
Proceedings of RoCHI 2021

 - 98 -

Reinforcement Learning Agent for a Flight Simulation
Video Game

Victor Nonea, Radu Iacob, Traian Rebedea

University Politehnica of Bucharest
Splaiul Independenței 313, 060042, Bucharest, Romania

victor.nonea@gmail.com, {radu.iacob, traian.rebedea}@upb.ro

ABSTRACT
This paper is a case study analysis of the viability of using
machine learning methods for skilled NPC agents in
production level video games and how they compare to their
hand-coded counterparts. The implementation and
experiments were made in a simple OpenGL game about
flying an aircraft through a set of checkpoints without
crashing. Our conclusion is that current machine learning
methods are not feasible for building the NPC agent,
because, while they simplify the agent’s design, they
exponentially complicate the testing and debugging
processes without offering an improved ability for the NPC.

Author Keywords
Reinforcement learning; REINFORCE algorithm; video
game; non-playable character; NPC; flight simulation.

ACM Classification Keywords
I.2.6: Artificial Intelligence: Learning
I.3.8: Computer Graphics: Applications

DOI: 10.37789/rochi.2021.1.1.15

INTRODUCTION
A common issue in the design of video games is how to
develop the AI of competitive and cooperative non-playable
characters (NPCs). These characters, as opposed to most
NPCs, have to complete complex tasks and perform said
tasks on par with human players. Moreover, some of them
will have to exhibit realistically human behaviour, which is
to say, act and play similar to how a human would in that
situation.

The purpose of this project is to determine the viability of
using machine learning methods for production level skilled
NPCs, and, more specifically, its advantages and
disadvantages to traditional manually programmed agents.

For the purposes of this paper, we will define skilled agents
as NPCs that interact directly with the player, competitively
or cooperatively, such that their behavior may determine or
significantly impact the win/lose state of the game, or of a
particular level of the game.

The quality of the skilled agents is very often a make-or-
break feature of the game. This is because they are intimately
entangled to the core mechanics of the game. In a shooter

you need enemies that know how to shoot, take cover, and
move organically around the map. In a racing game you need
competitors that know how to take turns efficiently, how to
get around obstacles and how to recover from crashes. And
wherever agents represent humanoid characters, they need to
accomplish these tasks in a credibly human way.

Background
For NPC agents, there seems to be a strong preference for
statically defined behaviour, represented by finite state
machines or behaviour trees [1].

Dynamic behaviour is often still based on these static
models, through utility-based AI, which create a point
system for a set of possible actions, based on scripted rules,
and pick the best action to take [2]. In strategy games, where
multiple game steps can be simulated ahead of time, Monte
Carlo tree search is preferred by developers [1].

It is worth noting that in video game development, generally
the primary concern is not the competence of the NPC
agents, but the appearance of competence. This is especially
true about enemy NPCs, which are ultimately supposed to be
defeated by the human player, but still impress the player
with their aptitude along the way. This can be done through
dynamic difficulty adjustment, in which you assess how well
the player is doing, and if they are doing better than expected,
or if other evaluation methods indicate they may be bored,
boost the opposing NPC performance, or alter level
generating parameters to make the environment more hostile
or difficult to traverse, and vice-versa if the player is doing
poorly.

The boost in NPC performance does not have to be related to
the agent’s intelligence, in many situations it could just as
well be an artificial advantage. For instance, in a racing game
if the opposing NPC racer falls too far behind they may be
given more speed and perfect grip until they catch up, or in a
strategy game an opposing NPC nation may be given free
resources.

The subject of using machine learning to improve NPC
behavior is at an awkward intersection between academia,
open-source technologies and business interests. Because of
that, there is little scientific coverage of this topic
specifically. For instance, Unity Technologies created the

Proceedings of RoCHI 2021

 - 99 -

Unity ML-Agents Toolkit, an open-source project which
integrates PyTorch, the machine learning framework, with
the Unity game engine. It is stated to be “beneficial for both
game developers and AI researchers” and yet, while it does
provide tutorials and documentation for developers, the only
featured scientific paper discussing the toolkit presents it
exclusively as a general platform for AI research, completely
disregarding its game development potential [5].

