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ABSTRACT 
In this paper, we discuss how transformers, the current state 
of the art solution for Question Answering (QA) can be 
applied for implementing a conversational agent that can 
offer accurate and informative answers to questions about 
any user-chosen historical figure. We use Wikipedia to 
obtain data for every personality chosen and an information 
retrieval engine to store the data and perform full-text queries 
for obtaining the context dynamically. We tested the 
performance and accuracy for the different transformer 
models, data store, and retrieval methods. The best result was 
obtained using an ALBERT model with a heuristic retrieval 
method. This solution obtained an F1 score of 66.06 and an 
Exact Match (EM) score of 42.22. 
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INTRODUCTION 
We live in an age where information is easily accessible for 
anyone that has access to the internet. All one needs is a 
smart device (smartphone, tablet or pc) with access to an 
internet connection and they can search for almost any 
desired topic. As of 2021, 5.16 billion people (over 65% of 
the global population) have access to the internet. As a 
comparison, in 2011 there were 2.26 billion internet users 
(about 32% of the world population at that time) and in 2001 
there were 0.51 billion users (8.6% of the world population) 
[7]. It should also be noted that the number of websites on 
the internet has also seen steady growth over the years, 
reaching 1.72 billion websites in 2019 (as shown in figure 1). 

As mentioned, the ease of accessing information has grown 
significantly over the years, but because of this growth, the 

 
3 Number of Online Websites from 1991 to 2019.       
Accessed June 02, 2021. URL: https://www.
statista.com/chart/19058/how-many-websites-are-there/ 

difficulty of finding relevant and veridical information has 
also increased. One of the reasons misinformation can spread 
so easily is the growth of the online environment and the 
nature of human beings. Fake news (misinformation) is 
created by manipulative people who use the digital 
environment to take advantage of humans’ inborn preference 
for comfort, convenience and their craving for answers that 
suit their beliefs [9]. 

 

Figure 1: Evolution of number of websites 3 

We also need to mention that, in their search towards finding 
the answer to the questions they pose, users tend to struggle 
to navigate the wealth of online information that is now 
available [4]. 

To be able to mitigate misinformation, but still accommodate 
humans’ desire for knowledge, the need for an automated 
question answering system becomes ever more urgent. 
Unlike search engines which can only return a ranked list of 
documents that may or may not contain the answers users are 
pursuing, we need a system that can quickly respond to the 
questions users pose with sufficient context to validate the 
answer [4]. By using such a system, and carefully selecting 
the sources that the system (the question answering agent) 
uses, we can ensure that users can quickly identify the 
genuine answers to their questions. Therefore, the creation of 
such systems, not only will provide an easier alternative than 
search engines for finding information online but will also be 
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able to attenuate the negative impact that fake news has 
created in the online environment.  

One beneficial domain where such a question-answering 
system would be useful is history. History is essential for 
people to understand themselves and the world around them. 
There is important history for every field and topic from 
medicine and information technology to music and art.  

The study of history allows an individual to comprehend 
more about the various aspects of our world such as 
technology, governmental systems and the link between 
cause and effect. One of the best ways to understand present-
day issues is by analyzing the cause-and-effect chain that led 
to the way things stand in the present [10]. To also make the 
experience more enjoyable to the user, the best way for him 
to experience history is by interacting with someone who 
lived in that context. For that purpose, a question-answering 
agent that embodies a historical figure is a good approach for 
resolving this problem. 

This paper is organized as follows: firstly, we discuss some 
existing approaches on building conversational agents for 
historical figures, after we describe our solution and its 
results and finally, we will present our conclusions.  

RELATED WORK 
There were a few prior approaches to building a 
conversational agent that embodies a certain personality. In 
this section, we will present these approaches and highlight 
the differences between them and our approach. The first 
approach was published by Haller and Rebedea [3], where 
they built a rule-based question answering conversational 
agent. They gathered information about the historical figure 
and saved that information as a fact (a triplet comprised of a 
subject, an action or a verb, and the object). We can see an 
example of how a fact looked in figure 2.  

 
Figure 2: Fact example 

In this example, “me” is the subject, “health-opinion” is the 
action and “neurotic-psychopath is the object”. They saved 
all the facts in the knowledge base of a chat-bot engine called 
ChatScript. Using this engine, they constructed patterns for 
the engine to use when generating the answer for each 
question. 

