large that they are visible from any point 
within the virtual scene. These require special optimizations, 
based on the reasonable assumption that it is not necessary 
to have high quality, detailed renderings of far away 
surfaces. Appliyng this simple principle in an effective 
manner could lead to significant performance gains when 
displaying complex scenes. This is the case with terrain 
rendering. The terrain is often one of the most important parts 

of the perceived environment in open-world scenes. It should 
be visible from far-off distances while also appearing 
detailed enough when observing patches which are close to 
the camera. In some scenes, the terrain is flat (simple) and 
does not require much computational power to render. 
However, significant problems may arise when land mass 
generation is required, because of details like mountains, 
valleys or simple bumps, that require the setup of additional 
vertices.  

The problem with of detailed terrain rendering is somehow 
mitigated by the fact that, usually, only a few small parts of 
the terrain are close to the observer and therefore have to be 
rendered in high quality. The majority of the terrain will be 
far from the camera, and its detail quality could decrease with 
the distance. This kind of implementation optimization can 
be achived by dividing the surface into multiple patches, with 
varying levels of details, where low level of detail (high 
quality) will be displayed when the observer is close and high 
levels (low quality) will be displayed when the observer is 
far away. 

When dividing the terrain according to varying levels of 
detail, patching them together comes with a visual artefact – 
cracks. This is due to neighbouring nodes that are found at 
the border of different levels of detail, where their resolution 
does not match perfectly. This problem is called “continuous 
level of detail” – CLOD and represents one of the main topics 
of this paper. 

Throughout this paper we will  present a method of 
generating a dynamic terrain model using the GPU. This 
model will be able to support the usage of height maps, 
lighting (using computed normals) and multiple textures. In 
the end, we will also provide a performance analysis of the 
proposed method that was implemented. 

RELATED WORK 
Land mass generation requires the definition of infinite 
meshes. Generating vertices along the x and z axis (latitude 
and longitude) does not represent a problem due to terrain’s 
property of being a grid of equally distant vertices. 
Generating values along the y axis requires an infinite 
function that associates any pair of (x, z) coordinates to a 
floating-point value. Perlin noise represents a method of 
achieving this function in a pseudo-random manner as 
described within [1] and [2]. It is the recommended to be 
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used in terrain generation due to its efficiency and its 
property of generating smooth noise.  

If infinite terrain is not a requirement, the altitude values can 
be pre-processed and stored in a digital image named, called 
a height map, which contains normalised values (between 0 
and 1). One such example is described within [3]. The 
authors propose a solution for generating terrain from small 
resolution height maps, in a bid to allow users lacking 
sophisticated tools to create detailed features with minimal 
input.  

In the case of large-scale land masses, the mesh can become 
very complex, with a large number of vertices implying a 
direct impact on performance. Dividing the mesh into 
different levels of details can improve the execution time. In 
[4] a hierarchical division is described. The author uses a 
quad-tree data structure to split terrain into patches with 
varying levels of details. The authors of [5] also tackle the 
problem of variable levels of detail by using a hierarchical 
model, based on a construction tree representation. In this 
model, the leaves represent generic terrain features that can 
be instantiated with provided parameter sets, such as river 
beds, cliffs and ridges.  Meanwhile, the intermediary nodes 
act as operations, meant to combine the leaves in different 
manners. This allows the creation of complex terrain models 
starting from a set of primitive features and operations. 

Generally, the number of vertices involved in the mesh 
definition is directly proportional to the quality of the object, 
but inverse proportional to its performance. This is especially 
true in the exponential growth achieved by a hierarchical 
division. Some aditional geometry can be provided using the 
graphics card’s tessellation functionality. This method is 
described in [6] and suggests the creation of new primitives 
inside of the existent primitive available in the mesh 
structure. The new verticies’ properties can be obtained by 
interpolating those of the original vertices.  