Electronic Arts uses machine learning agents for playtesting
as well as NPCs (which they refer to as game-playing AI) [6].
They opt to use an engineered lower-dimensional
representation of the game state, instead of raw video frames,
to allow for smaller and more time efficient models which
are reusable across different iterations of the game, and to
have more control over what information the agent has
access to. They also prefer to use simpler algorithms when
the state space allows. They demonstrate in one of their
examples how A* with a simple hand-tuned heuristic
outperforms a utility-based policy found through an
evolution strategy. For more complex tasks in their study,
they employed DQN [7], PPO [8] and Rainbow [9]. For their
use cases and setup, DQN achieved its asymptotic behaviour
faster than the state-of-the-art Rainbow approach. All of this
is to say that current academic approaches and assumptions
about machine learning may not be appropriate for devising
skilled NPCs to meet the needs of the video-game software
industry.

ENVIRONMENT
The environment used for these experiments is a video game
about a plane flying over the ocean and attempting to reach
several targets (called markers) without crashing.

Figure 30: In-game snapshot

As shown in Figure 1, the play area consists of a patch of
ocean, traversable by the plane in about 5 seconds from side
to side at full speed. It contains 20 towers randomly
distributed across the level (except for a safe zone around the
plane), each with a random height and a checkpoint, called a
marker, on top of it. In the base game, each level has a
different random distribution of towers across the scene. For

5 © https://www.grc.nasa.gov/www/k-
12/airplane/rotations.html Last accessed: 25.06.2021

the purposes of training and evaluation, a new level is
generated every time the agent reaches a terminal state, i.e.,
when it finishes the current level or crashes.

The objective is for the plane to reach all markers, in any
order, without crashing into the towers or the ocean.

The game has a simple but moderately realistic physics
model. The plane’s movement is represented by its linear
velocity and its angular velocity across its principal axes.
There are 3 types of passive physical forces:

• Gravity, which acts as a constant downward
acceleration on the plane.

• Drag, which acts as an exponential deceleration
relative to the plane’s linear and angular velocities.

• Aerodynamic alignment, which pulls the plane’s
body toward its linear speed direction.

The player controls the plane by acting on it with linear and
angular forces. There are 4 control dimensions:

• Thrust, for linear acceleration.
• Pitch, yaw, and roll for angular acceleration.

The angular controls correspond to the aircraft’s principal
axes, see figure 2.

Figure 31: Aircraft principal axes5

The plane may only crash into one of the towers, or the
ocean. For collisions, the plane and towers use simplified
bounding boxes: a sphere for the plane and conical frustums
for the towers. The level immediately ends if the bounding
box of the plane intersects with the bounding box of one of
the towers, or if the plane gets below sea level.

HANDCRAFTED RULE-BASED AGENT
The idea of the handcrafted solution is to individually control
the aircraft’s altitude, horizontal direction, and steadiness.
By steadiness we are referring to the aircraft’s alignment to

Proceedings of RoCHI 2021

 - 100 -

the scene’s horizontal plane. The agent relies on the
following assumptions:

• The plane’s altitude should be equal to that of its
target as soon as possible.

• The agent should always yaw toward the direction
of the target.

• The plane should be as level as possible, without
inhibiting altitude adjustments.

• The agent should maximize thrust.

Based on these assumptions, the agent uses modules for:
altitude control, horizontal targeting, and steadiness.

The main advantage of this design is that each module should
achieve its function independently, and each can be
debugged individually. This pattern of building simpler
modules and linking them together is highly regarded in the
games industry for AI implementation [1].

REINFORCE AGENT
For the machine learning agent, we used TensorFlow’s
REINFORCE agent, which is an implementation of the
REINFORCE algorithm [3].

The REINFORCE algorithm is the simplest variant of a
policy gradient method, which is an algorithm that models
the optimal policy directly and updates it through gradient
descent. The REINFORCE algorithm approximates the
gradient of the objective function through sampling alone,
and consists of the following loop [4]:

1. Sample trajectories using the existing policy.
2. Approximate the gradient of the objective function

using the rewards of the sampled trajectories
3. Update the policy with a step of gradient descent:

	θ	 ← 	θ	 + 	α ⋅ ∇(J(θ)

Observation format
The observations are made relative to the agent’s current
position and orientation, and capture the following:

• The target’s relative position and direction

• The agent’s linear and angular speed

• The direction of gravity

Action format
As previously explained, the aircraft has 4 controls: one for
overall thrust (longitudinal acceleration), and three for torque
(rotational force) on the aircraft’s principal axes: pitch, yaw,
and roll.