The second approach was made by Bogatu et al. [1] who built 
a rule-based QA agent, but unlike the previous approach, this 
used two methods to find the necessary information to 
answer a question. The first method used an ontology (an 
explicit specification of a simplified view someone wants to 
represent) to build their knowledge base. Unlike the previous 
attempt where the pattern matching was made on the facts, 
here they also considered the meanings the word has. If this 
method fails in providing an answer, they attempt to find a 
sentence that best answers the given question from a set of 

candidate questions. The sentence selection method has three 
filters to eliminate bad sentences. The first one eliminates the 
sentences that do not match the type of answer the question 
needs (if the question is about when someone was born, the 
answer needs to be a date).  The second one eliminates 
sentences that do not preserve the semantic relationships 
between constituents that appear in the question. The final 
filter generated more questions with different formulations 
but the same meaning to increase the chance of finding a 
good answer. To generate the answers, they also used 
ChatScript and pattern matching. This approach obtained an 
approximate accuracy of 40% for answering the question. 

A more recent approach was proposed by Ilie and Rebedea 
[5] using a sequence-to-sequence model with attention. The 
encoder and decoder were composed of three layers of 256 
GRUs. Is important to mention that their decoder also used 
beam search, a technique that at each step in the decoding 
process, keeps track of the best k candidates for the decoding. 
Unlike the previous attempts which focused more on QA, 
this attempt focused on the dialogue part, creating an agent 
that is good at impersonating a given figure. To assess the 
quality of the response they used metrics for MT tasks like 
BLUE score which measures the similarity between the 
target utterance and the candidate utterance, but also tested 
the agent with human subjects. 

Similar two the first two models, the agent developed for this 
project will focus on the QA task, rather than the 
impersonation part. The important differences between this 
project and the previous approaches are that the agent in this 
project uses the transformer model to generate the answers 
to the question posed by the user and that, we will use metrics 
for assessing the accuracy and performance of the agent. 

PROPOSED SOLUTION 
Our proposed solution has two main components: a backend 
that handles all the logic for data retrieval and interaction 
with the transformer models and a frontend for the user to be 
able to easily access the solution. In this paper we will focus 
only on the backend. 

General Architecture 
The backend is comprised of three main modules (figure 3). 
Each module was constructed to serve a single purpose, for 
creating a well-defined separation between all the elements 
that form the backend. 

The backend controller (which is implemented in app.py), 
the module for interaction with Elasticsearch (which is 
implemented in the class ElasticsearchPersonalities from 
Elasticsearch_controller.py) and the data retrieval module 
for personalities (implemented in the PersonalityData class 
from download_personality_data.py). 

For interacting with the data stored in Elasticsearch the 
backend controller uses the ElasticsearchPersonalities. 
Sequentially, this class uses in one of its methods the 
PersonalityData class for extracting all necessary 
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information about a given personality from the web, more 
exactly from Wikipedia. 

 

Figure 3: General architecture 

Personality Data Retrieval 
Because a transformer model needs a context from which to 
predict the answer to the question posed by the user, the 
PersonalityData class (figure 4) is an important part of the 
backend.  

 

Figure 4: Personalitydata class 

In this version of the software, we will use Wikipedia as the 
source of data for every historical figure that will be added 
to the application. This class downloads all important data 
that can be found on the Wikipedia article of a selected 
historical figure. Since we are only interested in the text data 
that can be found on a page, this class needs to filter all the 
available data to obtain useful information. As seen in figure 
5, the other types of data stored on a Wikipedia page (except 
text data) are tables, links and references, pronunciation and 
spellings, pictures and their labels, external references and 
others. 

 

Figure 5: Useless types of data on Wikipedia for a text 
retrieval QA system 

We used BeautifulSoup not only to obtain all useful 
paragraphs and their headings from Wikipedia but also to 
filter out useless information from the paragraphs based on 
the HTML tags and their ids and classes. Since most 
personality pages on Wikipedia have in the first paragraph a 
parenthesis that contains information already detailed in the 
rest of the article, the method eliminate_first_parenthesis 
was used to remove it.  

