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ABSTRACT 
This paper is a case study analysis of the viability of using 
machine learning methods for skilled NPC agents in 
production level video games and how they compare to their 
hand-coded counterparts. The implementation and 
experiments were made in a simple OpenGL game about 
flying an aircraft through a set of checkpoints without 
crashing. Our conclusion is that current machine learning 
methods are not feasible for building the NPC agent, 
because, while they simplify the agent’s design, they 
exponentially complicate the testing and debugging 
processes without offering an improved ability for the NPC. 
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INTRODUCTION  
A common issue in the design of video games is how to 
develop the AI of competitive and cooperative non-playable 
characters (NPCs). These characters, as opposed to most 
NPCs, have to complete complex tasks and perform said 
tasks on par with human players. Moreover, some of them 
will have to exhibit realistically human behaviour, which is 
to say, act and play similar to how a human would in that 
situation. 

The purpose of this project is to determine the viability of 
using machine learning methods for production level skilled 
NPCs, and, more specifically, its advantages and 
disadvantages to traditional manually programmed agents. 

For the purposes of this paper, we will define skilled agents 
as NPCs that interact directly with the player, competitively 
or cooperatively, such that their behavior may determine or 
significantly impact the win/lose state of the game, or of a 
particular level of the game.  

The quality of the skilled agents is very often a make-or-
break feature of the game. This is because they are intimately 
entangled to the core mechanics of the game. In a shooter 

you need enemies that know how to shoot, take cover, and 
move organically around the map. In a racing game you need 
competitors that know how to take turns efficiently, how to 
get around obstacles and how to recover from crashes. And 
wherever agents represent humanoid characters, they need to 
accomplish these tasks in a credibly human way. 

Background 
For NPC agents, there seems to be a strong preference for 
statically defined behaviour, represented by finite state 
machines or behaviour trees [1]. 

Dynamic behaviour is often still based on these static 
models, through utility-based AI, which create a point 
system for a set of possible actions, based on scripted rules, 
and pick the best action to take [2]. In strategy games, where 
multiple game steps can be simulated ahead of time, Monte 
Carlo tree search is preferred by developers [1]. 

It is worth noting that in video game development, generally 
the primary concern is not the competence of the NPC 
agents, but the appearance of competence. This is especially 
true about enemy NPCs, which are ultimately supposed to be 
defeated by the human player, but still impress the player 
with their aptitude along the way. This can be done through 
dynamic difficulty adjustment, in which you assess how well 
the player is doing, and if they are doing better than expected, 
or if other evaluation methods indicate they may be bored, 
boost the opposing NPC performance, or alter level 
generating parameters to make the environment more hostile 
or difficult to traverse, and vice-versa if the player is doing 
poorly. 

The boost in NPC performance does not have to be related to 
the agent’s intelligence, in many situations it could just as 
well be an artificial advantage. For instance, in a racing game 
if the opposing NPC racer falls too far behind they may be 
given more speed and perfect grip until they catch up, or in a 
strategy game an opposing NPC nation may be given free 
resources. 

The subject of using machine learning to improve NPC 
behavior is at an awkward intersection between academia, 
open-source technologies and business interests. Because of 
that, there is little scientific coverage of this topic 
specifically. For instance, Unity Technologies created the 
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Unity ML-Agents Toolkit, an open-source project which 
integrates PyTorch, the machine learning framework, with 
the Unity game engine. It is stated to be “beneficial for both 
game developers and AI researchers” and yet, while it does 
provide tutorials and documentation for developers, the only 
featured scientific paper discussing the toolkit presents it 
exclusively as a general platform for AI research, completely 
disregarding its game development potential [5]. 