In [7], a solution for using tessellation in terrain generation 
is described with an example of graphic pipeline 
implementation, using OpenGL’s shader programs. The 
author aimed at developing an adaptive tesselation algorithm 
that would balance the capability to display detailed terrain 
features and the computing resource utilization that it would 
entail. The authors of [8] also describe the employment of 
tesselation to add surface detail to terrain meshes generated 
from height maps. The solution presented within the paper is 
meant to tackle the memory limitations that the detailed 
visualization of such models could entail, while also 
compensating for the limited availability of large-scale 
elevation maps. In [9], the authors describe a rendering 
approach utilising a tile-based division of the terrain, with 
each tile associated to a quad-tree structure, whose nodes are 
then being fed to the GPU pipeline for tesselation. The 
described implementation can utilize both height maps and 
geometry images for generating surface detail data. 

When working with terrain models with varying levels of 
detail across its surface, one of the most important problems 
to solve would be dealing with the transition from  high-level 
to low-level areas. This tends to affect the smooth transitions 
of the height (Z axis) dimension, often leading to artifacts 
seen as gaps into the mesh. This issue is tackled in various 
souces, in manners pretty much dependent on the chosen 
terrain representiation model. For example, the authors of 
[10] describe a solution based on Dynamic Stitching Strips 
(DSS) used in conjunction with terrain tesselation to achieve 
smooth transitions between levels. This solution, the authors 
argue, is well suited for real-time rendering. A quad-tree 
representation model is described within [11]. With the 
terrain organized as a quadtree of tiles, the authors propose a 
morphing-based approach to solve the level transition 
problem.  

Within this paper, we describe our own implementation of a 
solution meant to address, among others, the problem of gaps 
between the terrain tiles within a quad-tree. It has the benefits 
of being adaptable to different heightmaps and featuring a 
logarithmic search time for neighbouring tiles to determine 
the how to divide the patches along the boundry. 

TERRAIN GENERATION 
The solution described in this paper was developed as a 
module for a rendering engine, designed for use by the 
developers of 3D applications. Within the engine, this 
component can provide a default implementation of the 
ground upon which the virtual scene can be built. Figure 1 
shows a screenshot of a demo scene that was built and 
rendered using the above-mentioned engine. 

 
Figure 1. Landscape formed by the terrain with decorations, 

skybox, fog and sun with lens flare effect 

In terrain generation, the basic approach suggests generating 
a simple two-dimensional grid of vertices on the X and Z 
axes, ignoring the height (Y axis). The obtained mesh, in a 
three-dimensional space, is represented in the form of a 
simple plane, or flat terrain (Figure 2). 

In order to add bumps, height information has to be added on 
each vertex. In order to achieve this, a height function should 
exist. It can be defined as  

ℎ:	ℤ! → [0,∞) 
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and should return for each pair of coordinates (x, z) a positive 
height value. Such a function can be obtained by pre-
processing a height map using noise generators and storing 
them in a digital single-channel image, normalising the 
values (Figure 3). 

When a height map is read, the values should be multiplied 
with a constant N, representing the maximum height allowed 
in the terrain mesh (minimum height allowed will be 0). 

Terrain can be mapped 1:1 to the height map, meaning that 
their dimensions should be equal and any pixel in the height 
map should have an equivalent as vertex in the terrain’s mesh 
(Figure 4). This approach can yield terrain of scalable 
quality, dependent upon the complexity of the height map. 
The main benefit is the possibility of generating new terrain 
by changing the height map, without the need to make 
changes to the underlying code. However, the quality of the 
mesh overall is limited by the image resolution (high 
resolution height maps occupy more memory). 

 

Figure 2. Flat terrain (without any height information) 

 
Figure 3. Example of height map (greyscale) 

 

Figure 4. Simple terrain, with height informations 

Navigation 
To navigate over the terrain it is necessary to know the bi-
dimensional coordinates (axes x and z) and using those to 
compute the y-axis value, by using the height function 
described previously, , = 	ℎ(/, 0) ∗ 2, where N is the height 
constant. The height value will always be positive (see the 
function definition) so the scaled value will also be positive. 