This class returns the processed information in three formats: 
topics, paragraphs, and phrases. The topics are subchapters 
on the Wikipedia page, they usually contain multiple 
paragraphs that were grouped on the heading that appeared 
before them. Paragraphs are all the processed paragraphs 
obtained and phrases are all the phrases that have been 
extracted from the paragraphs using Python’s natural 
language toolkit (NLTK) package. 

Elasticsearch Controller 
This controller is used for storing the data returned from the 
personality data retrieval module in an opened Elasticsearch 
instance and to retrieve it in different ways for the prediction 
of the answer. 

 

Figure 6: Elasticsearch controller 

When instanced the ElasticsearchPersonalities class will first 
try to connect to an Elasticsearch instance and then initialize 
the indices (an index can be viewed as a database). Needless 
to say, if there is not an opened Elasticsearch instance then 
the application will not function. The indices available in this 
application can be seen in figure 7.  
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Figure 7: Elasticsearch Indices 

The most important methods in this class are 
add_personality_data and run_query. The first uses the 
PersonalityData class to obtain information about the 
personality from the given URL parameter (this should be 
the URL to the Wikipedia page of the desired historical 
figure). After the data has been received, it tries to add it in 
each index from figure 7 (this process is called indexing). 
The personality_exists function will check if the data for the 
associated historical figure already exists in that index so that 
it will not be added it again. 

The run_query method is used for dynamically extracting the 
context that will be used for the prediction of the transformer. 
The reason why we can not use the whole Wikipedia page in 
the prediction is that transformers need significant dedicated 
RAM to function. The dedicated memory required and the 
time needed to predict the answer to the question increase 
proportionally to the size of the context. In addition, even 
though the attention mechanism of the transformer allows it 
to be able to use a large quantity of text, if that quantity 
becomes too massive it can negatively impact the 
performance of the transformer (more about the concrete 
impact and different results can be found when we will 
discuss the results). Because of these reasons, we need a way 
to dynamically find the context that should contain the 
answer to the question posed by the user.  

The run_query method first uses the parse_question function 
to modify the question to a format that yields better results 
when used as an Elasticsearch query. It has three steps, firstly 
it eliminates leading and trailing whitespace in the question, 
then it removes all the punctuation in the question and lastly, 
it eliminates all wh-pronouns (these are the pronouns that are 
always present in a question, like “why”, “who”, etc.).  We 
can see an example of how this works in table 1. 

Original Question At what subjects was Einstein good 
in school? 

Processed 
Question 

At subjects was Einstein good in 
school 

Table 1: Example for processed question 

The run_query method has four ways of returning the 
probable context that the transformer will use. If the retrieval 
method is one of phrases, paragraphs or topics, it will run a 
query using the personality name and parsed question and 
return several results (this number depends on the retrieval 
method and it was selected following the results obtained, 
more on this when we discuss the results). Then it will 
concatenate all the results in a string and return the string to 
be used as context. The last retrieval method is heuristic. It 
uses a heuristic created using the results obtained to return 
using multiple queries, a different number of results from 
each of the three previous indices. After each of the three 
queries, the results are concatenated in a list. When 

concatenating the results, we used the is_included function 
to remove the duplicates. 

Backend Controller 
Most of the functions that are defined in this component are 
functions that interact with the ElasticsearchPersonalities 
object and return the result as JSON. This component uses 
Flask to create a web API that the frontend uses to interact 
with the transformer model and Elasticsearch.  

For interacting with the available transformer models, we 
will use Hugging Face’s transformers package. With this 
package we can easily import any transformer model 
available in their database and use it for prediction using their 
pipeline package. We only need to create a QA pipeline using 
the desired transformer model and then we can use the 
pipeline for predicting the answer to a question.  

The only route that needs to be discussed is /api/question. 
When receiving a valid request on this route, first we 
dynamically get the context by using the run_query method 
for the selected personality and retrieval method. This along 
with the question will be given to the pipeline created using 
the selected transformer model to obtain the predicted 
answer to the question. 

By using the official rankings for transformers on the 
SQuAD dataset [8], we searched for transformer models in 
Hugging Face’s database that had a very good score on either 
SQuAD 2.0 or SQuAD 1.1. Using this process, we found 
three models that had promising scores. For SQuAD 2.0, we 
found two ALBERT [6] models, one XLARGE and another 
XXLARGE. For SQuAD 1.1 we found a BERT [2] model. 
The scores of these models, for their respective SQuAD can 
be viewed in table 2. 

