
Proceedings of RoCHI 2021

 - 7 -

Conversational Agent Embodying a Historical Figure
using Transformers

Alexandru Dima
University Politehnica of

Bucharest
313 Splaiul Independetei,

Bucharest, Romania
alexdima98@gmail.com

Traian Rebedea
University Politehnica of

Bucharest
313 Splaiul Independetei,

Bucharest, Romania
traian.rebedea@cs.pub.ro

ABSTRACT
In this paper, we discuss how transformers, the current state
of the art solution for Question Answering (QA) can be
applied for implementing a conversational agent that can
offer accurate and informative answers to questions about
any user-chosen historical figure. We use Wikipedia to
obtain data for every personality chosen and an information
retrieval engine to store the data and perform full-text queries
for obtaining the context dynamically. We tested the
performance and accuracy for the different transformer
models, data store, and retrieval methods. The best result was
obtained using an ALBERT model with a heuristic retrieval
method. This solution obtained an F1 score of 66.06 and an
Exact Match (EM) score of 42.22.

Author Keywords
Conversational agent; natural language processing; question
answering; data retrieval; transformers.

ACM Classification Keywords
I.2.7 Natural Language Processing

DOI: 10.37789/rochi.2021.1.1.3

INTRODUCTION
We live in an age where information is easily accessible for
anyone that has access to the internet. All one needs is a
smart device (smartphone, tablet or pc) with access to an
internet connection and they can search for almost any
desired topic. As of 2021, 5.16 billion people (over 65% of
the global population) have access to the internet. As a
comparison, in 2011 there were 2.26 billion internet users
(about 32% of the world population at that time) and in 2001
there were 0.51 billion users (8.6% of the world population)
[7]. It should also be noted that the number of websites on
the internet has also seen steady growth over the years,
reaching 1.72 billion websites in 2019 (as shown in figure 1).

As mentioned, the ease of accessing information has grown
significantly over the years, but because of this growth, the

3 Number of Online Websites from 1991 to 2019.
Accessed June 02, 2021. URL: https://www.
statista.com/chart/19058/how-many-websites-are-there/

difficulty of finding relevant and veridical information has
also increased. One of the reasons misinformation can spread
so easily is the growth of the online environment and the
nature of human beings. Fake news (misinformation) is
created by manipulative people who use the digital
environment to take advantage of humans’ inborn preference
for comfort, convenience and their craving for answers that
suit their beliefs [9].

Figure 1: Evolution of number of websites 3

We also need to mention that, in their search towards finding
the answer to the questions they pose, users tend to struggle
to navigate the wealth of online information that is now
available [4].

To be able to mitigate misinformation, but still accommodate
humans’ desire for knowledge, the need for an automated
question answering system becomes ever more urgent.
Unlike search engines which can only return a ranked list of
documents that may or may not contain the answers users are
pursuing, we need a system that can quickly respond to the
questions users pose with sufficient context to validate the
answer [4]. By using such a system, and carefully selecting
the sources that the system (the question answering agent)
uses, we can ensure that users can quickly identify the
genuine answers to their questions. Therefore, the creation of
such systems, not only will provide an easier alternative than
search engines for finding information online but will also be

Proceedings of RoCHI 2021

 - 8 -

able to attenuate the negative impact that fake news has
created in the online environment.

One beneficial domain where such a question-answering
system would be useful is history. History is essential for
people to understand themselves and the world around them.
There is important history for every field and topic from
medicine and information technology to music and art.

The study of history allows an individual to comprehend
more about the various aspects of our world such as
technology, governmental systems and the link between
cause and effect. One of the best ways to understand present-
day issues is by analyzing the cause-and-effect chain that led
to the way things stand in the present [10]. To also make the
experience more enjoyable to the user, the best way for him
to experience history is by interacting with someone who
lived in that context. For that purpose, a question-answering
agent that embodies a historical figure is a good approach for
resolving this problem.

This paper is organized as follows: firstly, we discuss some
existing approaches on building conversational agents for
historical figures, after we describe our solution and its
results and finally, we will present our conclusions.

RELATED WORK
There were a few prior approaches to building a
conversational agent that embodies a certain personality. In
this section, we will present these approaches and highlight
the differences between them and our approach. The first
approach was published by Haller and Rebedea [3], where
they built a rule-based question answering conversational
agent. They gathered information about the historical figure
and saved that information as a fact (a triplet comprised of a
subject, an action or a verb, and the object). We can see an
example of how a fact looked in figure 2.

