
Proceedings of RoCHI 2021

 - 74 -

NSMuseum – A Case Study for Developing Cross-platform
Mobile Applications in Augmented Reality

Mircea-Ioan Dragotă
Technical University of Cluj-

Napoca
Str. G. Barițiu 28, 40027,

Cluj-Napoca, România
dragota.mircea@gmail.com

Adrian Sabou
Technical University of Cluj-

Napoca
Str. G. Barițiu 28, 40027,

Cluj-Napoca, România
adrian.sabou@cs.utcluj.ro

ABSTRACT
This paper presents a method to streamline the process of
developing a mobile application in augmented reality, in
order to maximize exposure to a wider audience. In addition,
a comparative analysis will be developed between the best-
known ways to develop cross-platform applications in
augmented reality, ARFoundation and Vuforia. The process
described in this paper aims to add value to such an
application, integrating Unity with another cross-platform
technology, Flutter. As an example of this development
process, a cross-platform application was created that offers
an appearance as close as possible to the native one and an
experience in augmented reality as pleasant as possible,
being accompanied by a modern user interface. In addition
to this, the example also focused on the integration of
augmented reality in the museum visiting experience,
enhancing the educational process. Our cross-platform
approach has allowed the creation of a single application
running on both iOS and Android operating systems, so both
the cost, development time and resources have been reduced.

Author Keywords
Augmented Reality; Cross-platform; Flutter; Unity; Mobile
Application;

ACM Classification Keywords
H.5.m. Information interfaces and presentation: Human –
Computer Interaction

General Terms
Augmented Reality; Cross-platform;

DOI: 10.37789/rochi.2021.1.1.12

INTRODUCTION
Museums have a long history since the third century BC,
over time, the culture of the museum has spread to almost all
parts of the world, making the concept of a museum, a global
one. In addition to research and conservation, the essential
purpose of the museum in contemporary society is education.

Nowadays, technology has begun to develop at a fast pace
and completely take over our daily lives, proving to us that
anything is possible. This accelerated change caused by the
digital revolution has a drastic effect on people, transforming
the way they access, create and enjoy culture. In our modern

society, it has become necessary and indeed urgent for
museums to redefine their missions, objectives, functions
and strategies to reflect the expectations of a constantly
changing world. For museums to retain their relevance and
become positive partners in the development of our societies,
they should use their unique resources and potential to
become more receptive to the dynamics of modern society
and urban change. Education is essential for development.
One of the fundamental objectives of the museum is to
educate, having the ability to share cultural education
effectively, because it hosts the tools and materials needed to
make this possible.

Augmented reality has caught the general public and offers
users a sample of the revolutionary future of mobile devices
that awaits us. This technology has the role of interacting
with the world around us and can be defined as the technique
of adding virtual content to the world, allowing us to observe
with additional information superimposed. Thus, it
represents the combination of digital data and data from
human sensory inputs that are apparently attached to physical
space. The first important thing in the development of mobile
applications in augmented reality is the choice of a platform
for which it is supported. It is usually preferable for the
application to reach a wide range of users. The most well-
known and widespread are smartphones running iOS and
Android operating systems and most AR applications
specifically target one of these platforms. This technique is
called native development, and for iOS an application will be
developed using Swift or Objective-C languages, and for
Android, using Kotlin or Java. Native development brings a
lot of advantages, such as a natural-looking interface. Each
operating system provides certain native graphics that the
user is familiar with, and these can be integrated into
applications made using this process. The natively developed
code runs much faster and the integration with the device's
functionalities is much easier, the programming language
being already dedicated to the hardware. To develop an
augmented reality application, it is necessary to integrate the
frameworks dedicated to each platform, ARKit for iOS and
ARCore for Android. All the advantages that native
development brings, come with a certain price that can be
considered a huge disadvantage, the need to develop and
maintain two separate projects, which brings a very high cost

Proceedings of RoCHI 2021

 - 75 -

for the implementation of the final application, increasing its
development time.