 BERT ALBERT 
XLARGE 

ALBERT 
XXLARGE 

F1 Score 93.15 87.46 89.35 

EM Score 86.91 84.41 84.11 

Table 2: SQuAD results for used transformer models 

RESULTS 
The solution was evaluated in three different ways. Firstly, 
we will focus on the accuracy of the answers obtained. After 
that, we will focus on the retrieval methods and how they 
compare against each other. Lastly, we will detail the 
performance of the models based on the dedicated memory 
used and the time needed for predicting an answer. 

Accuracy of Answers 
To compute the accuracy, we created a dataset comprised of 
45 questions and answers for three historical figures: Albert 
Einstein, Adolf Hitler, and Mahatma Gandhi. A few 
examples are presented in table 3. 

The accuracy was computed on multiple combinations of 
transformers and retrieval methods. To assess the 

Model 
Score 



Proceedings of RoCHI 2021 

 - 11 - 

performance of each model we used the same metrics used 
for the SQuAD dataset [8], the F1 and EM scores. We started 
from the SQuAD scoring functions and implemented a small 
modification for them to be compatible with the output of our 
test scripts. The F1 measures the similarity between two 
phrases based on the number of tokens (words) they have in 
common, while EM is 1 when the predicted answer is 
identical to the expected answer else is 0. 

Questions Answers 

When was Einstein born? on 14 March 1879 

At what subjects was 
Einstein good in school? 

math and physics 

Why couldn't Hitler apply to 
the School of Architecture? 

he lacked the necessary 
academic credentials 

Where was Hitler born? 
in Braunau am Inn, a 

town in Austria-Hungary 
(in present-day Austria) 

How many times did Gandhi 
marry? 

four times 

What did Gandhi study in 
college? 

law and jurisprudence 

Table 3: Examples of questions and answers in the dataset 

For each of the three transformer models discussed 
previously, the F1 and EM score was computed with a 
different context given. The contexts that have been provided 
to the transformers were the contexts returned by the 
run_query method using the four retrieval options discussed 
previously and additionally the whole Wikipedia page of the 
personality. We need to mention that the results for ALBERT 
XXLARGE with the context being the whole Wikipedia 
page was not checked because of its dedicated RAM 
requirements. All the scores obtained can be viewed in figure 
8. 

 

Figure 8: Accuracy of models depending on the context 

We can see that the best results were obtained using 
ALBERT XLARGE with the heuristic option, obtaining an 
F1 of 66.06 and an EM of 42.22. There were other close 
results, like ALBERT XLARGE and XXLARGE with the 
paragraph option. We can also see that in general, the BERT 

model obtained the lowest scores, whereas the highest 
overall scores were obtained by ALBERT XLARGE. 
However, we can see that the results obtained by our 
application are not as good as the results the models obtained 
on SQuAD. Two factors contribute to this difference in 
accuracy. Firstly, in this application, we need to dynamically 
select our context for performance reasons (more about this 
later). Secondly, because we have a dataset comprised of 
only 45 questions, we cannot train the transformer on our 
data to obtain better results, since we would need at least 500 
question-answer pairs to be able to properly train the model.  

We will now go through the types of answers that the best 
scoring transformer (ALBERT XLARGE with heuristic 
option) returned to the questions. Some examples can be seen 
in table 4. 

 Question Answer 
Predicted 
Answer 

Perfect 
Matches 

Who attacked 
Gandhi in 

January 1897? 

a mob of white 
settlers 

a mob of 
white 

settlers 

Partial 
Matches 

Where was 
Gandhi born? 

in Porbandar 
(also known as 
Sudamapuri), a 
coastal town on 
the Kathiawar 

Peninsula 

Porbandar 

 

What is 
Einstein 

known for 
developing? 

the theory of 
relativity 

quantum 
theory, 

No 
Matches 

Who was 
Hitler's 

grandmother? 