Figure 2: Fact example

In this example, “me” is the subject, “health-opinion” is the
action and “neurotic-psychopath is the object”. They saved
all the facts in the knowledge base of a chat-bot engine called
ChatScript. Using this engine, they constructed patterns for
the engine to use when generating the answer for each
question.

The second approach was made by Bogatu et al. [1] who built
a rule-based QA agent, but unlike the previous approach, this
used two methods to find the necessary information to
answer a question. The first method used an ontology (an
explicit specification of a simplified view someone wants to
represent) to build their knowledge base. Unlike the previous
attempt where the pattern matching was made on the facts,
here they also considered the meanings the word has. If this
method fails in providing an answer, they attempt to find a
sentence that best answers the given question from a set of

candidate questions. The sentence selection method has three
filters to eliminate bad sentences. The first one eliminates the
sentences that do not match the type of answer the question
needs (if the question is about when someone was born, the
answer needs to be a date). The second one eliminates
sentences that do not preserve the semantic relationships
between constituents that appear in the question. The final
filter generated more questions with different formulations
but the same meaning to increase the chance of finding a
good answer. To generate the answers, they also used
ChatScript and pattern matching. This approach obtained an
approximate accuracy of 40% for answering the question.

A more recent approach was proposed by Ilie and Rebedea
[5] using a sequence-to-sequence model with attention. The
encoder and decoder were composed of three layers of 256
GRUs. Is important to mention that their decoder also used
beam search, a technique that at each step in the decoding
process, keeps track of the best k candidates for the decoding.
Unlike the previous attempts which focused more on QA,
this attempt focused on the dialogue part, creating an agent
that is good at impersonating a given figure. To assess the
quality of the response they used metrics for MT tasks like
BLUE score which measures the similarity between the
target utterance and the candidate utterance, but also tested
the agent with human subjects.

Similar two the first two models, the agent developed for this
project will focus on the QA task, rather than the
impersonation part. The important differences between this
project and the previous approaches are that the agent in this
project uses the transformer model to generate the answers
to the question posed by the user and that, we will use metrics
for assessing the accuracy and performance of the agent.

PROPOSED SOLUTION
Our proposed solution has two main components: a backend
that handles all the logic for data retrieval and interaction
with the transformer models and a frontend for the user to be
able to easily access the solution. In this paper we will focus
only on the backend.

General Architecture
The backend is comprised of three main modules (figure 3).
Each module was constructed to serve a single purpose, for
creating a well-defined separation between all the elements
that form the backend.

The backend controller (which is implemented in app.py),
the module for interaction with Elasticsearch (which is
implemented in the class ElasticsearchPersonalities from
Elasticsearch_controller.py) and the data retrieval module
for personalities (implemented in the PersonalityData class
from download_personality_data.py).

For interacting with the data stored in Elasticsearch the
backend controller uses the ElasticsearchPersonalities.
Sequentially, this class uses in one of its methods the
PersonalityData class for extracting all necessary

Proceedings of RoCHI 2021

 - 9 -

information about a given personality from the web, more
exactly from Wikipedia.

Figure 3: General architecture

Personality Data Retrieval
Because a transformer model needs a context from which to
predict the answer to the question posed by the user, the
PersonalityData class (figure 4) is an important part of the
backend.

Figure 4: Personalitydata class

In this version of the software, we will use Wikipedia as the
source of data for every historical figure that will be added
to the application. This class downloads all important data
that can be found on the Wikipedia article of a selected
historical figure. Since we are only interested in the text data
that can be found on a page, this class needs to filter all the
available data to obtain useful information. As seen in figure
5, the other types of data stored on a Wikipedia page (except
text data) are tables, links and references, pronunciation and
spellings, pictures and their labels, external references and
others.

Figure 5: Useless types of data on Wikipedia for a text
retrieval QA system

We used BeautifulSoup not only to obtain all useful
paragraphs and their headings from Wikipedia but also to
filter out useless information from the paragraphs based on
the HTML tags and their ids and classes. Since most
personality pages on Wikipedia have in the first paragraph a
parenthesis that contains information already detailed in the
rest of the article, the method eliminate_first_parenthesis
was used to remove it.

This class returns the processed information in three formats:
topics, paragraphs, and phrases. The topics are subchapters
on the Wikipedia page, they usually contain multiple
paragraphs that were grouped on the heading that appeared
before them. Paragraphs are all the processed paragraphs
obtained and phrases are all the phrases that have been
extracted from the paragraphs using Python’s natural
language toolkit (NLTK) package.