This is where cross-platform solutions come in such as
Unity, which focuses on developing games and applications
in AR (Augmented Reality) and VR (Virtual Reality), but
there are also a wide variety of solutions such as Flutter [1],
React-Native [2], Apache Cordova [3] or Ionic [4], which
allow the imitation of an experience as close as possible to
the native one. Cross-platform development means that an
application will be delivered on different platforms, while
the code will be written in a single programming language.
Unity offers two options for developing augmented reality
applications. The first and most used option is the integration
with the ARFoundation library, developed by Unity [5]. This
package covers the native libraries, ARKit [6] and ARCore
[7], with an additional layer, creating a single common
interface, so we can benefit from the native SDKs of each
platform, without having to do two separate native projects.
Only one code that will be able to run on both platforms.
Another option is to integrate the Vuforia library [8] into
Unity, an SDK (Software Development Kit) for creating
augmented reality applications. Unity is the most popular
tool for creating games and AR and VR applications, so this
development engine focuses a lot on the graphics processing
and interaction scene. The visual elements offered by Unity
for the development of the user interface are very rough and
do not offer a pleasant and natural experience. A mobile
application must provide a natural experience, regardless of
how it is developed, native or cross-platform. This is why
this paper describes a different approach, in order to
streamline the process of developing applications in
augmented reality.

The aim of our work is to develop a cross-platform
application in augmented reality that provides a user
experience as close to native as possible. Our approach
involves combining Unity and Flutter, ensuring bidirectional
communication, resulting in a single executable that will run
both on iOS and Android systems. Flutter is a tool developed
by Google to create cross-platform applications using the
Dart programming language. This framework integrates all
the native elements of both platforms (iOS and Android) to
make beautiful user interfaces. As mentioned above, all the
augmented reality side will be developed in Unity resulting
in a library. Flutter will have the role of integrating this
library, building both the user interface needed for the
experience as well as the augmented reality component as a
whole application. Due to bidirectional communication, the
two technologies will be able to transmit their data easily, so
each module will perform its task properly. The library
developed using Unity will constantly communicate to the
application developed in Flutter all the information gathered
from the environment, and this in turn will process the data
and update its interface status according to the data received.
From an architectural point of view, the distinct separation
of the Flutter module from the Unity module will isolate the
experience in the augmented reality made in Unity from the

rest of the application and will allow for flexible addition of
new functionalities in either module. In addition, the library
developed in Unity can be easily reused in any other flutter
project that wants to integrate functionality into augmented
reality.

AN AUGMENTED REALITY EXPERIENCE IN MUSEUMS
The world is constantly evolving in the technological field,
and museums must retain their main goal, educating. In order
for this to remain possible, museums need to innovate and
adopt new technologies. That is why, along with
interactivity, this project aims at promoting education.
NSMuseum wishes to provide a new learning technique,
using augmented reality, and aims to develop young taste for
art, history and beautiful, and at the same time familiarize
them with current technologies. The application integrates
augmented reality in order to provide additional information
about paintings on a mobile phone. This digital content will
be projected alongside the painting and will offer an
overview of the exhibitor and the history behind it.
Informative digital content placed next to paintings after
scanning them will contain both information about the
painter and the painting’s history, as well as visual
information to help immerse the user in the artist’s world and
an audio guide.

In what follows we will give a brief overview of other AR
applications developed for enhancing the visiting experience
in a museum. One of the most popular applications that
support augmented reality learning in an art museum is
ArtLens 2.0 [9], developed by the Cleveland Art Museum
and launched in the summer of 2016 for both iOS and
Android. The main purpose of the application is to recognize
the exhibits and to present the story behind them, presenting
interpretive content on the various pieces of the painting to
understand the story behind and what the painter wanted to
express. Another innovative feature is "ArtLens Wall", a
concept that allows users to interact with exhibits, they are
projected on a screen, and with the help of the application
can save their moments right on their phone, connecting via
Bluetooth smartphone to the museum screen. "ArtLens
Wall" takes the interaction with the user to another level.