The action format of the agent mimics the input format for
human controls: 2 binary values for each of the control
dimensions, for a total of 8.

Policy model
The model used to represent the policy is a shallow neural
network with 2 hidden layers of 100 and 50 activation cells
respectively. The hidden layers use ReLU activation.

Reward model
The simplest way to express progress in this scenario is
through the remaining distance to the target at each timestep:

RST6R7 = 	
max	(0, 8SWX	7YWX6Z9S − 9[RRSZX	7YWX6Z9S)

YZYXY6\	7YWX6Z9S

During the initial testing phase we noticed on multiple
instantiations that the agent would eventually start to roll
excessively, and because the observations are relative to the
plane’s momentary orientation we considered this might
make them too difficult for the agent to process. That is why
we have added a reward for keeping the plane steady each
timestep. The reward is proportional to the angle between the
aircraft’s up vector and the scene’s down vector, and can be
written as:

]^_`]a =
〈`c]d]`ef	gh, id^j^	ak_j〉 ∙ af

nop° ⋅ ^rh^df^a	^hcika^	ag]`fckj

The total reward used was a weighed average between the
distance-to-target reward and the steadiness reward.

Training methodology
We defined a training episode as the time interval of the
agent traveling between two consecutive markers, the
strategy for picking the targets being static. All evaluated
models and setup variants were trained 500 episodes.

The best performing agent was one with 20% steadiness
reward and fully stochastic training. This means that each
training iteration only considered the last training episode. It
reached around 80% training gain (see Figure 3).

Figure 32: Best performing agent, trained stochastically over
500 episodes, reaches about 80% of maximum expected gain.

The experimental variants had slightly different reward
models or train iteration conventions:

Proceedings of RoCHI 2021

 - 101 -

• Baseline:
– 80% distance-to-target, 20% steadiness

reward model.
– 5 episodes train iterations, with rewards

normalized across iteration.
• Stochastic training (same reward model).
• Batched unnormalized training.
• 100% distance-to-target reward model.

All variants across most of their instantiations got between
20% and 60% of the maximum expected gain at the end of
their training sessions. It is unclear whether the stochastic
training variant actually has a technical advantage, or it got
the best result from a lucky instantiation.

EVALUATION

Metrics
We will compare the handcrafted and ML solutions based on
the following criteria:

• Normal performance: numerical measurements of
the bots’ effectiveness in the normal game context

– Average distance travelled: the average
proportion of the trip the agent manages to
travel to its next target before ending the
round (for a usable agent should be near
100%).

– Catch rate: the proportion of times the
agent successfully reaches its next marker.

• Human believability: the extent to which the bot
acts similarly to a human controller. This is a
subjective observation, but it is relevant from a
game development standpoint.

• Robustness / Generality: whether the bot is usable
with altered environments. It is also a subjective
observation.

Numerical performance
The numerical evaluation is made over 100 training
episodes. The best performing agent by a significant margin
is the handcrafted bot, with a 70% catch rate and 83.46%
average distance traveled. (Table 1)

The best ML solution, produced with a stochastic training
setup, gets a similar average distance traveled, of 82.28%,
however it does far worse at actually reaching the markers,
having a 14% catch rate.

The baseline ML learning solution, 20% steadiness reward
model with 5 episode batched training gets a 56.43% average
distance traveled, but a 0% catch rate (0 catches over 100
episodes).

We also included a completely untrained ML agent to have
as a reference for expected average distance traveled with
completely random movement. It is not zero because in most
initializations the plane starts angled toward the next target.

Human believability
For the handcrafted solution, a person can observe the
individual discrete phases of the altitude module as well as
unnatural stabilizing motions from each of the modules, but
only if they are paying close enough attention, which may
not be the case in practical video game experiences.

All ML solutions exhibited some form of synthetic
behaviour. Most models displayed excessive rolling and
even the best performing agent flies unreasonably slowly and
almost always picks up its target by going too far left and
then turning around.

Agent Avg. distance
to target

Catch
rate

Handcrafted rule-
based agent 83.46% 70%

REINFORCE agent
Stochastic training

82.28% 14%

REINFORCE agent
Baseline

56.43% 0%

Untrained agent 14.23% 0%

Table 1: Numerical performance

Robustness / Generality
The handcrafted design is somewhat inappropriate as a
general purpose solution. It is heavily reliant on the markers
and obstacles being laid out in a big, open space, without
requiring any fine maneuvering, such as taking turns with
combined roll and pitch rotations.