Electronic Arts uses machine learning agents for playtesting 
as well as NPCs (which they refer to as game-playing AI) [6]. 
They opt to use an engineered lower-dimensional 
representation of the game state, instead of raw video frames, 
to allow for smaller and more time efficient models which 
are reusable across different iterations of the game, and to 
have more control over what information the agent has 
access to. They also prefer to use simpler algorithms when 
the state space allows. They demonstrate in one of their 
examples how A* with a simple hand-tuned heuristic 
outperforms a utility-based policy found through an 
evolution strategy. For more complex tasks in their study, 
they employed DQN [7], PPO [8] and Rainbow [9]. For their 
use cases and setup, DQN achieved its asymptotic behaviour 
faster than the state-of-the-art Rainbow approach. All of this 
is to say that current academic approaches and assumptions 
about machine learning may not be appropriate for devising 
skilled NPCs to meet the needs of the video-game software 
industry. 

ENVIRONMENT 
The environment used for these experiments is a video game 
about a plane flying over the ocean and attempting to reach 
several targets (called markers) without crashing. 

 
Figure 30: In-game snapshot 

As shown in Figure 1, the play area consists of a patch of 
ocean, traversable by the plane in about 5 seconds from side 
to side at full speed. It contains 20 towers randomly 
distributed across the level (except for a safe zone around the 
plane), each with a random height and a checkpoint, called a 
marker, on top of it. In the base game, each level has a 
different random distribution of towers across the scene. For 

 
5 © https://www.grc.nasa.gov/www/k-
12/airplane/rotations.html Last accessed: 25.06.2021 

the purposes of training and evaluation, a new level is 
generated every time the agent reaches a terminal state, i.e., 
when it finishes the current level or crashes. 

The objective is for the plane to reach all markers, in any 
order, without crashing into the towers or the ocean.  

The game has a simple but moderately realistic physics 
model. The plane’s movement is represented by its linear 
velocity and its angular velocity across its principal axes. 
There are 3 types of passive physical forces: 

• Gravity, which acts as a constant downward 
acceleration on the plane. 

• Drag, which acts as an exponential deceleration 
relative to the plane’s linear and angular velocities. 

• Aerodynamic alignment, which pulls the plane’s 
body toward its linear speed direction. 

The player controls the plane by acting on it with linear and 
angular forces. There are 4 control dimensions: 

• Thrust, for linear acceleration. 
• Pitch, yaw, and roll for angular acceleration. 

The angular controls correspond to the aircraft’s principal 
axes, see figure 2. 

 

Figure 31: Aircraft principal axes5 

The plane may only crash into one of the towers, or the 
ocean. For collisions, the plane and towers use simplified 
bounding boxes: a sphere for the plane and conical frustums 
for the towers. The level immediately ends if the bounding 
box of the plane intersects with the bounding box of one of 
the towers, or if the plane gets below sea level. 

HANDCRAFTED RULE-BASED AGENT 
The idea of the handcrafted solution is to individually control 
the aircraft’s altitude, horizontal direction, and steadiness. 
By steadiness we are referring to the aircraft’s alignment to 
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the scene’s horizontal plane. The agent relies on the 
following assumptions: 

• The plane’s altitude should be equal to that of its 
target as soon as possible.  

• The agent should always yaw toward the direction 
of the target. 

• The plane should be as level as possible, without 
inhibiting altitude adjustments. 

• The agent should maximize thrust. 

Based on these assumptions, the agent uses modules for: 
altitude control, horizontal targeting, and steadiness. 

The main advantage of this design is that each module should 
achieve its function independently, and each can be 
debugged individually. This pattern of building simpler 
modules and linking them together is highly regarded in the 
games industry for AI implementation [1]. 

REINFORCE AGENT 
For the machine learning agent, we used TensorFlow’s 
REINFORCE agent, which is an implementation of the 
REINFORCE algorithm [3]. 