Elasticsearch Controller
This controller is used for storing the data returned from the
personality data retrieval module in an opened Elasticsearch
instance and to retrieve it in different ways for the prediction
of the answer.

Figure 6: Elasticsearch controller

When instanced the ElasticsearchPersonalities class will first
try to connect to an Elasticsearch instance and then initialize
the indices (an index can be viewed as a database). Needless
to say, if there is not an opened Elasticsearch instance then
the application will not function. The indices available in this
application can be seen in figure 7.

Proceedings of RoCHI 2021

 - 10 -

Figure 7: Elasticsearch Indices

The most important methods in this class are
add_personality_data and run_query. The first uses the
PersonalityData class to obtain information about the
personality from the given URL parameter (this should be
the URL to the Wikipedia page of the desired historical
figure). After the data has been received, it tries to add it in
each index from figure 7 (this process is called indexing).
The personality_exists function will check if the data for the
associated historical figure already exists in that index so that
it will not be added it again.

The run_query method is used for dynamically extracting the
context that will be used for the prediction of the transformer.
The reason why we can not use the whole Wikipedia page in
the prediction is that transformers need significant dedicated
RAM to function. The dedicated memory required and the
time needed to predict the answer to the question increase
proportionally to the size of the context. In addition, even
though the attention mechanism of the transformer allows it
to be able to use a large quantity of text, if that quantity
becomes too massive it can negatively impact the
performance of the transformer (more about the concrete
impact and different results can be found when we will
discuss the results). Because of these reasons, we need a way
to dynamically find the context that should contain the
answer to the question posed by the user.

The run_query method first uses the parse_question function
to modify the question to a format that yields better results
when used as an Elasticsearch query. It has three steps, firstly
it eliminates leading and trailing whitespace in the question,
then it removes all the punctuation in the question and lastly,
it eliminates all wh-pronouns (these are the pronouns that are
always present in a question, like “why”, “who”, etc.). We
can see an example of how this works in table 1.

Original Question At what subjects was Einstein good
in school?

Processed
Question

At subjects was Einstein good in
school

Table 1: Example for processed question

The run_query method has four ways of returning the
probable context that the transformer will use. If the retrieval
method is one of phrases, paragraphs or topics, it will run a
query using the personality name and parsed question and
return several results (this number depends on the retrieval
method and it was selected following the results obtained,
more on this when we discuss the results). Then it will
concatenate all the results in a string and return the string to
be used as context. The last retrieval method is heuristic. It
uses a heuristic created using the results obtained to return
using multiple queries, a different number of results from
each of the three previous indices. After each of the three
queries, the results are concatenated in a list. When

concatenating the results, we used the is_included function
to remove the duplicates.

Backend Controller
Most of the functions that are defined in this component are
functions that interact with the ElasticsearchPersonalities
object and return the result as JSON. This component uses
Flask to create a web API that the frontend uses to interact
with the transformer model and Elasticsearch.

For interacting with the available transformer models, we
will use Hugging Face’s transformers package. With this
package we can easily import any transformer model
available in their database and use it for prediction using their
pipeline package. We only need to create a QA pipeline using
the desired transformer model and then we can use the
pipeline for predicting the answer to a question.

The only route that needs to be discussed is /api/question.
When receiving a valid request on this route, first we
dynamically get the context by using the run_query method
for the selected personality and retrieval method. This along
with the question will be given to the pipeline created using
the selected transformer model to obtain the predicted
answer to the question.

By using the official rankings for transformers on the
SQuAD dataset [8], we searched for transformer models in
Hugging Face’s database that had a very good score on either
SQuAD 2.0 or SQuAD 1.1. Using this process, we found
three models that had promising scores. For SQuAD 2.0, we
found two ALBERT [6] models, one XLARGE and another
XXLARGE. For SQuAD 1.1 we found a BERT [2] model.
The scores of these models, for their respective SQuAD can
be viewed in table 2.

 BERT ALBERT
XLARGE

ALBERT
XXLARGE

F1 Score 93.15 87.46 89.35

EM Score 86.91 84.41 84.11

Table 2: SQuAD results for used transformer models

RESULTS
The solution was evaluated in three different ways. Firstly,
we will focus on the accuracy of the answers obtained. After
that, we will focus on the retrieval methods and how they
compare against each other. Lastly, we will detail the
performance of the models based on the dedicated memory
used and the time needed for predicting an answer.