In order to keep an object on the surface of the ground while 
moving, it is only necessary to keep track of the two axes, 
computing the third only when their value is changed. This 
method will allow the object to follow the terrain surface. 

Increasing terrain quality 
To obtain a high-quality terrain with an admissible resolution 
height map some vertices must exists without being mapped 
to exactly one pixel, implying that the height function should 
also provide values for those “sub-pixels”. A simple 
approach to achieve this behaviour is using interpolations. 
On digital images, bilinear and bicubic interpolations obtain 
the best results [12]. This method also comes with limitations 
due to pixels’ depth but compared with the previous 
approach it can provide a higher quality. 

Tessellation 
Tessellation or tiling represents the process of covering a 
plane (flat surfaces) using one or more geometric shapes with 
no gaps. Graphic cards come with the ability of tessellating 
primitives (triangles and quads) into multiple primitives. By 
taking advantage of this feature, new vertices can be created 
inside the terrain’s mesh. Those new vertices will obtain their 
height value by interpolating the original primitive vertices’ 
height values. 

Optimization 
Combining the methods mentioned until this point will result 
in a decent terrain representation, but the performance is 
highly impacted by the large number of vertices that must be 
processed for every frame.  

The mesh processing step can be optimized based on the 
observation that it is not necessary to display the same 
number of vertices everywhere; the density may be different, 
based on the observer position in the virtual scene. The 
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quality may decrease with distance because less pixels are 
covering more vertices in the respective areas. 

 

Figure 5. Simple terrain divided into quad-tree structure 

Dividing the mesh into multiple levels of detail can achieve 
the desired behaviour, displaying the highest level of detail 
on nodes that are closer to the observer and the lowest level 
of detail on nodes that are far away from the observer (Figure 
5). 

Using a hierarchical structure, such as a quad-tree, the terrain 
can be properly displayed on each level of the tree, even 
when levels are combined, due to the property of the tree, 
where each list of sub-nodes can be entirely replaced by the 
super-node they belong to. The requirement in using such a 
technique is that the terrain can only have square shapes 
initially. This is because we need to divide each node in 4 
similar sub-nodes, each of which occupy 25% of the surface. 

Rendering 
Due to the tree hierarchical structure, the rendering process 
can be achieved using a recursive method. Starting from the 
root node(s), on each node the distance to the observer will 
be computed. If the distance is less than the node’s level of 
detail threshold, the nodes will be divided into their children 
and the process will be resumed on each of them. The process 
will continue until a leaf node is found or a node that has the 
distance to the observer higher than the threshold level of 
detail. 

The rendering process can be optimized based on the 
observation that each node contains the same geometry, so 
all collected nodes to be rendered can be submitted to the 
graphics card using instanced rendering. This technique will 
reduce the number of draw calls to 1, but will increase the 
memory load, due to the necessity of submitting the 
transformation matrices for each node. 

Another optimization can be achieved by clippping against 
the frustum. Due to the fact that the terrain is now divided 
into multiple nodes, some of them may find themselves 
outside the visibile frustum, so there is no need in 
processing/rendering them. Checking against the visibile 
frustum can be a difficult problem by itself, but a good 
aproximation is to compute the tri-dimensional bounding 
box using the physical position of the node with the 

minimum and maximum values of the height in the entire 
world. A better approximation suggests pre-computing the 
local minimum and maximum for respective patch. This can 
be achieved using bi-dimensional Range Minimum Queries 
(RMQ) – a concept described within [13]. 

CONTINOUS TERRAIN 
Once the mesh generation stage is completed and rendered 
to the screen, some visual artefacts (gaps) can be seen 
between the terrain nodes. Those gaps appear when two 
siblings/cousins are found at the border of a level of detail, 
one of them being divided into 4 children (and increasing the 
quality with a factor of 2) and one of them being rendered at 
it’s current quality. Two of the children will be placed at the 
border, so a T-junction is formed, meaning that an extra  
vertex will be placed at the middle of the edge, adding height 
information to that edge.  