Maria Anna 
Schicklgrubber 

Geli 

Detailed 
Answers 

What won him 
support from 

many of 
Germany's 

most powerful 
industrialists? 

a speech 

A speech 
to the 

Industry 
Club in 

Düsseldorf 

Table 4: Types of answers returned by the model 

The model managed to return four types of answers. Before 
examining the answers, it is important to mention that the 
ALBERT models tend to leave punctuation in the answer, 
even though they do not respond with a sentence. The first 
are perfect matches, where the answer provided by the 
transformer contained exactly the information that was 
expected. The second are partial matches. This type of 
answers can appear in multiple forms: they can be either 
incomplete (“Porbandar” without detailing what and where 
Porbandar is) or they can contain some of the expected 
words, but the general answer is different from the expected 
one (“quantum theory,” instead of “the theory of relativity”). 

66,0662,9157,8460,261,2359,762,5959,2556,9158,2156,2648,7645,9450,92

42,2235,5537,7744,4435,5535,535,5531,114035,5526,6626,6628,8824,44

0 20 40 60 80
Answers by ALBERT…
Answers by ALBERT…
Answers by ALBERT…

Answers by BERT - Heuristic
Answers by BERT - Topics

Exact Score F1 Score
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The third type of answers are the answers that are completely 
different from the expected ones. These answers have two 
causes for appearing. They can either be caused because 
run_query did not manage to return the target paragraph in 
the context, or because the transformer was not trained on 
exactly this type of questions. The last type is answers where 
the transformer model manages to give a response that is 
even more detailed than the expected answer (“A speech to 
the Industry Club in Düsseldorf” instead of “a speech”). 

Retrieval Methods 
Since we dynamically select the context that is used by the 
transformer, we need to examine how many results need to 
be returned from an index so that the context will contain the 
target phrase. We constructed a table that contains for every 
question (out of the 45 questions in the dataset), the index of 
the topic/paragraph/phase that contained the answers when 
making a query on Elasticsearch using the processed 
question.  

In general, the target phrase would be returned in the first 
few results however there were instances where this was not 
the case. For some question there was a very large number of 
topics/paragraphs/phrases that needed to be returned so that 
the context would contain the target phrase. By examining 
the place where the information requested by those questions 
appears on the Wikipedia page, we can determine that for 
Elasticsearch to be able to return the target within only the 
first few results, the words that appear in the query need to 
be similar to the words that appear in the indexed document. 
For the question “When did Gandhi die?”, on the Wikipedia 
page the death of Gandhi is described as follows: “a Hindu 
nationalist, fired three bullets into his chest from a pistol at 
close range”. Because the information provided from the 
words in the question is very different from the words in the 
Wikipedia source, Elasticsearch can not find these answers 
easily. The question “What happened to Gandhi's body after 
death?” also does not provide good information because in 
the Wikipedia article it is mentioned that “Gandhi was 
cremated in accordance with Hindu tradition” completely 
separately from his death (they are not even in the same 
topic), because of this Elasticsearch can not infer that this 
should be in the first results. 

We mentioned that we will present how we have chosen the 
numbers for the heuristic option. We computed the mean for 
the necessary number of phrases, paragraphs and topics that 
needed to be returned to obtain the target phrase in the 
context. There was an average number of 58 phrases, or 10 
paragraphs or 3 topics that needed to be returned. However, 
returning 58 phrases would miss 6 gold phrases, returning 8 
paragraphs would miss 7 gold paragraphs and returning 3 
topics would miss 11 gold topics. A compromise needed to 
be made. By comparing the minimum number of results for 
each question in each index and considering the mean for 
each index we decided that the heuristic will return 1 topic, 
8 paragraphs and 10 phrases. Using this heuristic would 

mean only 3 questions out of 45 would not get the target 
phrase in the context. 

Performance 
 A way to be able to make sure that the transformer will have 
the target phrase in the context would be to give a context 
containing more results. If we would give the transformer all 
the Wikipedia page for a historical figure, then the context 
would 100% contain the target phrase. However, doing this 
impacts the transformer’s performance negatively in 
multiple ways. 

Looking at the results from figure 8 we can see that the 
models that had the whole page as context performed worse 
than ALBERT XLARGE with the heuristic. This is because 
when the context becomes too big even if the model is 
performant, the attention mechanism will not be enough to 
remember all the long-term dependencies, so the model will 
fail to answer correctly. Even though ALBERT XLARGE 
with the heuristic has questions that would be impossible to 
answer since the context received does not include the target 
phrase, it still performed better than the models that had the 
entire page. This means that the transformer model benefits 
from a context that is smaller in size. 