Another good example is Stanford University's collaboration
with Sid Lee to launch an AR mobile app for "The Anderson
Collection" [10] in 2014, to give visitors a new experience.

However, due to various reasons, a lot of museums cannot
afford to develop an AR application for gallery spaces from
ground up. For this reason, using free AR applications
developed by technology companies is a good choice, such
as "Layar" [11], an application that allows you to enter
content that is then scanned along with the necessary
information that should be displayed after recognition with
goal success.

The "Skins & Bones" app, designed by the Smithsonian
National Museum of Natural History, serves as an excellent

Proceedings of RoCHI 2021

 - 76 -

example of using the AR app as an educational tool.
Launched in January 2015, the app was developed for an
exhibition called "Hall of Bone", which was installed in the
1960s and had almost no improvement over the next 50
years. [12] The app aims to share inanimate stories behind
the museum's most iconic collections. By using the phone's
camera to scan the presented specimens, visitors can see the
skeleton of the specimens coming to life.

NSMUSEUM – A CROSS-PLATFORM AR SOLUTION FOR
ART MUSEUMS

Project Architecture
The main architecture of the project is layered, being
illustrated in Figure 12. As can be observed, the base of the
project is Flutter, which deals with all the logic of application
navigation and user experience, displaying information in a
style as natural as possible. The most important components
that make this project possible are FlutterUnityWidget and
FlutterUnityPackage [13], two open-source libraries, which
have the role of actively maintaining a two-way
communication channel between Flutter and Unity, so the
necessary information can be transmitted from a lower layer
to one superior and vice versa.

The skeleton of the entire application is made in Flutter and
is organized in three packages: Screens, Models and
Resources. In the Screens package, there are the main scenes
of the application, the main screen and the augmented reality
screen, this scene being responsible for the presentation of
FlutterUnityWidget, a custom widget offered by an open-
source library of the same name. This widget encapsulates
and displays the scene developed with Unity and maintains a
two-way communication channel. In the Models package is
the Painting model class, used to encapsulate the details of
each painting. The audio package for each panel is stored in
the Resources package. As mentioned in previous sections,

one of the advantages of this cross-platform development
process is that you can add new features very easily using
only Flutter, without modifying the library made with Unity,
this will be exemplified by the functionality of the audio
guide.

The library developed in Unity is organized in the packages:
Scenes, Scripts, ARFoundation, Flutter UnityPackage,
Prefabs and Resources. As described in previous sections,
ARFoundation is the SDK that deals with the realization of
augmented reality experience, which is chosen in favor of the
Vuforia SDK, this decision will be motivated in more detail
in the following sections. FlutterUnityPackge is a package
used to create a communication channel with the module
made in Flutter. Scenes is the package in which all the scenes
are organized, in our case we have only one scene, the one in
augmented reality. The Scripts package contains all the
scripts written in the C# language, which are attached as a
component to the objects in the scene to give them the
desired behavior. The following sections will describe the
behavior that these scriptures expose. In the Prefabs package
are all the 3D objects used, in our case it will be a mask that
will have a video player attached and will be positioned over
the detected panel. The Resources package contains all the
media resources, the videos played in augmented reality,
including the markers, the reference images used for the
recognition of the paintings.

Painting recognition module
This module, implemented in Unity, has a single scene,
which presents the augmented reality experience using the
device's camera. This scene, ARScene, which is also found
in the system architecture presented above has three main
components. These are found in the hierarchy of objects
present in the scene which is illustrated in Error! Reference
source not found.. These components have been featured in,

Figure 12 - Project Architecture

Proceedings of RoCHI 2021

 - 77 -

and they are the basis of any application developed with this
SDK.

ARTrackedImageManager is the most important component
of this library with the role of recognizing and tracking
images in the environment using some known markers stored
in the reference image library. This script provides certain
methods that are called when an image has been detected, is
still detected, or is no longer detected. These methods are
accessed from the ImageTracking script developed for this
project, which will also use the UnityMessageManger script
to communicate to the top layer, Flutter, information
regarding which array has been detected.