Due to their discontinuity (a node has it’s own geometry), 
that extra piece of information will be the reason for a crack 
to appear (Figure 6). The crack represents a gap between 
patches, where the viewer can see the objects that is placed 
behind the terrain. In figure, the crack has the color gray 
because that is the clear color of the GPU (the background). 
Also, in the picture it can be seen that the gap has a triangular 
shape, due to the fact that an extra vertex is added in between 
two vertices with similar coordinates, so the extra vertex will 
have a different height value, generating a triangular shaped 
discontinuity. 

The solution to this problem, as proposed in here, would be 
to use the tessellation factor to fix the gaps, by telling the 
graphics card to add an extra vertex to the edges that are 
found at the border of the level of detail. 

Finding edges at the border 
Edges that are found at the border of a level of detail share 
the property of being part in two different level of detail 
nodes. To find those edges, a search in the quad-tree structure 
can be made, so that each node will find out if it shares an 
edge with a neighbour that have a higher level of detail than 
itself. 

Each non-leaf node is divided into 4 sub-nodes. It is fair to 
assume that every leaf and non-leaf node, except the root 
nodes, will have at least 2 neighbouring siblings nodes, and 
2 neighbouring cousins nodes.  

 

Figure 6. Example of cracks (T-junctions) when height 
information is applied 
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The sibling nodes can be queried in a constant time and the 
cousin nodes require a search in the tree. Each node knows 
its position in the bi-dimensional space (ignoring the height), 
so it can compute its neighbour’s position, which is on the 
same level of detail. This neighbour does not necessarily 
have to exist within the tree. This information can be used to 
optimize the search, pruning the nodes that does not contain 
the theoretical computed square. From a list of 4 nodes, only 
one should contain the desired square, or none at all, meaning 
that the node cannot be found on this branch.  

The search is done when a node is found having the 
computed position or when it is a leaf containing the 
geometric square. When no node is found it means that the 
looking-for node happens to be outside of the terrain. This 
case can be entirely pruned by checking the theoretical 
positions to be inside the terrain’s border. The total search 
time complexity is logarithmic, so the overall searching 
algorithm has a logarithmic time complexity (by running 2 
constant time operations and 2 logarithmic time searches). 

If a node has all neighbours at the same or higher level of 
detail, it is rendered using the same tessellation level on all 4 
edges. If a node has a neighbour with lower level of detail, it 
will multiply the tessellation factor on the shared edge with 
a factor of 2 (Figure 7). 

This method reduces the maximum supported tessellation 
level by the graphics card with a factor of 2. It allows the 
developer to compute dynamically the tessellation factor on 
each node, because of the search returning the exact 
neighbour. A simpler approach, when all nodes use the same, 
constant, tessellation factor, can be achieved by 
mathematically computing each neighbour’s level of detail, 
therefore avoiding the tree search. 

Shading 
To add lighting in the scene, normals have to be computed 
on each vertex. This is expensive and it should happen in a 
pre-processing stage. Due to the property of having the same 
vertex position in the tri-dimensional space (by reading the 
height value from a height map instead of generating it), the 
pre-processing can happen only once and store the results in 
a digital image, called a normal map. This information can 
be later mapped the same way height is mapped on each 
vertex. In order to compute normals a Sobel filter [14] can 
be used, sampling 8 neighbours (from the grid) for each 
vertex and using their height information. If a node is located 
at the border of the terrain’s grid, will assume his “outside” 
neighbours as having the height value equal to a constant 
(usually 0).  

This process is highly independent from one vertex to 
another, so it can be parallelized using a compute shader 
program. The height map can be passed as a texture to the 
compute shader and for each pixel the Sobel filter can be 
applied, generating the normals (Figure 8). 

 

Figure 7. Continuous terrain using tessellation factor 

 

Figure 8. The normal map resulted from the height map in figure 
2 

Multi-texturing 
To decorate the terrain, multiple textures should be 
combined. Decorating using a single texture is simple, but 
not realistic. Pre-processing a multiple textures in a single 
texture in a digital image processor software is hard and not 
scalable. The solution left is to texture the terrain while 
generating using a set of textures. 