It is also nonadaptive to changes in the physics engine’s
parameters. Even during the development of this project we
had to add a new adjustable parameter to the bot, after we
had made some changes to the environment, because it had
become unstable with its altitude adjustment.

That being said, it is far more robust than the ML solutions.
The best performing ML agent, after its 500 training episodes
would be decent enough at catching markers from below, and
yet would be completely stuck when it had to pick up a
marker from above.

The one thing that the ML agent did consistently better was
catching initially close targets, because it would not get stuck
in an orbiting loop. However, this is not that impressive
considering that one of the more obvious flaws of the ML
agent is that it is constantly moving too slowly, so close
proximity targets are inherently easier to catch.

Proceedings of RoCHI 2021

 - 102 -

DISCUSSIONS

Modularity and testability of individual modules
The ML algorithm, by its nature, has to treat a multitude of
functionalities together, with a single model. This means that
if a particular functionality is not satisfied, nothing from the
current model is salvageable.

Training nondeterminism
Practical machine learning models are non-linear, which
means they can include local optima.

Reinforcement learning algorithms, in practice, often behave
non-deterministically, due to their instantiations (Figure 4)
or due to the complexities of the environment.

Figure 33: The same reward model and training setup with
different initializations

Sometimes the machine learning setup, which is to say the
algorithm, model shape, activation functions, batch size and
other hyperparameters, are simply inappropriate for the
given problem.

All of this put together means that it is never exactly clear
when you should continue training the current agent,
initialize a new agent, or change the setup altogether. During
this project we have been surprised several times by how
wrong our predictions over certain setups were, or by how
something that we thought was explainable in an early stage
of development turned out to be purely due to random
behaviour.

It is not just the issue of extra time needed to test different
setups or instantiations but the mental burden itself of not
knowing whether a passed test is a sign that you are on the
correct path.

CONCLUSION
Most issues with the ML approach collectively add up to one
thing: unreasonable time investment. The machine learning
agents took collectively several orders of magnitude more
time to develop and test than the rule-based agent, and even
so, the latter proved more reliable.

For our use case environment, and the purpose of building an
agent that is skilled, humanly credible and robust for a
production level video game, we would say that a
handcrafted solution is more appropriate than a machine
learning approach.

REFERENCES
1. Coline Molina, Maud Espié, and editor Vincent

Manilève. L’art de feindre l’intelligence.
https://stories.ubisoft.com/article/ ia-jeux-video-
ennemis-intelligence-the-division-2/. Last accessed: 19
June 2021.

2. Dave Mark. AI Architectures: A Culinary Guide
(GDMag Article).
http://intrinsicalgorithm.com/IAonAI/2012/11/ ai-
architectures-a-culinary-guide-gdmag-article/. Last
accessed: 28 June 2021.

3. Ronald J. Williams. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, May 1992.

4. Sergey Levine (instructor). Policy gradients, lecture 5 of
CS 285 (Fall 2020) at UC Berkeley.
http://rail.eecs.berkeley.edu/deeprlcourse-
fa20/static/slides/lec-5.pdf. Last accessed: 1 September
2021.

5. Juliani, Arthur & Berges, Vincent-Pierre & Vckay, Esh
& Gao, Yuan & Henry, Hunter & Mattar, Marwan &
Lange, Danny. (2018). Unity: A General Platform for
Intelligent Agents.

6. Zhao, Yunqi & Borovikov, Igor & De Mesentier Silva,
Fernando & Beirami, Ahmad & Rupert, Jason &
Somers, Caedmon & Harder, Jesse & Kolen, John &
Pinto, Jervis & Pourabolghasem, Reza & Pestrak, James
& Chaput, Harold & Sardari, Mohsen & Lin, Long &
Narravula, Sundeep & Aghdaie, Navid & Zaman, Kazi.
(2020). Winning Is Not Everything: Enhancing Game
Development With Intelligent Agents. IEEE
Transactions on Games. PP. 1-1.
10.1109/TG.2020.2990865.

7. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A.
K. Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518,
no. 7540, p. 529, 2015

8. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

9. M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G.
Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and
D. Silver, “Rainbow: Combining improvements in deep
reinforcement learning,” arXiv preprint
arXiv:1710.02298, 2017