The image library component, which was mentioned above,
has the role of storing the entire collection of paintings that
need to be detected, providing a reference to each image.
Figure 13 illustrates the configuration of this component,
offering the possibility to specify the physical size of the
image to increase the accuracy of its detection in the
environment. This component had the biggest impact in the
decision to choose ARFoundation over Vuforia. It is very
suitable for the requirements of this project, in that this object
can handle the entire collection of detected images, unlike
Vuforia where to recognize a single image requires a
separate GameObject positioned in the scene for each
picture, which is highly inefficient.

Figure 13 - Reference Image Library

ARSessionOrigin's role is to keep virtual objects in the
correct position in AR environments. This component
receives continuous updates from the subsystem and changes
the position of virtual objects to stay aligned with the real
environment. AR objects must be placed under the session
origin in the object hierarchy of the scene. Otherwise, the
positions of the objects will not be updated. In order to
receive these updates from the environment, it will need
access to the device's camera, so an ARCamera object will
be attached in order to retrieve the data and pass it to the
parent object, the session origin, to process it.

As can be observed in Figure 14, the main objects of this
prefab are a plane, which is positioned to the right of the
detected array and a text, which is positioned below the
detected array. These items are populated with informative
data about the painting, such as the date it was made, as well
as a video presentation of it. Being a template, this object will
be populated dynamically according to the detected array,
with its informative data.

Figure 14 - Painting Details Prefab

The PaintingProperties script is attached to the Painting
Details prefab itself and serves to populate the graphics with
the detected array data, so it will populate the text element
with the date it was created. In addition, it allows access to
the Video Player component, attached to the prefab plan, in
order to set the video source and play it. When the picture is
out the camera’s field of view, the video player will be
paused.

The ImageTracking script is attached to session origin and,
together with the tracking image manager, handles
everything from detecting paintings, displaying
PaintingDetails prefabs in the augmented environment and
communicating with the application developed in Flutter.
The method provided by the manager, which reflects the
status of detected and tracked objects is called
OnImageChanged. This method is called continuously by the
subsystem and returns an object which contains three lists of
type ARTrackedImage, these are called added, updated,
removed. As the name suggests, these lists will group the
images that should be detected and tracked, associating them
with three states: added, the image has been detected,
updated, the image has been detected and tracked, its
position being changed and removed, the image is not
followed at all. Using these states the system will update the
interface accordingly, showing or hiding the information
about the focused painting.

Figure 15 illustrates the execution of the Unity module, so
we have a cross-platform application in augmented reality
running on both iOS and Android devices. When the painting
“Monalisa” is detected, a video presentation about the author
will be projected next to it, also some information about the
painting will be displayed just below the masterpiece.

There is one last step to complete the implementation of this
library, namely the export of the project as a native iOS and

Proceedings of RoCHI 2021

 - 78 -

Android library, in order to be integrated into the project
developed in Flutter. The FlutterUnityPackage is the one that
offers an option to generate and export the native libraries
required.

Figure 15 - Unity module execution

Flutter Module
At this point we already have a fully functional module in
augmented reality implemented in Unity. This section will
present the implementation of the final application. There
will be a single project that can be delivered on both iOS and
Android operating systems, in order to maximize exposure
to a wider audience. In essence, the key goal of cross-
platform technology is actually to provide applications as
close as possible to the native ones. Due to technologies such
as Flutter, this is possible, giving us a wide range of native
visual elements. These elements are found in the Cupertino
packages, dedicated to the iOS platform and Material
Design, dedicated to the Android platform. As previously
specified, this architectural model allows the easy addition
of new functionalities. This will be exemplified by adding an
audio guide using only Flutter, without changing the
functionality of the library implemented in Unity. Thus, we
will make the most of the bidirectional communication
between the two technologies, allowing the incorporation of
new functionalities outlined around the panel detection
module. In this case, when detecting a picture, an audio guide
will be presented that can be listened to in the background.
Flutter combines ease of development with native-like
performance, while maintaining visual consistency across
platforms, with Flutter's programming language being Dart.
The entire skeleton of the final application is developed in
Flutter, which consists of navigation logic and other features
in addition to augmented reality logic, that will be offered
exclusively by the module developed in Unity. The final
application consists of two scenes, the first will be the main
screen, MyHomePage providing some information about
how to use this application. Figure 16 illustrates this scene
and shows the graphic interface that depicts the main

functionality of the application and instructions on how to
use it.