The solution proposed in this paper suggests using a splat 
map (also named blend map) to define where to apply a 
texture on the terrain plane. The textures must be blended 
together and the splat map must be interpolated due to the 
tessellation step, so the only available choise is to use a 
floating point digital image. Each image can cover a bi-
dimensional area (matching the terrain) and can store for 
each pixel at most 4 float channels. Each channel can be used 
to define the percentage of importance of a single texture, so 
a simple splat map can be used to combine a maximum of 4 
textures. Depending on the developer’s preferences, those 
can be either enough or not. In case they are not enough, a 
texture atlas can be generated. This is a digital image in 
which multiple smaller digital images are stored in a known 
grid format. For example, creating a 2x2 grid will allow 
storing 4 digital images with 4 channels each, so it can define 
up to 16 textures. Each increment of the grid will decrease 
the quality of the images (usually with a factor of 2, but it is 
not a rule) and increase the number of digital images it can 
store. 
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Figure 9. The splat map generated from the height map in figure 2 

and normal map in figure 7 

Using this approach, the system can use compute shaders to 
generate based on the height and the slope of the map in a 
given point the textures that applies in the respective 
position. The compute shader will input the number of 
textures, the height map and the normal map and will 
compute the size of the grid of the atlas (e.g.: using only 
power of 2 sizes for the grid, for 5 textures the grid size will 
be 2 x 2 = 4 digital images => 4 x 4 (channels each) textures 
= 16 textures) using the inputted number of textures. It will 
read the values from both height map and normal map for a 
pixel and compute which textures apply in the respective 
area (which texture is complient with both the height and the 
slope values). Figure 9 shows the output of this processed, 
using a set of 5 textures. It can be seen in the figure that it 
only contains colors in the top half. This is because the digital 
image has been splitted into a grid of 4 smaller digital 
images. The example contains only 5 textures, so only 5 
color channels are used. In the top right digital image, all 4 
color channels are used, each representing the coresponding 
texture (channel red for texture #1, channel green for texture 
#2, channel blue for texture #3, channel alpha for exture #4). 
There’s only 5 textures, so in the top right digital image will 
contain only the red channel, and the bottom left and bottom 
right parts will contain no information, so will be completely 
dark.  

RESULTS 
Combining all the previously described techniques will 
generate an efficient and ready to use terrain. This terrain can 
be scaled and improved in quality, based on the developer’s 
preferences, by tweaking some values, such as number of 
root nodes for the quad-tree structure, tessellation factor, 
terrain size (scales on XZ-axis or Y-axis), textures and their 
conditions to apply on the map. The implementation can be 
scaled based on user’s computer configuration, to result in a 
good performance on low-end devices. 

Figure 10 illustrates an example rendering of a terrain sample 
generated by using the approach described within this paper. 

To test the performance of the implementation, some 
benchmarking was done. The computer on which the tests 
ran had the following configuration: 

• CPU: Intel® Core™ i7-7700HQ CPU @ 2.80GHz x 8 

• RAM: 16 GB 

• GPU: NVIDIA GeForce GTX 1050/PCIe/SSE2 (Mobile) 

• VRAM: 4 GB 

• OpenGL 4.1.0, on NVIDIA 465.31 

• OS: Ubuntu 20.04 

• Compiler: GNU G++ 9.3.0 

Table 1 shows the test results. The columns have the 
following meaning: 

• Root nodes: the number of individual patches that are 
combined to form the final terrain; 

• Processed vertices (CPU): the average number of vertices 
that are processed by the CPU at each frame; the 
number of vertices in the total scene can be larger, but 
due to frustum culling, some of them are cut out of the 
processing stage 

• Level of detail: specifies if the level of detail is enabled on 
the respective tests. If enabled, the CPU handles the 
update method on each frame, for each node. This 
carries a O(log) complexity. If disabled, the update 
method has a constant time complexity; 

• Tessellation Level (GPU): specifies the constant level of 
tessellation used by the GPU to add extra vertices to the 
patches; 