Accuracy of Answers
To compute the accuracy, we created a dataset comprised of
45 questions and answers for three historical figures: Albert
Einstein, Adolf Hitler, and Mahatma Gandhi. A few
examples are presented in table 3.

The accuracy was computed on multiple combinations of
transformers and retrieval methods. To assess the

Model
Score

Proceedings of RoCHI 2021

 - 11 -

performance of each model we used the same metrics used
for the SQuAD dataset [8], the F1 and EM scores. We started
from the SQuAD scoring functions and implemented a small
modification for them to be compatible with the output of our
test scripts. The F1 measures the similarity between two
phrases based on the number of tokens (words) they have in
common, while EM is 1 when the predicted answer is
identical to the expected answer else is 0.

Questions Answers

When was Einstein born? on 14 March 1879

At what subjects was
Einstein good in school?

math and physics

Why couldn't Hitler apply to
the School of Architecture?

he lacked the necessary
academic credentials

Where was Hitler born?
in Braunau am Inn, a

town in Austria-Hungary
(in present-day Austria)

How many times did Gandhi
marry?

four times

What did Gandhi study in
college?

law and jurisprudence

Table 3: Examples of questions and answers in the dataset

For each of the three transformer models discussed
previously, the F1 and EM score was computed with a
different context given. The contexts that have been provided
to the transformers were the contexts returned by the
run_query method using the four retrieval options discussed
previously and additionally the whole Wikipedia page of the
personality. We need to mention that the results for ALBERT
XXLARGE with the context being the whole Wikipedia
page was not checked because of its dedicated RAM
requirements. All the scores obtained can be viewed in figure
8.

Figure 8: Accuracy of models depending on the context

We can see that the best results were obtained using
ALBERT XLARGE with the heuristic option, obtaining an
F1 of 66.06 and an EM of 42.22. There were other close
results, like ALBERT XLARGE and XXLARGE with the
paragraph option. We can also see that in general, the BERT

model obtained the lowest scores, whereas the highest
overall scores were obtained by ALBERT XLARGE.
However, we can see that the results obtained by our
application are not as good as the results the models obtained
on SQuAD. Two factors contribute to this difference in
accuracy. Firstly, in this application, we need to dynamically
select our context for performance reasons (more about this
later). Secondly, because we have a dataset comprised of
only 45 questions, we cannot train the transformer on our
data to obtain better results, since we would need at least 500
question-answer pairs to be able to properly train the model.

We will now go through the types of answers that the best
scoring transformer (ALBERT XLARGE with heuristic
option) returned to the questions. Some examples can be seen
in table 4.

 Question Answer
Predicted
Answer

Perfect
Matches

Who attacked
Gandhi in

January 1897?

a mob of white
settlers

a mob of
white

settlers

Partial
Matches

Where was
Gandhi born?

in Porbandar
(also known as
Sudamapuri), a
coastal town on
the Kathiawar

Peninsula

Porbandar

What is
Einstein

known for
developing?

the theory of
relativity

quantum
theory,

No
Matches

Who was
Hitler's

grandmother?

Maria Anna
Schicklgrubber

Geli

Detailed
Answers

What won him
support from

many of
Germany's

most powerful
industrialists?

a speech

A speech
to the

Industry
Club in

Düsseldorf

Table 4: Types of answers returned by the model

The model managed to return four types of answers. Before
examining the answers, it is important to mention that the
ALBERT models tend to leave punctuation in the answer,
even though they do not respond with a sentence. The first
are perfect matches, where the answer provided by the
transformer contained exactly the information that was
expected. The second are partial matches. This type of
answers can appear in multiple forms: they can be either
incomplete (“Porbandar” without detailing what and where
Porbandar is) or they can contain some of the expected
words, but the general answer is different from the expected
one (“quantum theory,” instead of “the theory of relativity”).

66,0662,9157,8460,261,2359,762,5959,2556,9158,2156,2648,7645,9450,92

42,2235,5537,7744,4435,5535,535,5531,114035,5526,6626,6628,8824,44

0 20 40 60 80
Answers by ALBERT…
Answers by ALBERT…
Answers by ALBERT…

Answers by BERT - Heuristic
Answers by BERT - Topics

Exact Score F1 Score

Proceedings of RoCHI 2021

 - 12 -

The third type of answers are the answers that are completely
different from the expected ones. These answers have two
causes for appearing. They can either be caused because
run_query did not manage to return the target paragraph in
the context, or because the transformer was not trained on
exactly this type of questions. The last type is answers where
the transformer model manages to give a response that is
even more detailed than the expected answer (“A speech to
the Industry Club in Düsseldorf” instead of “a speech”).