Figure 16 - My Home Page

All the navigation logic of the application is based on routes,
the scene presented above being the initial route, so when
pressing the "Start AR Experience" button the method
Navigator.pushNamed will be called the desired route name,
in this case being "/ar". This will present the new scene, the
one that integrates the library developed in Unity and offers
the experience in augmented reality. The animation of
presenting a new scene is very natural, being pushed from
right to left, like a native application.

ARExperienceScreen is the scene that offers the experience
in augmented reality, adds an additional layer on the library
developed in Unity, as mentioned in previous sections, offers
a modern user interface and as native as possible. In order for
visitors to fully enjoy the exhibit and focus only on it, the
application also offers an audio guide after scanning it. A
new feature that this screen introduces is the audio guide and
additional information about the detected picture, so the
information will appear with a beautiful animation from the
bottom up. The visual elements are dressed in a card, which
contains information about the masterpiece, as well as a
media player. The user is able to: play the associated audio
guide, control the player using a slider, play the audio file
from the beginning or to pause. Audio content can be played
without the need to focus the painting with the device’s
camera. The user can look at the painting in detail, enjoying
the relevant and interesting information presented in the
background.

UnityWidget is the main component found in this scene and
it has the role of actively maintaining the bidirectional
communication channel between the two platforms. This
component has two important methods: onUnityCreated,
onUnityMessage. As its name suggests, onUnityCreated has
the role of announcing when the Unity scene has been

Proceedings of RoCHI 2021

 - 79 -

successfully uploaded and returns an instance of an
UnityWidgetController object with which messages can be
sent from Flutter to Unity using the postMessage method.
The onUnityMessage method is implemented for retrieving
messages sent from Unity to Flutter, such as the identifier of
the array that is detected. The onUnityCreated method
accesses the controller instance to send a message to Unity,
for instance to set the augmented reality videos to mute mode
so that only the sound associated with the audio guide can be
heard. The arguments that this method receives are the object
name in Unity, the name of the called method, and the value
of the argument.

Implementation of this method represents the interception
and processing of messages transmitted by Unity. Thus, with
the help of this method, the animation of the information card
is controlled, which appears only if a scan of a painting has
been performed. If a valid message has been received, the
model associated with the detected panel will be accessed,
the audio player will be reset and the setState method call
will update the user interface, presenting an animated
information card from the bottom up, which will also have a
player attached. After displaying the information card, the
user will be able to play the audio guide by pressing the
dedicated buttons and will be able to control the audio guide
by moving the slider. These actions will call the play, pause,
and seek methods on the AudioPlayer object. These methods
are used to play, pause, or scroll the audio file. When playing
the audio player buttons, the playAudioGuide method will be
called.

Figure 17 illustrates the final result, a new layer that is
implemented in Flutter and is added over the library made in
Unity. We can observer the modern, natural and intuitive
design and all the graphic elements that are known to mobile
device users. All icons are official and used by Google, being
from the Material Design package integrated directly into
Flutter. Using this combination of frameworks, a clear and
intuitive interface can be created. As already mentioned, this
architectural model allows for easy addition of new features,
exemplified by the addition of the audio guide using only
Flutter, without changing the functionality of the library
implemented in Unity. Thus, it took full advantage of the
bidirectional communication between the two technologies,
allowing the realization of new functionalities outlined
around the panel detection module.

COMPARATIVE ANALYSIS BETWEEN AR SDKS

This section contains a comparison of the ARFoundation
framework and the Vuforia framework, emphasizing their
key differences and the main advantages that one has upon
the other. This comparison is meant as a helper towards
mobile AR developers in the process of choosing the best
candidate based on their requirements.