The context is important to the performance of the 
transformer. If a larger context is given then the model will 
need more dedicated RAM to be able to predict the answer, 
also with a larger context, the time needed for the transformer 
to answer a question is also increased. The dedicated RAM 
for each scenario can be viewed in table. 

  BERT ALBERT 
XLARGE 

ALBERT 
XXLARGE 

Article 5,1 5,8 7,5 

Topics 2,8 2,2 3,4 

Paragraphs 2,8 2,1 3,1 

Phrases 2,8 2,1 3,1 

Heuristic 2,6 2 3 

Table 5: Mean necessary dedicated RAM for Prediction (GB) 

We can see that giving the whole Wikipedia page to the 
model can consume as much as 8.3 gigabytes (GB) of 
dedicated video RAM (this does not appear in table 8 
because there only the mean for all three personalities is 
presented). The models using Elasticsearch to dynamically 
obtain their context needed a maximum of 3.5 GB RAM, this 
is an improvement of over 235%. Not only that but the 
heuristic method is the one that consumes the least amount 
of RAM, while still obtaining a good result. 

Even if we consider that RAM is not the problem, that we 
have a GPU that has enough memory to easily use the more 
powerful transformer models on pages that have lots of 
information, there is still a problem. For a user to be 
comfortable in using this software the transformer model 
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needs to be able to answer the questions that are posed in a 
relatively short time. We can see the average amount of time 
needed to answer a question for each context variant in table 
6. 

  BERT ALBERT ALBERT  

Article 14,2 33,7 79,7 

Topics 1,3 3,6 6,9 

Paragraphs 1 2,7 4,9 

Phrases 1,3 2,9 5,1 

Heuristic 1,2 3,8 4,9 

Table 6: Necessary average time for prediction (in seconds) 

We can see that giving the whole Wikipedia page also has a 
huge impact on the time necessary for an answer. The models 
that had all the page given as context performed between 10 
and 16 times more slowly than the models which had their 
context selected dynamically using the run_query method. 

CONCLUSION 

General Conclusion 
This paper’s objective was to build a conversational agent 
that can accurately answer questions regarding different 
historical figures that can be chosen arbitrarily by the users. 
The results have shown that even if the transformer was not 
trained of questions for historical figures, it can still perform 
well for a newly added personality. Considering that the 
transformers in the SQuAD rankings are tested and trained 
on a dataset with fixed contexts, this project has shown that 
even without training on this exact type of questions and with 
a dynamically chosen context, the transformer model is still 
able to have a decent performance, a performance superior to 
that of the related projects. 

The entire source code (backend + frontend) that was used in 
this project is available on GitHub4. There you can look 
through it or download it and run the application in your local 
environment. You can easily interact with the application on 
a personality of your choice by following the instructions in 
the GitHub repository.  

Future Work 
This project can be improved in the future. The main 
directions that need improvement are the way in which the 
context is determined dynamically using Elasticsearch, the 
ability to train the transformer models with questions on 
historical figures and providing sources for the information 
more reliable than Wikipedia. 

 
4 Github repository for our paper, Accessed August 30, 2021. 
URL: https://github.com/alex-dima/Conversational-Agent-
Embodying-a-Historical-Figure-using-Transformers  

The way in which the first direction could be handled is to 
create a way to derive new meanings from the question. With 
this we could create a query for Elasticsearch that contains 
more information about what the user wants to know, 
enabling Elasticsearch to combat the situations in which the 
question asked has a completely different structure than the 
answer that exists in the source document. 

For the second direction, we need to create a large enough 
dataset of questions and answers for personalities so that we 
could train the transformers on it. This however would 
require a lot of manpower. To this end, we could let users 
that want to improve the project submit their own questions 
and corresponding answers about the historical figures they 
are interested in. When a large enough dataset is created, we 
will be able to train the transformer on the dataset, fine-
tuning it to better suit the task. 

The last direction in veracity. We mentioned in the 
introduction, that such a QA system would be able to reduce 
the misinformation in the online environment because a user 
could easily ask the agent what they want to know, and they 
would receive the true answer. After the transformer 
accomplished a high enough accuracy to be reliable, we 
could add more veridic sources of information like 
biographical or autobiographical books. We could also 
implement a system so that along with the answer, we also 
return the source of that answer. This way a user can easily 
see where the information originated. 
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