Retrieval Methods
Since we dynamically select the context that is used by the
transformer, we need to examine how many results need to
be returned from an index so that the context will contain the
target phrase. We constructed a table that contains for every
question (out of the 45 questions in the dataset), the index of
the topic/paragraph/phase that contained the answers when
making a query on Elasticsearch using the processed
question.

In general, the target phrase would be returned in the first
few results however there were instances where this was not
the case. For some question there was a very large number of
topics/paragraphs/phrases that needed to be returned so that
the context would contain the target phrase. By examining
the place where the information requested by those questions
appears on the Wikipedia page, we can determine that for
Elasticsearch to be able to return the target within only the
first few results, the words that appear in the query need to
be similar to the words that appear in the indexed document.
For the question “When did Gandhi die?”, on the Wikipedia
page the death of Gandhi is described as follows: “a Hindu
nationalist, fired three bullets into his chest from a pistol at
close range”. Because the information provided from the
words in the question is very different from the words in the
Wikipedia source, Elasticsearch can not find these answers
easily. The question “What happened to Gandhi's body after
death?” also does not provide good information because in
the Wikipedia article it is mentioned that “Gandhi was
cremated in accordance with Hindu tradition” completely
separately from his death (they are not even in the same
topic), because of this Elasticsearch can not infer that this
should be in the first results.

We mentioned that we will present how we have chosen the
numbers for the heuristic option. We computed the mean for
the necessary number of phrases, paragraphs and topics that
needed to be returned to obtain the target phrase in the
context. There was an average number of 58 phrases, or 10
paragraphs or 3 topics that needed to be returned. However,
returning 58 phrases would miss 6 gold phrases, returning 8
paragraphs would miss 7 gold paragraphs and returning 3
topics would miss 11 gold topics. A compromise needed to
be made. By comparing the minimum number of results for
each question in each index and considering the mean for
each index we decided that the heuristic will return 1 topic,
8 paragraphs and 10 phrases. Using this heuristic would

mean only 3 questions out of 45 would not get the target
phrase in the context.

Performance
 A way to be able to make sure that the transformer will have
the target phrase in the context would be to give a context
containing more results. If we would give the transformer all
the Wikipedia page for a historical figure, then the context
would 100% contain the target phrase. However, doing this
impacts the transformer’s performance negatively in
multiple ways.

Looking at the results from figure 8 we can see that the
models that had the whole page as context performed worse
than ALBERT XLARGE with the heuristic. This is because
when the context becomes too big even if the model is
performant, the attention mechanism will not be enough to
remember all the long-term dependencies, so the model will
fail to answer correctly. Even though ALBERT XLARGE
with the heuristic has questions that would be impossible to
answer since the context received does not include the target
phrase, it still performed better than the models that had the
entire page. This means that the transformer model benefits
from a context that is smaller in size.

The context is important to the performance of the
transformer. If a larger context is given then the model will
need more dedicated RAM to be able to predict the answer,
also with a larger context, the time needed for the transformer
to answer a question is also increased. The dedicated RAM
for each scenario can be viewed in table.

 BERT ALBERT
XLARGE

ALBERT
XXLARGE

Article 5,1 5,8 7,5

Topics 2,8 2,2 3,4

Paragraphs 2,8 2,1 3,1

Phrases 2,8 2,1 3,1

Heuristic 2,6 2 3

Table 5: Mean necessary dedicated RAM for Prediction (GB)

We can see that giving the whole Wikipedia page to the
model can consume as much as 8.3 gigabytes (GB) of
dedicated video RAM (this does not appear in table 8
because there only the mean for all three personalities is
presented). The models using Elasticsearch to dynamically
obtain their context needed a maximum of 3.5 GB RAM, this
is an improvement of over 235%. Not only that but the
heuristic method is the one that consumes the least amount
of RAM, while still obtaining a good result.

Even if we consider that RAM is not the problem, that we
have a GPU that has enough memory to easily use the more
powerful transformer models on pages that have lots of
information, there is still a problem. For a user to be
comfortable in using this software the transformer model

Proceedings of RoCHI 2021

 - 13 -

needs to be able to answer the questions that are posed in a
relatively short time. We can see the average amount of time
needed to answer a question for each context variant in table
6.