For starters, an advantage that Vuforia has and should be
highlighted is the fact that it can also address older devices
that do not support ARKit or ARCore, so it can address

devices running at least iOS 9.0 or Android 6.0. In addition,
it can dynamically determine if it can benefit from ARKit or
ARCore, thus, if the device supports these capabilities,
Vuforia will take advantage of this and use them in its favor.
As for ARFoundation, it can only run on devices that support
native SDKs for augmented reality support, so it only
addresses devices running at least iOS 11.0 or Android 7.0.

Figure 17 - AR Experience

Regarding this project both frameworks are known for their
main objective, image recognition and tracking. Both did
very well in recognizing the paintings as can be seen in
Figure 18, but the big difference is the implementation
technique for this feature. On the visual side you can see only
the watermark "Vuforia" on the left of the screen that cannot
be removed because the use of this SDK requires a license,
unlike Unity, which offers free software.

As mentioned above the major difference is the
implementation. Vuforia is noted for the simplicity of its
integration, such as the implementation not requiring any
line of code. The implementation based on ARFoundation
described in the previous sections could be done in Vuforia
without writing any line of code. But this advantage comes
with a price: for each image to be detected, Vuforia imposes
a 1:1 ratio with a GameObject in the scene. This means that
for each image in the collection of markers in the scene, we
must add the object to be attached to the detected picture, in
our case the prefab PaintingDetails, and for this there is a
limitation of maximum 100 instances. Each recognized array
must be added to the scene as in Figure 19, which is a tedious
process.

Proceedings of RoCHI 2021

 - 80 -

Figure 18 - Comparison between Vuforia and ARFoundation

Figure 19 - Vuforia scene vs ARFoundation scene

With ARFoundation you can use a single prefab that can
dynamically change the code with the desired values, such as
the information associated with the detected array. This is
possible because there is only one object that deals with the
entire collection of markers that need to be recognized. This
object is ARTrackedImageManager and together with the
ReferenceImageLibrary component, it is able to recognize
any image in its collection. The 1:1 ratio imposed by Vuforia
is no longer necessary, so the scene is not loaded with unused
objects. The process of adding a new painting to the
collection is a simple one, without the need to create a new
GameObject associated with the scene. It is much more
efficient that only one component has to deal with the entire
image collection and the image reference of each associated
GameObject no longer needs to be added.

Taking all this into account, and due to the project’s
requirements, as well as maintenance and future
development, ARFoundation is much better suited than
Vuforia, because it offers a much more efficient process in
updating the reference images. Also, a series of manual tests
performed on a mobile device using two versions of the same

application, one implemented with ARFoundation, and
another implemented with Vuforia, revealed a much
smoother experience, without stuttering, in the case of the
former, as well as a sharper and clearer camera feed.

COMPARATIVE ANALYSIS BETWEEN THE FLUTTER UI
AND UNITY

This section contains a comparison of the Flutter framework
and Unity with regard to UI development for AR cross-
platform applications. Figure 20 contains a visual
comparison of two versions of the same application, one
created using UI elements provided by Flutter and one
created using UI elements provided by Unity. As we can see,
the graphics UI elements provided by Unity display a certain
roughness, unlike Flutter which has a much friendlier and
more natural user interface.

Figure 20 - Flutter UI vs Unity UI

Visual elements offered by Flutter are more natural and
friendlier, similar to native mobile UI elements that the user
is already used to. Flutter provides support for button icons
using the official ones from Google, found in the Material
Design library. Another advantage of the Flutter framework
is that the implementation of user interfaces is extremely fast
and much easier than in Unity. A very clear example is that
each Flutter widget has a property for changing the
background color. With Unity, which is a game development
engine, we would have to create a Material type object with
this color property and only then we would be able to change
the color of another object in the scene through this material
object. Another example of Flutter’s advantages is the fact
that you can easily round the corners of visual elements, an
indispensable operation when creating user interfaces. In
Unity, this can only be done by using already edited images
with a transparent background.