The REINFORCE algorithm is the simplest variant of a 
policy gradient method, which is an algorithm that models 
the optimal policy directly and updates it through gradient 
descent. The REINFORCE algorithm approximates the 
gradient of the objective function through sampling alone, 
and consists of the following loop [4]: 

1. Sample trajectories using the existing policy. 
2. Approximate the gradient of the objective function 

using the rewards of the sampled trajectories 
3. Update the policy with a step of gradient descent: 

	θ	 ← 	θ	 + 	α ⋅ ∇(J(θ) 

Observation format 
The observations are made relative to the agent’s current 
position and orientation, and capture the following: 

• The target’s relative position and direction  

• The agent’s linear and angular speed  

• The direction of gravity 

Action format 
As previously explained, the aircraft has 4 controls: one for 
overall thrust (longitudinal acceleration), and three for torque 
(rotational force) on the aircraft’s principal axes: pitch, yaw, 
and roll. 

The action format of the agent mimics the input format for 
human controls: 2 binary values for each of the control 
dimensions, for a total of 8. 

Policy model 
The model used to represent the policy is a shallow neural 
network with 2 hidden layers of 100 and 50 activation cells 
respectively. The hidden layers use ReLU activation. 

Reward model 
The simplest way to express progress in this scenario is 
through the remaining distance to the target at each timestep: 

RST6R7 = 	
max	(0, 8SWX	7YWX6Z9S − 9[RRSZX	7YWX6Z9S)

YZYXY6\	7YWX6Z9S
 

During the initial testing phase we noticed on multiple 
instantiations that the agent would eventually start to  roll 
excessively, and because the observations are relative to the 
plane’s momentary orientation we considered this might 
make them too difficult for the agent to process. That is why 
we have added a reward for keeping the plane steady each 
timestep. The reward is proportional to the angle between the 
aircraft’s up vector and the scene’s down vector, and can be 
written as: 

]^_`]a =
〈`c]d]`ef	gh, id^j^	ak_j〉 ∙ af

nop° ⋅ ^rh^df^a	^hcika^	ag]`fckj
 

The total reward used was a weighed average between the 
distance-to-target reward and the steadiness reward. 

Training methodology 
We defined a training episode as the time interval of the 
agent traveling between two consecutive markers, the 
strategy for picking the targets being static.  All evaluated 
models and setup variants were trained 500 episodes. 

The best performing agent was one with 20% steadiness 
reward and fully stochastic training. This means that each 
training iteration only considered the last training episode. It 
reached around 80% training gain (see Figure 3). 

 

Figure 32: Best performing agent, trained stochastically over 
500 episodes, reaches about 80% of maximum expected gain. 

The experimental variants had slightly different reward 
models or train iteration conventions: 
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• Baseline: 
– 80% distance-to-target, 20% steadiness 

reward model. 
– 5 episodes train iterations, with rewards 

normalized across iteration. 
• Stochastic training (same reward model). 
• Batched unnormalized training. 
• 100% distance-to-target reward model. 

All variants across most of their instantiations got between 
20% and 60% of the maximum expected gain at the end of 
their training sessions. It is unclear whether the stochastic 
training variant actually has a technical advantage, or it got 
the best result from a lucky instantiation. 

EVALUATION 

Metrics 
We will compare the handcrafted and ML solutions based on 
the following criteria: 

• Normal performance: numerical measurements of 
the bots’ effectiveness in the normal game context 

– Average distance travelled: the average 
proportion of the trip the agent manages to 
travel to its next target before ending the 
round (for a usable agent should be near 
100%). 

– Catch rate: the proportion of times the 
agent successfully reaches its next marker.  

• Human believability: the extent to which the bot 
acts similarly to a human controller. This is a 
subjective observation, but it is relevant from a 
game development standpoint. 

• Robustness / Generality: whether the bot is usable 
with altered environments. It is also a subjective 
observation. 

Numerical performance 
The numerical evaluation is made over 100 training 
episodes. The best performing agent by a significant margin 
is the handcrafted bot, with a 70% catch rate and 83.46% 
average distance traveled. (Table 1) 

The best ML solution, produced with a stochastic training 
setup, gets a similar average distance traveled, of 82.28%, 
however it does far worse at actually reaching the markers, 
having a 14% catch rate. 