• Frames per second: the resulted metric used to compare the 
performance of the entire system; 

The tests were divided into 4 categories, depending on the 
root nodes (with 4, 16, 32 and 64) root nodes, each  
containing 3 individual tests (except the category with 64 
root nodes, which contains 4). With these tests,  we wanted 
to demonstrate the performance impact in scenarios when the 
GPU receives a higher workload (when the tessellation level 
increases) or when the CPU receives a higher workload 
(when the level of detail is increased). In the last category, 
an additional test was made, in which we wanted to describe 
the huge impact on GPU performance, even with a low 
tessellation level.  

In each category, the first test (and the second in the last 
category) proves that the performance decreases 3 to 4 times 
due to an exponential increas in the number of vertices 
processed on the GPU. The second test (respectively the last) 
proves that the performance decreaseses 4.5 to 5.5 times with 
an exponential increase in the number of vertices processed 
on the CPU and an addition of an extra O(log) method 
running each frame for each drawn node.
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• Table 8. Results obtained for the terrain generation system 
benchmarking. 

Root 
Nodes 

Processed 
vertices 
(CPU) 

Level of 
detail 

Tessellat
ion Level 
(GPU) 

Frames 
per 
second 

4 256 Disabled 1 5720.53 

4 256 Disabled 32 2351.13 

4 4194304 Enabled 32 447.27 

16 1024 Disabled 1 5211.73 

16 1024 Disabled 32 1368.60 

16 16777216 Enabled 32 294.07 

32 2048 Disabled 1 5246.13 

32 2048 Disabled 32 1369.6 

32 33554432 Enabled 32 254.93 

64 4096 Disabled 1 4450.53 

64 4096 Disabled 32 742.80 

64 67108864 Enabled 32 152.13 

The tests were made with  V-sync disabled, forcing both the 
CPU and the GPU to run at 100% usage, generating the 
maximum number of frames. 

In real use-cases, it is reasonable to assume that only high 
quality terrain will be used, so filtering the entries with level 
of detail enabled and plotting them will return the following 
plot (Figure 11). 

It can be seen (Figure 11) that the number of frames per 
second decreases linearly with a linear increase in the 
number of vertices processed. The reason behind their 
inverse proportionality is that because more vertices have to 
be processed, each consuming some execution time. The 
entire frame costs more execution time so the overall 
performance is affected, returning a decreased number of 
frames per second. 

 

Figure 11. Tabular data plotted, on horizontal axis – 
processed vertices on CPU side, on vertical axis – frames 

per second 

The value 32 for the tessellation level have been chosen 
because it is the maximum value the algorithm can use. The 
maximum value the GPU allows for the tessellation level is 
64, but due to the fac that the algorithm requires multiplying 
the tessellation level on some edges with 2, the maximum 
allowed value is decreased to 32. 

The value 64 for the root nodes has been chosen as the 
maximum to perform the test, due to the fact that using 128 
(the next value) will already cover the entire height map used 
for this development process, so each level of detail will 
require to compute the height values by linear interpolating, 
reaching the maximum precision values (8-bit per channel), 
generating the so called “step artifacts”. 

CONCLUSION 
In this paper we have described a method that was used to 
generate the terrain for a custom-built game engine. The 
terrain generation technique is capable of producing dynamic 
terrain efficintly, with features such as varying level of 
detail, shading and multi-texturing. This method is efficient 
due to its ability to be entirely pre-computed, its cost being 
reduced to only a tree search, with an overall complexity of 
O(log4). Using tessellation, the workload is split on both 
CPU and GPU and the communication between them is 
reduced to a single draw call.  

Figure 10. Left: final result in wireframe mode, right: final result with multiple textures and lighting 
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The results from the tests show that the proposed 
implementation is capable of producing a upwards of 150 
frames per second for geometries of up to 67 million vertices. 
In our opinion, this indicates a pretty robust implementation, 
that could potentially see usage even on devices with more 
modest computing capabilities. 
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