 BERT ALBERT ALBERT

Article 14,2 33,7 79,7

Topics 1,3 3,6 6,9

Paragraphs 1 2,7 4,9

Phrases 1,3 2,9 5,1

Heuristic 1,2 3,8 4,9

Table 6: Necessary average time for prediction (in seconds)

We can see that giving the whole Wikipedia page also has a
huge impact on the time necessary for an answer. The models
that had all the page given as context performed between 10
and 16 times more slowly than the models which had their
context selected dynamically using the run_query method.

CONCLUSION

General Conclusion
This paper’s objective was to build a conversational agent
that can accurately answer questions regarding different
historical figures that can be chosen arbitrarily by the users.
The results have shown that even if the transformer was not
trained of questions for historical figures, it can still perform
well for a newly added personality. Considering that the
transformers in the SQuAD rankings are tested and trained
on a dataset with fixed contexts, this project has shown that
even without training on this exact type of questions and with
a dynamically chosen context, the transformer model is still
able to have a decent performance, a performance superior to
that of the related projects.

The entire source code (backend + frontend) that was used in
this project is available on GitHub4. There you can look
through it or download it and run the application in your local
environment. You can easily interact with the application on
a personality of your choice by following the instructions in
the GitHub repository.

Future Work
This project can be improved in the future. The main
directions that need improvement are the way in which the
context is determined dynamically using Elasticsearch, the
ability to train the transformer models with questions on
historical figures and providing sources for the information
more reliable than Wikipedia.

4 Github repository for our paper, Accessed August 30, 2021.
URL: https://github.com/alex-dima/Conversational-Agent-
Embodying-a-Historical-Figure-using-Transformers

The way in which the first direction could be handled is to
create a way to derive new meanings from the question. With
this we could create a query for Elasticsearch that contains
more information about what the user wants to know,
enabling Elasticsearch to combat the situations in which the
question asked has a completely different structure than the
answer that exists in the source document.

For the second direction, we need to create a large enough
dataset of questions and answers for personalities so that we
could train the transformers on it. This however would
require a lot of manpower. To this end, we could let users
that want to improve the project submit their own questions
and corresponding answers about the historical figures they
are interested in. When a large enough dataset is created, we
will be able to train the transformer on the dataset, fine-
tuning it to better suit the task.

The last direction in veracity. We mentioned in the
introduction, that such a QA system would be able to reduce
the misinformation in the online environment because a user
could easily ask the agent what they want to know, and they
would receive the true answer. After the transformer
accomplished a high enough accuracy to be reliable, we
could add more veridic sources of information like
biographical or autobiographical books. We could also
implement a system so that along with the answer, we also
return the source of that answer. This way a user can easily
see where the information originated.

REFERENCES
1. Bogatu, A., Rotarescu, D., Rebedea, T., & Ruseti, S.

(2015). “Conversational Agent that Models a Historical
Personality”. In Proceedings of RoCHI 2015 (pp. 81-
86).

2. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805.

3. E. Haller and T. Rebedea, "Designing a Chat-bot that
Simulates an Historical Figure," 2013 19th
International Conference on Control Systems and
Computer Science, 2013, pp. 582-589, DOI:
10.1109/CSCS.2013.85.

4. Hirschman, L., & Gaizauskas, R. (2001). “Natural
language question answering:the view from here”. In:
Natural Language Engineering , Volume 7 , Issue 4 ,
December 2001, pp. 275 - 300. DOI: 10.1017/
S1351324901002807

5. Ilie, M., & Rebedea, T. (2017). “Conversational Agents
Embodying a Character Using Neural Networks”. In
Proceedings of RoCHI 2017 (pp. 125-130).

Proceedings of RoCHI 2021

 - 14 -

6. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,
P., & Soricut, R. (2019). Albert: A lite bert for self-
supervised learning of language representations. arXiv
preprint arXiv:1909.11942.

7. Internet Growth Statistics. Accessed on June 02, 2021.
URL: https://www.internetworldstats.com/
emarketing.htm

8. SQuAD Explorer. Accesed June 17, 2021. URL:
https://rajpurkar.github.io/SQuAD-explorer/

9. The Future of Truth and Misinformation Online.
Accessed June 02, 2021. URL: https://www.
pewresearch.org/internet/2017/10/19/the-future-of-
truth-and-misinformation-online/

10. Why is History Important and How Can It Benefit
Your Future. Accessed on June 03, 2021. URL:
https://www.uopeople.edu/blog/why-is-history-
important/