The baseline ML learning solution, 20% steadiness reward 
model with 5 episode batched training gets a 56.43% average 
distance traveled, but a 0% catch rate (0 catches over 100 
episodes). 

We also included a completely untrained ML agent to have 
as a reference for expected average distance traveled with 
completely random movement. It is not zero because in most 
initializations the plane starts angled toward the next target. 

Human believability 
For the handcrafted solution, a person can observe the 
individual discrete phases of the altitude module as well as 
unnatural stabilizing motions from each of the modules, but 
only if they are paying close enough attention, which may 
not be the case in practical video game experiences. 

All ML solutions exhibited some form of synthetic 
behaviour. Most models displayed excessive rolling and 
even the best performing agent flies unreasonably slowly and 
almost always picks up its target by going too far left and 
then turning around. 

Agent Avg. distance 
to target 

Catch 
rate 

Handcrafted rule-
based agent 83.46% 70% 

REINFORCE agent 
Stochastic training 

82.28% 14% 

REINFORCE agent 
Baseline 

56.43% 0% 

Untrained agent 14.23% 0% 

Table 1: Numerical performance 

Robustness / Generality 
The handcrafted design is somewhat inappropriate as a 
general purpose solution. It is heavily reliant on the markers 
and obstacles being laid out in a big, open space, without 
requiring any fine maneuvering, such as taking turns with 
combined roll and pitch rotations. 

It is also nonadaptive to changes in the physics engine’s 
parameters. Even during the development of this project we 
had to add a new adjustable parameter to the bot, after we 
had made some changes to the environment, because it had 
become unstable with its altitude adjustment. 

That being said, it is far more robust than the ML solutions. 
The best performing ML agent, after its 500 training episodes 
would be decent enough at catching markers from below, and 
yet would be completely stuck when it had to pick up a 
marker from above. 

The one thing that the ML agent did consistently better was 
catching initially close targets, because it would not get stuck 
in an orbiting loop. However, this is not that impressive 
considering that one of the more obvious flaws of the ML 
agent is that it is constantly moving too slowly, so close 
proximity targets are inherently easier to catch. 
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DISCUSSIONS 

Modularity and testability of individual modules 
The ML algorithm, by its nature, has to treat a multitude of 
functionalities together, with a single model. This means that 
if a particular functionality is not satisfied, nothing from the 
current model is salvageable. 

Training nondeterminism 
Practical machine learning models are non-linear, which 
means they can include local optima. 

Reinforcement learning algorithms, in practice, often behave 
non-deterministically, due to their instantiations (Figure 4) 
or due to the complexities of the environment. 

 

Figure 33: The same reward model and training setup with 
different initializations 

Sometimes the machine learning setup, which is to say the 
algorithm, model shape, activation functions, batch size and 
other hyperparameters, are simply inappropriate for the 
given problem. 

All of this put together means that it is never exactly clear 
when you should continue training the current agent, 
initialize a new agent, or change the setup altogether. During 
this project we have been surprised several times by how 
wrong our predictions over certain setups were, or by how 
something that we thought was explainable in an early stage 
of development turned out to be purely due to random 
behaviour. 

It is not just the issue of extra time needed to test different 
setups or instantiations but the mental burden itself of not 
knowing whether a passed test is a sign that you are on the 
correct path. 

CONCLUSION 
Most issues with the ML approach collectively add up to one 
thing: unreasonable time investment. The machine learning 
agents took collectively several orders of magnitude more 
time to develop and test than the rule-based agent, and even 
so, the latter proved more reliable. 

For our use case environment, and the purpose of building an 
agent that is skilled, humanly credible and robust for a 
production level video game, we would say that a 
handcrafted solution is more appropriate than a machine 
learning approach. 
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