Performance-wise, Unity, similar to all game development
engines, runs the application in an infinite loop, generating
intensive processor and graphics card usage, thus increasing
the battery consumption. By using Flutter, only the screen
that integrates the scene from Unity will have this effect, any
other parts of the application having a reduced impact on
device components. Moreover, Flutter has the Hot Reload
function, which helps save interface development time,
leaving the developer to see the changes applied in real time,
without the need to recompile the modified code. Thus, we
can conclude that Flutter is the best option in creating the

Proceedings of RoCHI 2021

 - 81 -

user interface for a cross-platform mobile application in
augmented reality.

CONCLUSION
This paper focused on describing a more efficient approach
for the development process of a mobile application in
augmented reality, in order to maximize exposure to a wider
audience. This approach has allowed the creation of a single
application running on both iOS and Android operating
systems, so both the cost, development time and resources
have been reduced.

To exemplify this development process, an application was
created that offers an appearance as close as possible to the
native one and an experience in augmented reality as
pleasant as possible, being accompanied by a modern user
interface. In addition, it focused on integrating augmented
reality into learning in a museum. This technology has the
role of interacting with the world around us and can be
defined as the technique of adding virtual content to the
world, allowing us to observe the world around us with
additional information superimposed on it. Augmented
reality is a portable tool for discovery-based learning,
enhancing the information available to customers when they
visit gallery spaces and interact with real-world objects.

Unity is the main technology in the development of the
augmented reality experience, but being an engine dedicated
to creating games, it focuses mostly on the interaction on
stage and not on the application itself, offering a robust and
minimalist user interface. Being a game development engine,
the resulting applications run in an infinite loop, using
intensively the processor and the graphics card, thus
increasing the battery consumption. By integrating with
Flutter, only the screen that integrates the scene from Unity
will have this effect, so any other new functionalities of the
application implemented in Flutter will not have the same
impact on the device components, such as Unity, this being
a huge advantage. Flutter can deliver the same application to
five operating systems: iOS, Android, Windows, macOS and
Linux, and in addition to these it can also produce a web
application, so further developments have a wide spectrum,
presenting a wide range of users. In addition, the need to use
the Flutter framework in the development of the user
interface was motivated.

In addition to all the advantages of using Flutter technology
together with Unity, we not only offer a more enjoyable
experience, but we also easily extended the functionality of
the application. From an architectural point of view, Flutter
is the basis of the system, thus isolating the experience in
augmented reality made with Unity from the rest of the
application, allowing the addition of new UI functionalities

as easily as possible. In addition, the library developed in
Unity can be easily reused in any other Flutter project that
focuses on integrating any other functionalities into
augmented reality, increasing the reusability of the code.

REFERENCES

1. Flutter, "Flutter Documentation", 2021.
https://flutter.dev/docs/resources/architectural-overview

2. React Native, "React Native", 2021.
https://reactnative.dev

3. Apache Cordova, "Apache Cordova", 2021.
https://cordova.apache.org

4. Ionic, "Ionic Framework", 2021.
https://ionicframework.com

5. Unity, "AR Foundation", 2021.
https://unity.com/unity/features/arfoundation

6. Apple, "Apple Developer", 2021.
https://developer.apple.com/augmented-reality/arkit

7. Google, "ARCore", 2021.
https://developers.google.com/ar

8. Vuforia, "Vuforia Developer Library", 2021.
https://library.vuforia.com/articles/Training/vuforia-
fusion-article.html

9. M. Ding, Augmented Reality in Museums, Pittsburgh,
2017.

10. S. University, "The Anderson Collection", 2021.
https://anderson.stanford.edu/

11. Blippar Group, "LayAR", 2021.
https://www.layar.com/

12. "Statista", 2021.
https://www.statista.com/statistics/869224/worldwide-
software-developer-working-hours/

13. R. Raphael, "Github - Flutter Unity View Widget", 2021.
https://github.com/juicycleff/flutter-unity-view-widget

14. K. Lee, "AR Foundation in Unity: Getting Started", 2021.
https://www.raywenderlich.com/14808876-ar-
foundation-in-unity-getting-started.

